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Abstract

Populations are shaped by their history. It is crucial to interpret population structure in an evolutionary context. Pairwise FST measures pop-
ulation structure, whereas population-specific FST measures deviation from the ancestral population. To understand the current population
structure and a population’s history of range expansion, we propose a representation method that overlays population-specific FST esti-
mates on a sampling location map, and on an unrooted neighbor-joining tree and a multi-dimensional scaling plot inferred from a pairwise
FST distance matrix. We examined the usefulness of our procedure using simulations that mimicked population colonization from an ances-
tral population and by analyzing published human, Atlantic cod, and wild poplar data. Our results demonstrated that population-specific
FST values identify the source population and trace the evolutionary history of its derived populations. Conversely, pairwise FST values rep-
resent the current population structure. By integrating the results of both estimators, we obtained a new picture of the population structure
that incorporates evolutionary history. The generalized least squares estimate of genome-wide population-specific FST indicated that the
wild poplar population expanded its distribution to the north, where daylight hours are long in summer, to coastal areas with abundant rain-
fall, and to the south where summers are dry. Genomic data highlight the power of the bias-corrected moment estimators of FST, whether
global, pairwise, or population-specific, that provide unbiased estimates of FST. All FST moment estimators described in this paper have rea-
sonable processing times and are useful in population genomics studies.
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Introduction
Quantifying genetic relationships among populations is of sub-
stantial interest in population biology, ecology, and human ge-
netics (Weir and Hill 2002). Appropriate estimates of population
structure are the basis of our understanding of biology and bio-
logical applications, which vary from evolutionary and conserva-
tion studies to association mapping and forensic identification
(Weir and Hill 2002). For such objectives, Wright’s FST (Wright
1951) is commonly used to quantify the genetic divergence of
populations, and there have been many informative reviews of
FST estimators (e.g., Balloux and Lugon-Moulin 2002; Weir and
Hill 2002; Rousset 2004, 2007; Beaumont 2005; Excoffier 2007;
Holsinger and Weir 2009; Gaggiotti and Foll 2010; Bhatia et al.
2013). The traditional FST estimators have been defined as the ra-
tio of the between-population variance to the total variance in al-
lele frequencies (Wright 1965; Cockerham 1969, 1973; Weir and
Cockerham 1984; Balloux and Lugon-Moulin 2002; Excoffier 2007;
Holsinger and Weir 2009). An alternative approach for estimating
population differentiation is to use population-specific FST esti-
mators (Balding and Nichols 1995; Nicholson et al. 2002; Weir and
Hill 2002; Weir et al. 2005; Gaggiotti and Foll 2010; Weir and

Goudet 2017). Model-based Bayesian approaches, based on beta
and/or Dirichlet distributions, for estimating population-specific
FST have been proposed (Balding and Nichols 1995; Nicholson
et al. 2002; Falush et al. 2003; Beaumont and Balding 2004). In ad-
dition to model-based methods, moment estimators of
population-specific FST have been derived (Weir and Hill 2002;
Weir and Goudet 2017). A large number of approaches exist for
estimating FST that have different underlying assumptions
(global, pairwise, or population-specific FST) and the framework
used, such as frequentist and/or Bayesian. There have been
many comprehensive reviews of traditional and population-
specific FST estimators, as indicated above, most of which were
written from the viewpoint of theoretical issues. Conversely,
there has been no formal comparative study to describe their dif-
ferences in terms of the evolutionary scenarios that best describe
the data. Although these issues are well understood among sta-
tistical geneticists and theoretical population geneticists, empiri-
cal researchers, particularly those working in non-model
organisms, could benefit from studies that address the problem.

