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Abstract

One of the fundamental challenges in supervised learning for multimodal image registration is the 

lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer 

voxel-level transformation from higher-level correspondence information contained in anatomical 

labels. We argue that such labels are more reliable and practical to obtain for reference sets of 

image pairs than voxel-level correspondence. Typical anatomical labels of interest may include 

solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The 

proposed end-to-end convolutional neural network approach aims to predict displacement fields to 

align multiple labelled corresponding structures for individual image pairs during the training, 

while only unlabelled image pairs are used as the network input for inference. We highlight the 

versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which 

need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable 

image registration algorithm runs in real-time and is fully-automated without requiring any 

anatomical labels or initialisation. Several network architecture variants are compared for 

registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from 

prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a 

median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 

108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
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1 Introduction

Multimodal image registration aims to spatially align medical images produced from 

different imaging modalities. Among many other medical imaging applications, this is 

useful in minimally- or none-invasive image-guided procedures, in which a common 

strategy is to fuse the detailed diagnostic information from quality pre-procedural images 

with intra-procedural imaging that is typically restricted by the interventional requirements, 

such as portability, accessibility, temporal resolution, limited field of view and controlled 

dosage for contrast agent or radiation.

Classical pairwise intensity-based image registration methods are in general based on 

optimising image similarity, a metric indicating how well image intensities correspond (Hill 

et al., 2001). However, in many interventional applications, engineering a multi-modal 

similarity metric that is sufficiently robust for clinical use is challenging. Potential 

difficulties include: 1) different physical acquisition processes may generate statistical 

correlation between imaging structures that do not correspond to the same anatomical 

structures, violating one of the underlying assumptions for most intensity-based similarity 

measures (Zöllei et al., 2003); 2) the spatial and temporal variabilities in the intra-procedural 

imaging, partly due to user-dependency (Noble, 2016), is complex to summarise with simple 

statistical properties or information-theory-based measures; and 3) intraoperative time 

constraints prevent the use of better imaging quality as it typically requires significant 

imaging or processing time, as well as the use of computationally-intensive approaches, such 

as exhaustive global optimisation.

Alternative feature-based image registration methods, when features are extracted 

automatically, face similar challenges. Manual anatomical feature selection for registration is 

user-dependent and often costly or even infeasible intraoperatively but arguably remains the 

most robust method for multimodal image registration for many intra-procedural 

applications (Viergever et al., 2016). Semi-automated or assisted medical image 

segmentation is a promising research direction to support registration (Wang et al., 2017), 

but it has not yet demonstrated clinical value in fast evolving interventional applications.

In this work, we focus on one exemplar application of interventional multimodal image 

registration which is to register pre-procedural multi-parametric magnetic resonance (MR) 

images to intra-procedural transrectal ultrasound (TRUS) images for prostate cancer patients 

(Pinto et al., 2011; Rastinehad et al., 2014; Siddiqui et al., 2015). Multi-parametric MR 

imaging (Dickinson et al., 2011), including recent development of hyperpolarised imaging 

(Wilson and Kurhanewicz, 2014) and computational methods based on diffusion-weighted 

imaging (Panagiotaki et al., 2015), have shown favourable results in diagnosing and staging 

prostate cancer. This has already been recommended to form a part of a standard clinical 

pathway in some countries, including the UK (Vargas et al., 2016). On the intra-procedural 
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side, TRUS imaging is routinely used for guiding the majority of targeted biopsies and focal 

therapies, but it provides limited value in differentiating cancerous tissue from healthy 

surroundings. Fusing the MR and TRUS images, can enable accurate detection, localisation 

and treatment of low- to medium-risk disease in TRUS-guided procedures (Valerio et al., 

2015). However, like most other ultrasound-guided medical procedures, this represents a 

typical example where no robust image similarity measure has been demonstrated. For 

example, anatomically different imaging structures, such as the prostate inner-outer gland 

separation, a cleavage plane known as the surgical capsule, defined on TRUS images 

(Halpern, 2008) and the central-peripheral zonal boundary visible on MR images, appear as 

being similar in the two types of images and thus possess strong statistical correlation 

between them. This leads to false alignment using most, if not all, of the established 

intensity-based similarity measures and the associated registration methodologies, such as 

the work by Rueckert et al. (Rueckert et al., 1999).

To alleviate some of the aforementioned problems from both the intensity- and feature-based 

methods in registration applications of this type, a class of model-to-image fusion methods 

have been proposed (Hu et al., 2012; Khallaghi et al., 2015; van de Ven et al., 2015; Wang et 

al., 2016a), in which motion models of the prostate glands obtained from MR image are 

aligned to the surface of the gland capsule automatically or semi-automatically. These 

methods suffer from two limitations. First, the subject-specific pairwise registration requires 

correspondent features to be extracted from both images. We previously argued that the only 

common features of the prostate gland that are consistently available from both images are 

the capsule surface while ad hoc landmarks can be found on a case-by-case basis for 

validation purpose (Hu, 2013). Indeed, the gland boundary has been the feature of interest to 

match in most of these mentioned algorithms. Second, partly as a result of the availability of 

the sparse features, some form of a motion prior is required to regularise the non-rigid 

registration methods (De Silva et al., 2017; Hu et al., 2015, 2011; Khallaghi et al., 2015; 

Wang et al., 2016b). The learning of the motion models is highly application-dependent and 

usually not generalisable to other medical applications or different imaging protocols for the 

same application, such as pathological cases or interventions with different surgical 

instruments.

Supervised representation learning (Bengio et al., 2013), especially methods using 

convolutional neural networks (LeCun et al., 2015, 1998), has the potential to optimise 

medical image representation in a regression network that predicts spatial correspondence 

between a pair of given images, without human-engineered image features or intensity-based 

similarity measures. However, voxel-level ground-truth for learning correspondence are 

scarce and, in most scenarios, impossible to reliably obtain from medical image data. 

Alternative methods to learn similarity measures, e.g. (Simonovsky et al., 2016), also require 

non-trivial ground-truth labels and, to our best knowledge, have not been proposed for 

registering MR and ultrasound images. Several methods have been proposed to procure large 

numbers of pseudo-ground-truth transformations for training, such as those from simulations 

(Krebs et al., 2017; Miao et al., 2016; Sokooti et al., 2017), existing registration methods 

(Rohé et al., 2017) or manual rigid alignment (Liao et al., 2017). Recently-proposed 

machine-learning-based image registration methods have relied on image-similarity-driven 

unsupervised learning (Cao et al., 2017; de Vos et al., 2017; Wu et al., 2013; Yang et al., 
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2017), meaning that these methods inherit the key short-comings of classical intensity-based 

image registration algorithms.

We argue that higher-level corresponding structures are much more practical to annotate 

reliably with anatomical knowledge. Such labels can be used to highlight in pairs of images 

the same organs and boundaries between them, pathological regions, and other anatomical 

structures, morphological or physiological features appearing in both images, and can serve 

as weak labels for training the prediction of lower-level voxel correspondence. Moreover, 

subject-specific landmarks that are only inconsistently available from all image pairs may 

also contribute to finding detailed voxel correspondence, especially from interventional data. 

For instance, spatial distributions of calcification scatters and water-based cysts are highly 

patient-specific (see an example in Fig. 1). Although readily identifiable in many pairs, they 

have mostly been used for validation purposes (Hu et al., 2012; van de Ven et al., 2013; 

Wang et al., 2016a). In this work, we introduce a novel framework which uses these 

anatomical labels and full image voxel intensities as training data, to enable a fully-

automatic, deformable image registration that requires only unlabelled image data during 

inference.

Initial results were reported in an abstract on our preliminary work (Hu et al., 2018). We 

summarise the substantially extended contributions contained in this paper: 1) a detailed 

methodology description for the weakly-supervised image registration framework is 

presented in Section 2.1; 2) a new efficient multiscale Dice for weakly-supervised 

registration network training is described in Section 2.2; 3) a novel memory-efficient 

network architecture is proposed without using the previously proposed global affine sub-

network in Section 2.3; and 4) rigorous analysis comparing different network variations and 

classical pairwise registration algorithms are reported in Section 4 and significantly 

improved results are also presented.

2 Method

2.1 A weakly-supervised image registration framework

Given N pairs of training moving- and fixed images, xA = xn
A  and xB = xn

B , respectively, 

n = 1, …, N. On the nth image pair, Mn pairs of moving- and fixed labels lA = lmn
A  and 

lB = lmn
B  represent corresponding regions of anatomy, m = 1, …, Mn. We formulate the 

training of a neural network to predict the voxel correspondence, which is represented by a 

dense displacement field (DDF) un, as a weakly-supervised learning problem that maximises 

a utility function indicating the expected label similarity over N training image pairs:

J = 1
N ∑

n = 1

N 1
Mn

∑
m = 1

Mn
Jmn lmn

B , ymn
A (1)

where the inner summation represents the image-level label similarity, averaging a label-

level similarity measure over Mn labels associated with the nth image pair. In this work, the 
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label-level similarity is computed between the fixed label lmn
B  and the spatially warped 

moving label ymn
A = f T lmn

A , un  with the displacements u = un xn
A, xn

B, θ  being predicted by 

the neural network parameterised by θ, as illustrated in Fig. 2. The network training aims to 

minimise the negative utility function balanced with a deformation regularisation Ω(u) 

penalising non-smooth displacements, weighted by a hyper-parameter α:

θ = arg min
θ

−J xA, xB, lA, lB; θ + α ⋅ Ω u (2)

As motivated in the Introduction, we emphasize that such a loss does not incorporate any 

intensity-based similarity term which is proven to be unreliable in our application. During 

training, we use a standard stochastic K-minibatch gradient descent optimisation 

(Goodfellow et al., 2016) which requires an unbiased estimator of the additive batch 

gradients in each minibatch ∂J
∂ θ = 1

K ∑k = 1
K ∂Jk

∂ θ , k = 1, …, K . To avoid the non-trivial 

computation of minibatch gradients with a variable number of labels and to simplify the 

implementation, we propose to construct such a gradient estimator by a two-stage sampling: 

K image pairs are sampled uniformly in the first stage, then in second stage single label pairs 

are sampled uniformly from those associated with the previously-sampled image pairs. With 

this approach, each minibatch contains an equal number of K image-label pairs, from which 
∂Jk
∂ θ  is estimated. Given the first-stage-sampled image pairs, let’s consider E2(

∂Jk
∂ θ ) =

∂Jk
∂ θ  as 

the conditional expectation of the estimated gradients over the label pairs sampled in the 

second stage. With the first-stage expectation E1[ · ] over image pairs, it can be shown that 

the minibatch gradients ∂J
∂ θ  computed from the two-stage clustering sampling is unbiased:

E ∂J
∂θ = E1 E2

∂J
∂ θ = E1 E2

1
K ∑

k = 1

K ∂Jk
∂ θ

= E1
1
K ∑

k = 1

K
E2

∂Jk
∂ θ = E1

1
K ∑

k = 1

K ∂Jk
∂ θ = ∂J

∂ θ

(3)

We summarise several advantages of the proposed framework illustrated in Fig. 2. First, the 

modality-independent label similarity is computed between the warped moving label and the 

fixed label, neither of which are used as input to the network. Therefore, they are not 

required in the inference stage, i.e. actual registration. Second, samples of different types of 

labels can be fed to the training without requiring consistent number or types of anatomical 

structures being labelled; and potentially very large number of labels for each image pair can 

be used without increasing memory usage. Third, the moving and fixed images are the only 

inputs to the neural network without the need to define an explicit intensity-based image 

similarity measure that has to be tailored for different modality pairs. Matching intensity 

patterns will be learned by the network trained to optimise for latent label correspondence. 
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Fourth, different regularisation terms can be added, such as bending energy (Rueckert et al., 

1999), L1- or L2-norm of the displacement gradients (Fischer and Modersitzki, 2004; Kumar 

and Dass, 2009; Vishnevskiy et al., 2017), in addition to the network architectural 

constraints.