In practice, the FST value estimated from a set of population
samples is called the global FST, which measures population
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differentiation overall populations (e.g., Pérez-Lezaun et al. 1997).
Additionally, FST values between pairs of population samples
(pairwise FST, Reynolds et al. 1983) are routinely used to estimate
population structure in human genetics (Pérez-Lezaun et al. 1997;
Ramachandran et al. 2005), conservation biology (Palsbøll et al.
2007; Schwartz et al. 2007), and evolutionary biology and ecology
(e.g., Hemmer-Hansen et al. 2013a; Therkildsen et al. 2013a;
Geraldes et al. 2014; McKown et al. 2014a; Jorde et al. 2015;
Rougemont et al. 2020). Divergent selection across an environ-
mental gradient can influence population structure (Nosil et al.
2009; Orsini et al. 2013), and researchers have examined geo-
graphic distance and habitat differences between populations as
explanatory variables that affect population structure estimated
based on genome-wide (average over loci) pairwise FST values
(e.g., Rousset 1997; Bradbury and Bentzen 2007; Petrou et al. 2014;
Jorde et al. 2015; Kitada et al. 2017). To identify the adaptive diver-
gence of a gene among populations, locus-population-specific FST

was developed using empirical Bayes (Beaumont and Balding
2004) and full Bayesian methods (BayeScan) (Foll and Gaggiotti
2008). The Bayesian methods have been applied in many cases
across various species to identify outlier single-nucleotide poly-
morphisms (SNPs) (e.g., Limborg et al. 2012; Therkildsen et al.
2013a; Geraldes et al. 2014). However, genome-wide population-
specific FST is new among biologists. Despite the expected useful-
ness of genome-wide population-specific FST in evolutionary biol-
ogy (Weir and Goudet 2017), applications have been sparse to
date (e.g., Nicholson et al. 2002; Weir et al. 2005; Foll and Gaggiotti
2006; Buckleton et al. 2016; Rougemont et al. 2020).

Traditional FST estimators were originally developed to esti-
mate FST over a metapopulation (global FST) based on a set of pop-
ulation samples (Cockerham 1969; Nei and Chesser 1983; Weir
and Cockerham 1984; Excoffier 2007; Rousset 2007). In this
study, we use Nei and Chesser’s (1983) bias-corrected GST mo-
ment estimator (hereafter, NC83) as a pairwise FST estimator
(Supplementary Note). The pairwise FST between populations (i, j)
is defined as:

pwFij
ST ¼

Hij
T � Hij

S

Hij
T

¼ 1� Hij
S

Hij
T

(1)

where Hij
T is total heterozygosity over all populations and Hij

S is
within-population heterozygosity.

We apply Weir and Goudet’s (2017) bias-corrected moment es-
timator of population-specific FST (hereafter, WG)
(Supplementary Note). When only allele frequencies are used,
the WG population-specific FST at a locus is defined as:

psFi
ST ¼

Mi
w �MB

1�MB

where Mi
W is the within-population matching of two distinct

alleles of population i and MB is the between-population-pair
matching average over pairs of populations i; i0. MB is homozygos-
ity over pairs of populations. We represent heterozygosity over
all pairs of populations as 1�MB ¼ HB, and 1�Mi

W¼ HSi.
Therefore:

psFi
ST ¼

HB � HSi

HB
¼ 1�HSi

HB
: (2)

This formulation is reasonable because WG population-
specific FST uses “allele matching, equivalent to homozygosity

and complementary to heterozygosity as used by Nei (1973),
rather than components of variance” (Weir and Goudet 2017). HB

is heterozygosity for all pairs of populations, whereas Hij
T in

Equation (1) is heterozygosity for the pair of populations.
Equation (2) shows that WG population-specific FST measures
population-specific genetic diversity (HSi) under the framework of
the relatedness of individuals and identifies the population with
the greatest genetic diversity as the ancestral or oldest popula-
tion. Because populations close to the ancestral population have
had more opportunities for mutations than recently founded
populations (Liu et al. 2006), they are likely to have the highest
heterozygosity and low values of population-specific FST. Thus,
WG population-specific FST works to infer evolutionary history
through genetic diversity in terms of heterozygosity under the as-
sumption that the ancestral population had the highest genetic
diversity. By combining population-specific and pairwise FST esti-
mates, we can infer the present population structure, which
reflects evolutionary history.