2.2 Multiscale dice for measuring label similarity

Direct use of classical overlap metrics between binary anatomical labels, such as those based 

on Dice, Jaccard and cross-entropy, are not appropriate for measuring label similarity in the 

context of image registration. For example, they do not consider the spatial information 

when two foreground objects do not overlap. All of them approach extreme values, 

becoming invariant to the distance between the objects. Our initial work reported to use a 

cross-entropy with a heuristic label smoothing approach based on re-weighted inverse 

distance transform (Hu et al., 2018). The warped labels were approximated by interpolating 

pre-computed label maps, as the distance transform is neither differentiable nor efficient to 

compute in each iteration.

Here, we propose an alternative label similarity measure based on a multiscale Dice. The 

soft probabilistic Dice (Milletari et al., 2016) Dice has been shown to be less sensitive to 

class imbalance in medical image segmentation tasks (Sudre et al., 2017). Between two 

labels a = {ai} and b = {bi}, ai, bi ∈ [0, 1], Dice is given as follows:

𝒮Dice a,b =
2 Σi = 1

I ai ⋅ bi

Σi = 1
I ai + Σi = 1

I bi
(4)

where, i = 1, …, I, over I image voxels. Given the pair of binary labels 

lk
B = lk

B
i

and yk
A = yk

A
i

 in a training minibatch. To better capture spatial information 

between labels, the proposed multiscale Dice is defined as:

Jk = 1
Z ∑

σ
𝒮Dice f σ lk

B , f σ yk
A (5)

where, fσ is a 3D Gaussian filter with an isotropic standard deviation σ. In this work, the 

number of scales Z is set to 7, with σ ∈ {0, 1, 2, 4, 8, 16, 32} in mm. fσ=0 is equivalent to 

filtering with a Dirac delta function, meaning that an unfiltered binary label at original scale 

is also included when averaging Dice values. An illustration of the multiscale filtering on 

the anatomical labels are provided in Fig. 3. The proposed Gaussian filtering based 

multiscale loss metric is differentiable and, if required, can be efficiently evaluated on-the-

fly after non-rigid warping and necessary data augmentation.

For comparison, the proposed multiscale approach is also adapted with a classification loss 

using a negative cross-entropy:
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𝒮CE a,b = ∑
i = 1

I
∑

c = 1

2
pc ai log pc bi (6)

where pc represents the class probabilities between the foreground- and background classes, 

c = {1, 2}. A numerically stable implementation clipping extreme input probabilities can be 

used in this case.

We summarise several technical considerations in designing the proposed label similarity 

measure in Eq (5): 1) it has the effect of penalising high confidence binary predictions, 

similar to the label-smoothing regularisation approaches (Pereyra et al., 2017; Szegedy et al., 

2016); 2) from a classification perspective, it further improves the gradient balance between 

foreground- and background classes over voxel samples in training, as a result of reducing 

the difference between the expected class probabilities (Lawrence et al., 2012); 3) it provides 

non-saturating gradients from anatomical labels, especially for those with smaller volumes, 

due to the high variance spatial smoothing at larger scales; 4) it is highly efficient to 

compute with recursive and separable convolution kernels.

2.3 Network architecture

As shown in our preliminary work (Hu et al., 2018), a global sub-network predicting an 

affine transformation can be combined with a jointly-trained local sub-network predicting a 

local DDF, in order to overcome the practical difficulty in propagating the gradients from the 

deformation regulariser to regions with less supporting label data. In this work, we describe 

a new architecture utilising a single network to predict displacement summed over different 

resolution levels. The lower-level displacement summands provide global information, 

similar to that of the global sub-network but without significant memory usage by the global 

sub-network. These approaches are compared in Section 3.2.

Following our previous work in segmenting prostate gland from TRUS images (Ghavami et 

al., 2018) and the prior art for learning optical flow (Ilg et al., 2017), the network is designed 

as a 3D convolutional neural network with four down-sampling blocks, followed by four up-

sampling blocks. As illustrated in Fig. 4, the network is more densely connected than the U-

Net proposed for image segmentation (Ronneberger et al., 2015) and also has less memory 

requirement, featuring three types of previously proposed summation-based residual 

shortcuts, 1) four summation skip layers shortcutting the entire network at different 

resolution levels (Yu et al., 2017), 2) eight standard residual network shortcuts summing 

feature maps over two sequential convolution layers (He et al., 2016), and 3) four trilinear 

additive up-sampling layers are added over the transpose-convolution layers (Wojna et al., 

2017).

The benefits of deeper supervision using denser connections have been shown in computer 

vision tasks (He et al., 2016; Huang et al., 2016; Lee et al., 2015; Szegedy et al., 2015) and 

medical image analysis (Dou et al., 2017; Garcia-Peraza-Herrera et al., 2017; Gibson et al., 

2017a). Besides the thoroughly applied residual shortcuts described above, we introduce 

summation-based skip layers to the displacement space across different resolution levels 
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s0-4. As sketched in the lower part of Fig. 4, each side of the up-sampling blocks extends to a 

node to predict a trilinear-up-sampled displacement summand δ1-4 at levels s1-4, after an 

additional convolution layer added to a bias term, without batch normalisation or standard 

nonlinear activation. These summands, with the size of the output DDF, are then added to 

the summand δ0 at the input image resolution level s0, to predict a single output DDF.

Physically parametrised global transformations such as rigid and affine models are sensitive 

to network initialisation, as in training spatial transformer networks (Jaderberg, 2015). To a 

lesser degree, the registration networks predicting displacements suffer the same problem. 

The design of these summand nodes allows random initialisation with zero mean and a small 

variation on the convolution weights and bias (on the displacement skip layers) with 

controlled magnitude of the initial DDFs, such that the warped labels generate meaningful 

initial gradients. The trilinear sampling provides bounded nonlinear activation between 

linear convolutions.

The described additive displacement skip layers are more efficient to compute and, 

potentially, easier to train, comparing to composing displacements at different levels or 

concatenating warped input images (Ilg et al., 2017; Yu et al., 2016), both requiring 

resampling. It is noteworthy that the described four displacement skip layers are determined 

by the network up-sampling levels, therefore are independent to the choice of scales in the 

label similarity measure above-described in Section 2.2, which evaluates the loss with 

respect to the single output DDF.

As illustrated in Fig. 4, the first feature maps begin with n0 initial channels, successively 

doubles the number of channels and halves the feature map size with the down-sampling 

blocks, and vice versa with the up-sampling blocks. Each of these blocks consists of two 

convolution- and batch normalisation (BN) layers with rectified linear units (relu). 3D down- 

and up-sampling are achieved respectively by max-pooling (maxpool) and transpose-

convolution (deconv) layers, both with strides of two. All convolution layers have 3 × 3 × 3 

kernels, except for 7 × 7 × 7 kernels used in the first convolution layer to ensure sufficient 

receptive field.

3 Experiments

3.1 Data

A total of 108 pairs of T2-weighted MR and TRUS images from 76 patients were acquired 

during SmartTarget® clinical trials (Donaldson et al., 2017). Each patient had up to three 

image data sets due to the multiple procedures he entered, i.e. biopsy and therapy, or 

multiple ultrasound volumes acquired at the beginning and the conclusion of a procedure 

according to the therapy trial protocol (“SmartTarget: BIOPSY,” 2015; “SmartTarget 

THERAPY,” 2014). Using a standard clinical ultrasound machine (HI-VISION Preirus, 

Hitachi Medical Systems Europe) equipped with a bi-plane (C41L47RP) transperineal 

probe, a range of 57–112 TRUS frames were acquired in each case by rotating a digital 

transperineal stepper (D&K Technologies GmbH, Barum, Germany) with recorded relative 

angles covering the majority of the prostate gland. These parasagittal slices were then used 

to reconstruct a 3D volume in Cartesian coordinates (Hu et al., 2017). Both MR and TRUS 

Hu et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2019 September 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



images were normalised to zero-mean with unit-variance intensities after being resampled to 

0.8 × 0.8 × 0.8 mm3 isotropic voxels.

From these patients, a total of 834 pairs of corresponding anatomical landmarks were 

labelled by two medical imaging research fellows and a research student using an in-house 

voxel-painting tool on the original image data, and all were verified by second observers 

including a consultant radiologist and a senior research fellow. Prostate gland segmentations 

on MR images were acquired as part of the trial protocols (Donaldson et al., 2017). The 

gland segmentations on TRUS images were manually edited based on automatically 

contoured prostate glands on original TRUS slices (Ghavami et al., 2018). Besides full gland 

segmentations for all cases, the landmarks include apex, base, urethra, visible lesions, 

junctions between the gland, gland zonal separations, vas deference and the seminal 

vesicles, and other patient-specific point landmarks such as calcifications and fluid-filled 

cysts (see also Figs. 1 and 3 for examples). The label pairs used in this study include 108 

(12.9%) pairs of gland segmentations, 213 (25.5%) apex or base pairs, 214 (25.7%) 

corresponding structures on zonal boundaries, 37 (4.4%) on urethra and 262 (31.4%) 

patient-specific regions of interest such as calcification sediments and cysts, with an average 

volume of 0.39 ± 0.21 cm3 and a range of [0.13, 18.0] cm3 excluding the gland 

segmentations. The landmark annotation process took more than 200 h. The anatomical 

labels, represented by binary masks, were resampled to the sizes and resolutions of the 

associated MR or TRUS images, and were re-grouped for training (described in Section 2.1) 

and for validation in a cross-validation scheme described in Section 3.3.

3.2 Implementation and network training

The described methods were implemented in TensorFlow™ (Abadi et al., 2016) with a 

trilinear resampler module and a 3D image augmentation layer adapted from open-source 

code in NiftyNet (Gibson et al., 2017b). Re-implementation of all the networks reported in 

the experiment are available as part of NiftyNet (niftynet.io). Each image-label pair was 

transformed by a random affine transformation without flipping before each training 

iteration for data augmentation. Each network was trained with a 12GB NVIDIA® Pascal™ 

TITAN Xp general-purpose graphic process unit (GPU) for 48 h on a high-performance 

computing cluster.

3.2.1 The proposed baseline network and variants—Without extensively 

searching and refining the hyper-parameters, which could systematically underestimate the 

reported generalisation error, an empirically configured “Baseline” network was trained 

using the Adam optimiser starting at a learning rate of 10−5, with a minibatch of 4, four full-

sized image-label quartets. The deformation regularisation weight was set to α = 0.5 

between the bending energy and the multiscale Dice, described in Section 2. The weight 

decay was not used. Initial number of channels for feature maps was set to n0 = 32. All 

network parameters were assigned initial values using Xavier initialiser (Glorot and Bengio, 

2010), except for the final displacement prediction layers to allow controlled initial outputs 

as discussed in Section 2.3. These convolutional kernel and bias parameters were initialised 

to zeros for the results reported in this paper. We refer to the network trained with these 

hyper-parameters as the “Baseline” network, for comparing with the networks using 
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different hyper-parameters. Except for each of the hyper-parameter of comparison, these 

configurations were kept fixed in the following networks.