In this study, our objective is to demonstrate to empirical pop-
ulation geneticists and biologists how the two types of genome-
wide FST estimators can be combined to help elucidate the popu-
lation structure (pairwise FST) in the evolutionary context (popu-
lation-specific FST). In our approach, the current population
structure is represented by an unrooted neighbor-joining (NJ) tree
(Saitou and Nei 1987) and a multi-dimensional scaling (MDS) plot
based on pairwise FST values, with population history being in-
ferred by overlaying population-specific FST values on the popula-
tion structure. The colors of the populations (names and/or
sampling points) based on the WG genome-wide population-spe-
cific FST values enable the inference of the historical order of pop-
ulation colonization. We also present a representation on a
geographical map, which is useful for visually understanding
population history in a distribution range.

First, we examine the usefulness of our procedure using
stepping-stone simulations that mimic population colonization
from a single ancestral population for five scenarios of popula-
tion range expansion. We then apply our approach to three data-
sets of human, Atlantic cod (Gadus morhua), and wild poplar
(Populus trichocarpa). Human evolutionary history, migration, and
population structure have been particularly well studied (e.g.,
Diamond 1997; Rosenberg et al. 2002; Ramachandran et al. 2005;
Liu et al. 2006; Pickrell and Pritchard 2012; Lipson et al. 2013;
Hellenthal et al. 2014; Rutherford 2016; Nielsen et al. 2017). These
patterns are well known by statistical/theoretical population
geneticists and biologists; therefore, testing our integrative FST

analysis on this dataset could provide a good example of the use-
fulness of this practical approach. Although dense human SNP
datasets are currently available, we used microsatellite data for
illustrative purposes, because the quality of human microsatel-
lites has been examined thoroughly, and they are fundamentally
neutral (Kanitz et al. 2018). Also, microsatellites are highly poly-
morphic and have more information at a locus than SNPs
(Schlötterer 2004).

The Atlantic cod SNP were genotyped from mature fish sam-
ples collected from the North Atlantic from the northern range
margin of the species in Greenland, Norway, and the Baltic Sea.
Two ecotypes (migratory and stationary) that were able to inter-
breed were genetically differentiated (Hemmer-Hansen et al.
2013a; Berg et al. 2016). The inclusion of both types of data may
improve the understanding of the demographic history of highly
migratory marine fish. The wild poplar SNP data were collected
from the American Pacific Northwest. Male poplar trees produce
pollen and female trees produce small seeds with fine hairs,
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which enable dispersal of this species by wind (Geraldes et al.
2014). The samples covered various regions over a range of
2500 km near the Canadian–US border in British Columbia (BC) at
alt between 0 and 800 m, where the variations in photoperiod and
temperature have a north-south cline, while the variations in
temperature, rainfall, and drought have an east-west (coastal to
inland) cline (Geraldes et al. 2014). Each sampling location was as-
sociated with 11 environmental and geographical parameters.
The analysis of environmental variables and population-specific
FST values may provide a good example for understanding the
history of the range expansion of a wind-dispersed species. By an-
alyzing different types of data with species-specific ecology and
migration history, the usefulness of our approach may be identi-
fied to enable us to understand the current population structure
in an evolutionary context.

Materials and methods
Population colonization simulations
To test the performance of our visual representation, we con-
ducted simulations that mimicked the colonization of popula-
tions from a single ancestral population (population 1). We
modeled five types of stepping-stone colonization: one, two, and
three-directional population expansion; three-directional grid
colonization from an edge; and eight-directional grid colonization
from the center, with 24 demes (populations 2–25) (Figure 1, A–
E). Our objective is to describe current population structure using
an unrooted NJ tree and an MDS plot, and to infer population his-
tory by overlaying population-specific FST values on the popula-
tion structure. When gene flow is limited between adjacent
populations, as shown in our simulations, the estimated popula-
tion structure corresponds to population history.