Two variants of the proposed “Baseline” network loss function are compared, training with 

1) a multiscale cross-entropy, described in Section 2.2 (“Baseline-msCE”), instead of the 

multiscale Dice, or 2) replacing the bending energy with an average L2-norm of the 

displacement gradients (“Baseline-L2”).

Although one of the advantages of the proposed label similarity measure in Eq. (5) is 

computational efficiency when required on-the-fly, pre-computing Gaussian filtered labels 

before training, may further accelerate training. Therefore, a baseline network using label 

maps pre-filtered at different scales (“Baseline-preFilt”) was trained, while the Dice metrics 

were evaluated directly on the resampled multiscale label maps during training.

To validate the proposed network architecture, the “Baseline” network was trained with only 

the displacement δ0 predicted at the input image resolution level s0, i.e. without 

displacement summands δ1-4 at resolution levels s1-4 (“Baseline-δ0”, illustrated in Fig. 5b). 

This is similar to the “Local-Net” proposed in our preliminary work (Hu et al., 2018). 

Furthermore, previous work suggested that, regularised displacements predicted at finest 

level may not be necessary (Dosovitskiy et al., 2015). Therefore, the “Baseline” network 

was also trained with all the displacement summands except for the one at level s0, that is a 

network with displacement summed over the outputs at levels s1-4 (“Baseline-δ1-4”, 

illustrated in Fig. 5c). For both networks, the down- and up-sampling blocks remain the 

same.

3.2.2 Comparison with the previous networks of Hu et al. (2018)—A “Global-

Net”, illustrated in Fig. 6, was proposed to predict an affine transformation using the same 

learning framework described in Section 2.1. A “Composite-Net” was proposed to compose 

the output DDFs from the “Global-Net” and the “Local-Net”, as illustrated in Fig. 7. The 

details of the compared “Global-Net” and the “Composite-Net”, are described in Hu et al. 

(2018). A direct comparison to the previously reported numerical results may be unfair due 

to the difference in data sets and the associated training strategy. For example, the results 

reported in this paper are based on substantially more anatomical labels verified by second 

observers (described in Section 3.1) without the less-frequently-sampled “low-confidence” 

labels (Hu et al., 2018). In the interest of a direct comparison between different network 

architectures, the “Global-Net” and the “Composite-Net” were re-trained using the same 

multiscale Dice as the “Baseline” networks, with a smaller starting learning rate of 10−6 to 

avoid otherwise frequently encountered divergence (due to the sensitivity of the output 

displacements to the affine parameters). A 24GB NVIDIA® Quadro™ P6000 GPU card was 

used to train the “Composite-Net” that needs more than 12GB GPU memory for the same 

minibatch size.

3.3 Cross-Validation

All the numerical results reported in this paper were based on a 12-fold patient-level cross-

validation for each network. In each fold, test data from 6–7 patients were held out while the 

data from the remaining patients were used in training. Two measures are reported in this 
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study: centroid distance error between centres of mass is computed from each pair of the 

warped and fixed labels; the target registration error (TRE) is defined as root-mean-square 

on these distance errors over all landmark pairs for each patient. A Dice similarity 

coefficient (DSC) is the overlap between the binary warped and fixed labels representing 

prostate glands. These two independently-calculated metrics on left-out test data directly 

relate to the clinical requirements in the registration-enabled guidance, avoiding surrounding 

healthy or vulnerable structures and locating regions of interest. Paired Wilcoxon signed-

rank tests at significance level αH = 0.05 were used to compare medians of the cross-

validation results between the networks. Confidence intervals (CIs) were also reported in 

cases where the obtained p-values are larger than αH. The cross-validation scheme ensures 

all the anatomical landmarks (details described in Section 3.1) are independently tested in 

different folds without being used in training.

3.4 Comparison with pairwise image registration methods

As discussed in Section 1, generic pairwise registration algorithms were generally found to 

perform poorly in registering MR and TRUS images for this application, which has in turn 

motivated many application-specific methods, such as prostate motion modelling and 

intraoperative rigid initialisation, e.g. (De Silva et al., 2017). To confirm this observation on 

the same data set in this work, a set of non-linear registrations were tested using a GPU-

enabled open-source algorithm (Modat et al., 2010). The B-splines free-form deformation 

regularised by bending energy (Rueckert et al., 1999), weighting being set to 0.5 for 

comparison, was optimised with respect to three intensity-based similarity measures, 

normalised mutual information (NMI), normalised cross-correlation (NCC) and sum-of-

square differences (SSD). In addition to directly applying the registration without any initial 

alignment, two simple global initialisation methods, an automatic rigid registration 

minimising the same similarity measures and a manual initialisation matching the gland 

centroids, were also tested. A total of 972 registrations were run on GPU using the data set 

described in Section 3.1. The TREs and DSCs were computed with all the other default 

configurations kept as the same for comparison. These results aim to demonstrate typical 

performances using pairwise intensity-based registration algorithms for this multimodal 

MR-to-TRUS prostate imaging application. Methods with substantial customised 

adaptations (discussed in Section 1), such as spatial initialisation (manual or automated) or 

statistical motion modelling, were also compared quantitatively based on published results 

and are summarised in Section 4.4.

4 Results

4.1 “Baseline” performance

Approximately four 3D registrations per second can be performed on the same GPUs. The 

“Baseline” network achieved a median TRE of 3.6 mm on landmark centroids with first and 

third quartiles being 2.3 and 6.5 mm, respectively. A median DSC of 0.87 on prostate glands 

was obtained from the same networks with first- and third quartiles being 0.82 and 0.89. 

More detailed results are summarised in Table 1 and illustrated in Fig. 8. Example slices 

from the input MR and TRUS image pairs and the registered MR images are provided in 

Fig. 9 for qualitative visual assessment of the registration results based on the test data.
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4.2 Variants of the “Baseline” network

Considering the “Baseline” network was trained with respect to the loss function based on 

multiscale Dice, it is interesting that replacing the multi-scale Dice with cross-entropy (i.e. 

using “Baseline-msCE” network) had a significantly worse TRE (p-value < 0.001), but a 

better binary (single-scale) DSC result (p-value = 0.046). This may suggest that the superior 

class balance was conveyed by the multiscale Dice as discussed in Section 2.2. Thus, the 

bias towards labels having larger volumes, such as the prostate glands producing the DSC 

results, is lessened. The “Baseline-L2” using a different deformation regularisation produced 

poorer generalisation ability, both in terms of TRE (p-value = 0.049) and DSC (with both p-
values < 0.001), although it is intended to demonstrate the suitability to use different forms 

of regularisation without excessively tuning each hyper-parameter in this experiment.

It may be of practical importance to report that pre-computing the label filtering did not have 

a negative impact on TRE (p-value = 0.458, CI = [−1.433, 0.634]) or on DSC (p-value = 

0.498, CI = [−0.009, 0.030]). However, the “Baseline-preFilt” is faster to train. Depending 

on the implementation of the online filtering and the parsing of the additional pre-computed 

labels, an approximately 25% gain in training time was achieved in our experiments using 

pre-computed labels.

The “Baseline” network outperformed the “Baseline-δ0” network predicting the local 

displacement only at the finest input image resolution level, with p-value = 0.034 and p-
value = 0.003, for comparing TREs and DSCs, respectively. This improvement was 

consistently achieved during the experiments with different network hyper-parameters. On 

the other hand, the “Baseline-δ1-4” without predicting displacement at finest resolution level 

performed competitively, consistent with the conclusions from the previous work 

(Dosovitskiy et al., 2015) that prediction at the original resolution level does not necessarily 

improve the accuracy. It produced TREs and DSCs with no statistically significant difference 

than those from the “Baseline”, p-value = 0.477 (CI = [−1.342, 0.735]) and p-value = 0.316 
(with a CI of [−0.011, 0.023]), respectively. Furthermore, using the “Baseline” network 

without the trilinear additive up-sampling layers, described in Section 2.3, resulted in a 

significantly higher median TRE of 6.4 mm (p-value < 0.001).

4.3 Comparison results with the previous networks of Hu et al. (2018)

The TREs and DSCs from the “Baseline” network are significantly better than those from 

“Global-Net” which only models the affine transformation (both p-values < 0.001). This 

clearly demonstrates the efficacy of the deformable registration in this application. 

Comparing to the previously proposed “Composite-Net” architecture, not only the GPU 

memory to train the “Global-Net” can be spared, but also improvement in generalisation was 

observed from the proposed network, in terms of both TRE and DSC (both p-values < 
0.001).

Because a relatively large weight α = 0.5 in Eq. (2) was used in this multimodal application, 

negative Jacobian determinants were not found in any of the DDFs predicted by the trained 

networks. For further inspection of the deformation fields, we plotted the determinants of the 

Jacobian, the magnitudes of the displacement vectors and the L2-norms of the displacement 

Hu et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2019 September 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



gradients, as illustrated in the rows of Fig. 10, J, D and G, respectively. For example, the 

“Baseline” (left columns), “Baseline-δ0” (middle columns) and an illustrative network 

trained with small regularisation weight α = 0.01 (right columns) produced DDFs with 

visibly increasing variance. Both standard deviations and numerical ranges of these three 

quantities increase in the same order consistently. Negative Jacobian determinants also 

appeared as the regularisation weight decreases to α = 0.01, implying that physically 

implausible deformation may exist in the illustrative example without appropriate 

regularisation.

4.4 Comparison with pairwise registration methods

For the comparison with the pairwise registrations described in Section 3.4, we report that 

all 9 median TREs are larger than 24 mm and none of the DSC medians are higher than 

0.77. Direct application of the intensity-based registration result in median TREs ranging 

26.7–35.0 mm, with and without the rigid initialisation, for all three similarity measures. 

Manually aligning the prostate gland centroids immediately led to a median TRE of 19.6 

mm with a median DSC of 0.79, without further registration. With the manual centroid-

alignment as initialisation, registrations using NMI, NCC and SSD produced higher median 

TREs of 20.6, 24.7 and 25.6 mm, with lower median DSCs of 0.77, 0.67 and 0.65, 

respectively. The results are also summarised and compared with other previously proposed 

methods in Table 2, with an initial median TRE of 34.8 mm before registration. These 

inferior performances appear much worse than the results summarised in Table 1 and those 

from previous application-specific methods, e.g. (De Silva et al., 2017; Hu et al., 2012; 

Khallaghi et al., 2015; Sun et al., 2015; van de Ven et al., 2015; Wang et al., 2016a). It 

should clearly indicate the nontrivial difficulties for these general-purpose intensity-based 

algorithms in this multimodal registration application.