We set the effective population size of the ancestral popula-
tion to Ne ¼ 104 (twice the number of individuals in diploid organ-
isms in a random mating population). At the beginning of
colonization, 1% of Ne migrated into the adjacent vacant habitat
once every 10 generations. For convenience, we considered one
simulation cycle to be one generation. The effective population
size of the newly derived population increased to the same size
as the ancestral population (Ne ¼ 104) after one generation, and
the population exchanged 1% of Ne genes with adjacent popula-
tion(s) in every generation. Like the ancestral population, 1% of
Ne individuals migrated into the adjacent vacant habitat once ev-
ery 10 generations. We simulated the allele frequencies of SNPs
in the ancestral and 24 derived populations. We also examined
the cases in which the effective population size of the ancestral
population was 10 times greater (Ne ¼ 105) than that of the newly
derived population (Ne ¼ 104).

We generated the initial allele frequencies in the ancestral
population, q, at 100,000 neutral SNP loci from the predictive
equilibrium distribution, f qð Þ / q�1 1� qð Þ�1 (Wright 1931).
Additionally, we introduced 10 newly derived SNPs to each exist-
ing population in each generation. When a new SNP emerged in a
population, we set the initial allele frequency of the newly de-
rived SNP to 0.01 in the population and 0 in the other popula-
tions. This mimicked new mutations that survived in the initial
phase after their birth. We considered these 100,000 ancestral
SNPs and newly derived SNPs to be “unobserved.” We changed
the allele frequencies of these SNPs using random drift under a
binomial distribution in every generation. The frequencies of the
derived alleles decreased for many of the SNPs over simulation
generations and lost their polymorphism. After 260 simulation

generations, we randomly selected SNPs that retained their poly-
morphism as “observed” SNPs. For grid colonization models
(Figure 1, D–E), we randomly selected polymorphic SNPs after
100 simulation generations.

In our simulations, we selected 10,000 ancestral SNPs and 500
newly derived SNPs. Then, we generated 50 individuals for each
population. We randomly generated the genotypes of these
10,500 SNPs for each individual following the allele frequencies
in the population to which each individual belonged. Thus, we
obtained “observed” genotypes of 1,250 individuals (¼ 50 individ-
uals � 25 populations) at 10,500 SNP loci. To examine the effect
of generations on genetic diversity in newly derived SNPs, we also
selected 9000 and 7000 ancestral SNPs, and 1000 and 3000 newly
derived SNPs, respectively. We converted the simulated geno-
types into Genepop format (Raymond and Rousset, 1995;
Rousset, 2008). We then computed genome-wide population-spe-
cific and pairwise FST values between the 25 populations.

Visual representation of population structure and
demographic history
We integrated genome-wide population-specific and pairwise FST

estimates on a map of sampling locations on an NJ tree and MDS
plot. We visualized the magnitude of the genome-wide popula-
tion-specific FST values using a color gradient based on rgb
(1� FST ; 0; 0; FST ; 0), where
FST ; 0 ¼ ðFST �minFSTÞ=ðmaxFST �minFSTÞ. This conversion rep-
resents the standardized magnitude of a population-specific FST

value at the sampling point, with colors between red (for the
smallest FST) and blue (for the largest FST). We drew the FST map
using the sf package in R, where we plotted sampling locations
based on the longitudes (lon) and lat. We connected sampling
points with genome-wide pairwise FST values smaller than a
given value using yellow lines to visualize the connectivity be-
tween populations. Under the assumption of Wright’s island
model at equilibrium between drift, mutation, and migration
(Wright 1931), FST � 1

4Nemþ1, where Ne is the effective population
size and m is the average rate of migration between populations
(Slatkin 1987). For example, FST ¼ 0:02 refers to 4Nem � 49
migrants per generation (see Whitlock and Mccauley 1999;
Waples and Gaggiotti 2006). The value was arbitrarily used in our
case studies. We plotted the genome-wide population-specific FST

values on a dot chart with standard errors estimated using
Equation (S5) (Supplementary Note). We drew the NJ tree based
on the distance matrix of the genome-wide pairwise FST values
using the nj function in the R package ape. We performed MDS
analysis on the pairwise FST distance matrix using the cmdscale
function in R. We used the cumulative contribution ratio up to
the kth axis j ¼ 1; . . . ; k; . . . ;K

� �
as the explained variation

measure, which we computed using the R function as
Ck ¼

Pk
j¼1 kj=

PK
j¼1 kj, where kj is the eigenvalue and

kj ¼ 0 if kj < 0. We colored the sampling locations on the FST

maps, dot charts, NJ trees, and MDS plots using a color gradient
of the magnitude of genome-wide population-specific FST values.
We also examined a diverging color palette instead of blue to red
to test the resolution using RColorBrewer on the FST maps.

Computing FST values
We converted the genotype data into Genepop format (Raymond
and Rousset 1995; Rousset 2008) for implementation in the R
package FinePop2_ver.0.2. We computed genome-wide pairwise
FST values [NC83, Supplementary Equation (S3)] using the
pop_pairwiseFST function in FinePop2. We calculated expected
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heterozygosity for each population using the read. GENEPOP
function. We computed the genome-wide WG population-
specific FST [Supplementary Equation (S4)] values using the
pop_specificFST function. We applied Bayesian population-
specific FST estimators on human data. We maximized
Supplementary Equation (S7) and estimated the empirical
Bayesian population-specific FST (Beaumont and Balding 2004) at
each locus according to Supplementary Equation (S8). Then we
averaged these values over all loci. For the full Bayesian model,
we used GESTE_ver. 2.0 (Foll and Gaggiotti 2006) to compute the
genome-wide population-specific FST values. We examined the
shrinkage effect of the Bayesian population-specific FST estimator

on inferring the ancestral population using a set of subsamples
(37 populations) chosen from 51 populations.

Inferring environmental effects on the observed
population structure

To infer the geography and environment that were experienced
by the population range expansion, we regressed the genome-
wide population-specific FST values on the geographical and envi-
ronmental variables (j ¼ 1; . . . ; s):

Figure 1 Results from population colonization simulations. Schematic diagrams of the models: (A) one, (B) two, (C) three-directional colonization, (D)
three-directional grid colonization, and (E) eight-directional grid colonization. Population 1 in red is ancestral, and the yellow arrows indicate the
direction of colonization. Lines show opportunities for migration. The effective population size of the newly derived population increased to the same
size as the ancestral population (Ne ¼ 104) after one simulation generation, and each population exchanged 1% of Ne genes with adjacent population(s)
in every generation, as indicated by the arrows (see the text). Neighbor-joining (NJ) unrooted trees (F–J) and multi-dimensional scaling (MDS) plots (K–O)
based on the pairwise FST distance matrix overlaid with population-specific FST values for each model. The color of each population shows the
magnitude of population-specific FST values between red (for the smallest FST) and blue (for the largest FST).
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psF̂
i
ST ¼ b0 þ b1x1i þ � � � þ bsxsi þ ei; e � Nð0;XÞ; ði ¼ 1; . . . ; rÞ; (3)

where X is the variance matrix of population-specific FST. We cor-
related residuals because of the population structure; therefore,
the effective sample size was lower than the actual sample size.
In such circumstances, ordinary least squares overestimate the
precision. To account for the correlation, we derived the compo-
nents of the variance–covariance matrix of the population-
specific FST estimator [Supplementary Equations (S5) and (S6)] for
generalized least squares (GLS). We performed this analysis on
the wild poplar dataset, for which 11 environmental/geographical
parameters were available for each sampling location. We used
the variance–covariance matrix for the components of the vari-
ance matrix X in Equation (3), and performed regression using
the GLS function in FinePop2 v0.2.

Three empirical datasets
We retrieved the human microsatellite data used in Rosenberg
et al. (2002) from https://web.stanford.edu/group/rosenberglab/in
dex.html. We removed the Surui sample (Brazil) from the data
because that population was reduced to 34 individuals in 1961 as
a result of introduced diseases (Liu et al. 2006). We retained geno-
type data (n¼ 1035) of 377 microsatellite loci from 51 populations
categorized into six groups, as in the original study: 6 populations
from Africa, 12 from the Middle East and Europe, 9 from Central/
South Asia, 18 from East Asia, 2 from Oceania, and 4 from
America. We obtained the lon and lat of the sampling sites from
Cann et al. (2002) (Supplementary Table S1).