For the same application, the previous studies validated on patient data reported an expected-

TRE range of 1.4–2.8 mm, (De Silva et al., 2017; Hu et al., 2012; Khallaghi et al., 2015; van 

de Ven et al., 2015; Wang et al., 2016a). These results were based on smaller sample sizes 

(ranging from 8 to 29 cases) with significant variations, for example, an individual-TRE 

range of 0.8–8.0 mm (van de Ven et al., 2015) was reported. Although intensity-based 

registration has also been adopted for this application, they usually rely on customised 

optimisation and/or manual initialisation. For instance, a previous study (Sun et al., 2015) 

reported a median TRE of 1.8 mm on 20 patients, using a dual optimisation with modality 

independent neighbourhood descriptor after an initialisation method based on six manual 

landmarks from expert observers for each registration. Our method is fully automated 

without requiring any initialisation, pre- or intra-procedural segmentation, once the 

registration network is trained. One of the latest developments also reported an automated 

initialisation based on predicting rigid prostate motion (De Silva et al., 2017), but all the 

other approaches still require either manual (partial) segmentation of the TRUS images or 

manual initialisation in order to obtain robust registrations. None of these methods reported 

a faster registration execution time than the sub-second performance with the proposed 

registration network.
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5 Discussion

In this work, we demonstrated the feasibility of non-iterative prediction of voxel 

correspondence from unlabelled input images, using training image pairs with only sparse 

annotations. The proposed method targets a wide range of clinical applications, where 

automatic multimodal image registration has been traditionally challenging due to the lack 

of reliable image similarity measures or automatic landmark extraction methods.

The use of sparse training and validation labels to predict and evaluate dense correspondence 

raises interesting open questions. The sparse training landmark pairs cannot independently 

represent voxel-level dense correspondence for an individual case. This is commonly 

addressed by application-independent deformation smoothness penalty in pairwise methods. 

Our architecture enables the regularised DDF to be implicitly learned from samples of latent 

dense correspondences, with the presented results suggesting that the population-trained 

application-specific regularisation improves the registration accuracy on unseen landmarks. 

For validation of dense correspondence, in the absence of ground-truth correspondence maps 

for real patient data, using sparse landmarks has become standard practice, interpreting 

independent landmark misalignments as samples of the dense registration error, e.g. (De 

Silva et al., 2017; Hu et al., 2012; Khallaghi et al., 2015; van de Ven et al., 2015; Wang et 

al., 2016a). All these studies adopted the same validation strategy based on available 

anatomical landmarks within or around prostate glands (described in Section 3.1), which 

have been shown to represent a spatial distribution relevant to the clinical localisation and 

targeting applications. Although MR and TRUS prostate images have limited number of 

salient corresponding features (approximately eight landmark pairs per image were 

annotated in this work), pooling these samples across 108 cases has enabled us to measure 

sub-millimetre accuracy differences with statistical significance. In practice, reliably finding 

substantially more paired corresponding anatomies has been proven challenging for 

experienced clinicians and researchers. Therefore, it is our opinion that further improvement 

in registration performance in terms of more accurate prediction of voxel correspondence 

may resort to increasing number of image/subject pairs or better regularisation strategy 

containing prior knowledge of the application-specific deformation, rather than increasing 

the number of landmarks per image pair.

In this work, we propose the multiscale Dice in Eq. (5) because of its ability to balance the 

inter-class gradient difference, discussed in Section 2.2, although the cross-entropy loss has 

an arguably more interpretable probability formulation for the weak voxel-level 

correspondence (Hu et al., 2018). Methods with weighting strategies such as generalised 

Dice (Sudre et al., 2017) and weighted cross-entropy (Ronneberger et al., 2015) did not 

seem to further improve the results in our application, probably due to the highly constrained 

outputs in the registration task. It is also interesting that some training labels overlap with 

each other, such as the gland segmentations and those defined within the prostate glands. 

Further quantitative analysis may be interesting to reveal the effect of these overlaps on 

registration performance. We envisage that, instead of heuristic weight-balancing to improve 

performance metrics, future investigation shall focus on risk analysis (Elkan, 2001) for 

specific applications to quantitatively optimise the utilities of the registration, such as those 

associated with clinical risks.
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The DDFs, also discussed in Section 4.3, were predicted without explicitly enforced 

topology preservation, due to the relatively heavy regularisation required in this application. 

However, in applications where larger numbers of landmarks can be identified feasibly and 

larger deformations are clinically plausible, the network may be adapted, e.g. to penalise 

Jacobian-based regulariser, in seeking highly accurate registration. Furthermore, the final 

displacement field in our proposed network could also be represented by a composition of 

outputs δ0-4, instead of the proposed summation. It is computationally more expensive and 

potentially more sensitive to learning rate and initialisation, but may predict meaningful 

DDF components at different resolution levels, for instance, for allowing multi-level sparsity 

regularisation (Schnabel et al., 2001; Shi et al., 2012).

Whilst the reported cross-validation results were based on independent landmarks unseen in 

training, we would like to note that a limitation in the validation is that a sizable data set 

completely unseen to the methodology development was not available to test the 

generalisation ability conclusively. This is why we resort to cross-validation and did not 

pursue exhaustive hyperparameter tuning. For example, the weight of bending energy was 

fixed among the baseline networks but was only set empirically after a limited number of 

trial runs on partial data set. Unbiased model searching methods for small- to medium sized 

training data remain an interesting future research direction.