We combined the Atlantic cod SNP genotype data of 924 SNPs
common to 29 populations reported in Therkildsen et al. (2013a,
2013b) and 12 populations reported in Hemmer-Hansen et al.
(2013a, 2013b). We compared the genotypes associated
with each marker in samples that were identical in the two
studies, that is, CAN08 and Western_Atlantic_2008, ISO02 and
Iceland_migratory_2002, and ISC02 and Iceland_stationary_2002,
and standardized the gene codes. We removed cgpGmo.S1035,
whose genotypes were inconsistent between the two studies. We
also removed cgpGmo.S1408 and cgpGmo.S893, for which the
genotypes were missing in several population samples in
Therkildsen et al. (2013b). For simplicity, we removed temporal
replicates from the Norway migratory, Norway stationary, North
Sea, and Baltic Sea samples. The final dataset consisted of geno-
type data (n¼ 1065) for 921 SNPs from 34 populations: 3 from
Iceland, 25 from Greenland, 3 from Norway, and 1 each from
Canada, the North Sea, and the Baltic Sea. All individuals in the
samples were adults, and most were mature (Therkildsen et al.
2013a). We used the lon and lat of the sampling sites in Hemmer-
Hansen et al. (2013a). For the data from Therkildsen et al. (2013a),
we estimated approximate sampling points from the map of
the original study and recorded the lon and lat (Supplementary
Table S2).

We retrieved wild poplar SNP genotype data and environmen-
tal/geographical data from the original studies of McKown et al.
(2014a, 2014b). The genotype data contained 29,355 SNPs of 3,518
genes of wild poplar (n¼ 441) collected from 25 drainage areas
(McKown et al. 2014c). Details of the array development and se-
lection of SNPs are provided in Geraldes et al. (2011, 2013). A
breakdown of the 25 drainages (hereafter, populations) is as fol-
lows: 9 in northern British Columbia (NBC), 2 in inland British
Columbia (IBC), 12 in southern British Columbia (SBC), and 2 in
Oregon (ORE) (Geraldes et al. 2014). We combined the original
names of the clusters and population numbers, and used them

as our population labels (NBC1, NBC3,. . ., ORE30). We associated
each sampling location with 11 environmental and geographical
parameters: lat, lon, alt, longest day length (DAY), frost-free days
(FFD), mean annual temperature (MAT), mean warmest month
temperature (MWMT), mean annual precipitation (MAP), mean
summer precipitation (MSP), annual heat-moisture index (AHM),
and summer heat-moisture index (SHM) (Supplementary Table
S3). The AHM was calculated in the original study as (MATþ 10)/
(MAP/1000); a large AHM indicates extremely dry conditions.

Results
Simulations of population colonization
First, we examined the effect of the number of simulation gener-
ations on genetic diversity in newly derived SNPs using the eight-
directional grid simulation (Figure 1E). WG population-specific
FST correctly identified the ancestral population and traced the
population history, and population structure reflected the popu-
lation history regardless of the numbers of ancestral SNPs (9000
and 7000) and newly derived SNPs (1000 and 3000) selected after
100 simulation generations (Supplementary Figure S1). The result
was consistent with the case that used 10,500 SNP loci (10,000 an-
cestral SNPs þ 500 newly derived SNPs) (Figure 1, J and O and
Supplementary Figure S2E). In the following analysis, we used
the results based on 10,500 SNP loci to generate clearer results,
even for limited numbers of simulation generations (260 and/or
100).

In the one-directional simulation (Figure 1A), population-
specific FST correctly identified the ancestral population with the
highest genetic diversity (Supplementary Figure S2A), and popu-
lations were located in order from 1 to 25 on the NJ tree
(Figure 1F). The first axis of the MDS plot explained 93% of the
variance of the pairwise FST distance matrix and indicated popu-
lation expansion from populations 1 to 25 (Figure 1K). In the two-
directional simulation (Figure 1B), our analysis correctly identi-
fied the ancestral population (Supplementary Figure S2B) and
detected that populations were split at population 9 and ex-
panded in two directions (Figure 1G), which was consistent with
the simulation scenario. The first axis of the MDS plot identified
population expansion from populations 1 to 25 and explained
56% of the variance of the pairwise FST distance matrix, whereas
the second axis identified another manner of population expan-
sion from populations 1 to 16 and explained 40% of the variation
(Figure 1L). In the three-directional simulation (Figure 1C), the
ancestral population was also correctly identified
(Supplementary Figure S2C). It was closely located to the adja-
cent populations 2, 9, and 17, but correctly detected three direc-
tions (Figure 1H). The first axis of the MDS plot identified
population expansion from population 1 to populations 16 and
25, and explained 57% of the variance of pairwise FST, whereas
the second axis identified population expansion from population
1 to populations 8 and 16, and explained 38% of the variance
(Figure 1M).

In the three-directional grid colonization model from an edge
(Figure 1D), population-specific FST correctly identified the ances-
tral population (Supplementary Figure S2D) and pairwise FST

detected that populations expanded in three directions
(Figure 1I), which agreed with the simulation scenario. The first
axis of the MDS plot identified population expansion from popu-
lation 1 to other edge populations (populations 11, 15, and 25),
and explained 60% of the variance of the pairwise FST distance
matrix, whereas the second axis indicated genetic differentiation
between populations 24 and 25, and 15, 19, and 22, and explained
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17% of the variance (Figure 1N). In the eight-directional grid colo-
nization model (Figure 1E), population-specific FST identified the
ancestral population (Supplementary Figure S2E) and pairwise
FST estimated that populations expanded in five directions from
the center (Figure 1J). The first axis of the MDS plot identified
vertical population expansion from population 1 to populations
24 and 25 and explained 40% of the variance of the pairwise FST

distance matrix, and the second axis indicated horizontal popula-
tion expansion from population 1 to populations 23 and 24,
which explains 30% of the variance (Figure 1O). We obtained
similar results in the cases in which the effective population size
of the ancestral population was 10 times greater (Ne ¼ 105) than
that of the newly derived population (Ne ¼ 104) (Supplementary
Figure S3). We obtained very similar results from different data
for more than 20 simulations (figures not shown).

Humans
The FST map (Figure 2A) shows integrated information from
genome-wide population-specific and pairwise FST, which visual-
izes population structure with the migration and demographic
history of human populations in terms of genetic diversity.
Interestingly, Bantu Kenyans had the smallest FST value (shown

in red). Figure 2B ordered population-specific FST values from
Africa to Central/South Asia, the Middle East, Europe, East Asia,
Oceania, and America (Supplementary Table S4). As indicated by
the sampling points connected by yellow lines with pairwise FST

values below 0.02 (Figure 2A), genetic connectivity from Africa
was low. Conversely, migration was substantial within Eurasia
but much smaller than that inferred from Eurasia to Oceania and
America. He was the highest in Africa, followed by the Middle
East, Central/South Asia, Europe, and East Asia, but relatively
small in Oceania and lowest in South America. The Karitiana in
Brazil had the lowest He. The NJ tree (Figure 2C) integrated with
population-specific FST values indicated that human populations
originated from Bantu Kenyans and expanded to Europe through
Mozabite, the Middle East, Central/South Asia, and East Asia. The
Kalash was isolated from Europe/Middle East and Central/South
Asia populations. Papuans/Melanesians and American popula-
tions diverged from between Central/South Asian and East Asian
populations. The ordinal NJ tree of pairwise FST values divided
the populations into five clusters: (1) Africa, (2) the Middle East,
Europe, and Central/South Asia, (3) East Asia, (4) Oceania, and (5)
America (Supplementary Figure S4). The first axis of the MDS
plot highlighted differences between African and American

Figure 2 Population structure of 51 human populations (n¼ 1035; 377 microsatellites). (A) Map showing population connectivity with the magnitude of
population-specific FST values. Populations connected by yellow lines are those with pairwise FST < 0.02. (B) Distribution of population-specific FST values
6 2�SE. (C) Neighbor-joining (NJ) unrooted tree and (D) multi-dimensional scaling (MDS) based on pairwise FST overlaid with population-specific FST

values on population labels. The color of each population indicates the magnitude of population-specific FST values between red (for the smallest FST)
and blue (for the largest FST).
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populations and explained 44% of the variance of the pairwise
FST distance matrix, whereas the second axis indicated genetic
differentiation between Melanesian and Karitiana populations,
and explained 19% of the variance (Figure 2D).