In summary, we have introduced a registration framework that is flexible enough to utilise 

different neural network architectures, deformation regularisers, and anatomical features 

with varied sizes, shapes and availabilities, and to match input image intensity patterns. The 

trained network enables a fast and fully-automatic multimodal image registration algorithm 

using only input image pair. Registration results are reported from a validation on 108 

labelled intraoperative prostate image pairs. Future research aims to investigate the 

generalisation of the proposed method to data from different centres and to a wider range of 

applications.
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Fig. 1. 
Examples of corresponding training landmark pairs used in this study, a water-filled cyst (on 

the left MR-TRUS image pair) and a cluster of calcification deposit (on the right image 

pair). These ad hoc landmarks are not consistently available for all patient data and have 

usually been identified only for validation purpose in previous studies. Details are discussed 

in Section 1 and the network training utilising these landmarks is described in Section 2.
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Fig. 2. 
The upper part illustrates the training strategy of the proposed weakly-supervised 

registration framework (described in Section 2.1), where the dashed lines indicates data 

flows only required in training. The lower part depicts the resulting inference (indicated by 

the solid lines), i.e. registration predicting the output DDF, requiring only the image pair, 

with which the moving image may be warped to align with the fixed image (dotted lines).
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Fig. 3. 
Gaussian-based multiscale representation of the example labels used in the proposed label 

similarity measure. Rows illustrate different types of landmarks, slices from two prostate 

glands, a urethra and a cyst, from top to bottom; columns are examples of Gaussian 

smoothed binary labels (first column, σ = 0) with different standard deviations, σ = 0, 2, 8, 

32 from left to right. The details are described in Section 2.2.
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Fig. 4. 
Illustration of the proposed registration network architecture.
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Fig. 5. 
Illustration of the configuration variants for the output displacement summation used in the 

proposed baseline networks. a is adopted in the “Baseline” network using all the nodes δ0-4 ; 

b is in the “Baseline-δ0 ” network using only the prediction at the input image resolution 

level s0 ; c represents the output configuration in the “Baseline-δ1-4 ” network without the 

prediction at the finest s0 level.
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Fig. 6. 
Illustration of the previously proposed “Global-Net”. The “Global-Net” shares the same 

architecture (using independently learnable parameters) as the four down-sampling blocks of 

the “Local-Net”. The details are described in Hu et al. (2018).
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Fig. 7. 
Illustration of the inference part of the previously proposed “Composite-Net”, combining a 

“Global-Net” with a “Local-Net”. The details are described in Hu et al. (2018).
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Fig. 8. 
Tukey’s boxplots of the cross-validation results obtained from the networks described in 

Section 3.2. The numerical results are also summarised in Table 1.
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Fig. 9. 
Example image slices from three test cases, 1, 2 and 3. Rows a, b and c contain slices from 

original MR images (visually closest slices chosen manually for comparison), equidistant 

slices from the warped moving MR images using the proposed “Baseline” network, and the 

corresponding fixed TRUS images, respectively.
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Fig. 10. 
Inspection of the warped MR images and network-predicted DDFs from three test cases, 4, 5 

and 6: The first (I) rows (grey-scaled) display the warped intensity images; the second (J) 

rows (orange-scaled) plotted the determinants of the Jacobian; the third- (D) and fourth (G) 

rows (yellowed- and blue-scaled) plotted the magnitudes of the displacement vectors and the 

L2-norms of the displacement gradients, respectively. Three columns contain results from 

three networks, the “Baseline” (left column), “Baseline-δ0” (middle column) and an 

illustrative baseline network trained with small regularisation weight α = 0.01, respectively. 
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(For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.)

Hu et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2019 September 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Hu et al. Page 31

Table 1
Summary of the cross-validation results for the networks described in Section 3.2. The 
medians in bold numbers indicate statistically significant deviation from the “Baseline” 
network.

Networks TRE in mm DSC %

Median Percentiles [10th, 25th, 75th, 90th] Median Percentiles [10th, 25th, 75th, 90th]

Baseline 3.6 [1.6, 2.3, 6.5, 10.0] 0.87 [0.77, 0.82, 0.89, 0.91]

Baseline-msCE 6.1 [1.8, 3.3, 9.0, 13.2] 0.88 [0.77, 0.83, 0.90, 0.93]

Baseline-L2 4.8 [1.7, 2.7, 7.7, 11.6] 0.82 [0.68, 0.76, 0.86, 0.88]

Baseline-preFilt 3.9 [1.6, 2.4, 7.0, 10.2] 0.86 [0.74, 0.81, 0.88, 0.90]

Baseline-δ0 4.5 [1.9, 2.8, 7.5, 11.3] 0.84 [0.72, 0.79, 0.87, 0.89]

Baseline-δ1-4 4.2 [1.5, 2.4, 6.6, 10.4] 0.86 [0.74, 0.82, 0.89, 0.90]

Global-Net 5.8 [2.3, 3.8, 8.6, 12.0] 0.77 [0.62, 0.69, 0.82, 0.84]

Composite-Net 4.7 [2.3, 3.3, 7.5, 10.5] 0.82 [0.68, 0.78, 0.86, 0.87]
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Table 2
Summary of the results from the intensity-based nonrigid image registrations and those 
from other previous studies, described in Section 4.4.

Registration Method Expected TRE in mm No. of Cases Initialisation Method

Initial 34.8 (median) 108 n/a

After centroid-alignment 19.6 (median) 108 n/a

FFD with NMI* 20.6 (median) 108 Gland centroids

FFD with NCC* 24.7 (median) 108 (from prostate gland/surface estimates)

FFD with SSD* 25.6 (median) 108

Hu et al., 2012 2.4 (median) 8 Manual landmarks

Khallaghi et al., 2015 2.4 (mean) 19 Gland centroids

van de Ven 2015 2.8 (median) 10 Rigid surface registration

Sun et al., 2015 1.8 (median) 20 Manual landmarks

Wang et al., 2016a 1.4 (mean) 18 Rigid surface registration

De Silva et al., 2017 2.3 (mean) 29 Learned motion model

*
The registration results included here are from simplified experiments on our data. It reflects a baseline performance of the compared intensity-

based methods without application-specific adaptation, such as initialisation method, registration parameters and other similarity measures.
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