The Bayesian population-specific FST values estimated using
the methods of Beaumont and Balding (2004) (empirical Bayes)
and Foll and Gaggiotti (2006) (full Bayes) were nearly identical
and the smallest FST values observed in the Middle East, Europe,
and Central/South Asia (Supplementary Figure S5A,
Supplementary Table S4). However, in African populations, they

were higher than the WG population-specific FST values (Figure
S5B). Our FST map based on the empirical Bayesian population-
specific FST values indicated that the Middle East, Europe, and
Central/South Asia were centers of human origin (Figure 3A),
which was consistent with that from the full Bayesian
population-specific FST estimator (figure not shown). Our inte-
grated NJ tree showed that the Hazara, Pakistan population was
genetically closest to the human ancestors (Supplementary
Figure S6A). The numbers of sampling locations of the 51 human
populations were as follows: 6 from Africa, 12 from the Middle

Figure 3 Population structure of humans based on Bayesian and moment estimators of population-specific FST. Results from the Bayesian population-
specific FST estimator using (A) 51 samples and (B) 37 subsamples, and from (C) the WG population-specific FST moment estimator using 37 subsamples.
The numbers of sampling locations of the subsamples were as follows: 3 from Africa, 6 from the Middle East/Europe, 9 from Central/South Asia, 18 from
East Asia, 2 from Oceania, and 4 from America. Populations connected by yellow lines are those with pairwise FST < 0.02. The color of each population
indicates the magnitude of population-specific FST values between red (for the smallest FST) and blue (for the largest FST).
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East/Europe, 9 from Central/South Asia, 18 from East Asia, 2 from
Oceania, and 4 from America. When we used a subsample of the
37 human populations (3 from Africa, 6 from the Middle East/
Europe, 4 from Central/South Asia, 18 from East Asia, 2 from
Oceania, and 4 from America; Supplementary Table S5), the area
with the highest population-specific FST values shifted toward
Central/South Asia and East Asia (Figure 3B), whereas Bantu
Kenyans had the smallest WG population-specific FST value
(Figure 3C); this was consistent with the results from the full
dataset (Figure 2A). The integrated NJ trees provided similar
results (Supplementary Figure S6, B and C).

Atlantic cod
The FST map (Figure 4A) visualizes the population structure, mi-
gration, and genetic diversity of the Atlantic cod populations. The
Canadian population had the smallest population-specific FST

value (shown in red) and the greatest He. He was also high in
Greenland, low in other areas, and lowest in the Baltic Sea.
Figure 4B shows the order of population-specific FST values from
Canada to the Baltic sea (Supplementary Table S6). Greenland
west coast populations (green in Supplementary Figure S7) gener-
ally had small population-specific FST values, whereas fjord pop-
ulations (violet) had relatively higher population-specific FST

values. The population-specific FST values were much higher for

populations in Iceland, Norway, and the North Sea, and were
highest in the Baltic Sea. Based on pairwise FST values (< 0.02) be-
tween sampling points (Figure 4A), substantial migration was
suggested between Greenland, Iceland, and Norway. Conversely,
migration could be low from Canada to Greenland and from
Iceland and Norway to the North and Baltic Seas. Our integrated
NJ tree with population-specific FST values (Figure 4C) inferred
that Atlantic cod originated from Canada, migrated to the west
coast of Greenland, and then expanded their distribution to
Iceland, Norway, the North Sea, and the Baltic Sea. According to
the ordinal NJ tree of the pairwise FST distance matrix
(Supplementary Figure S7), the populations were divided into
four large clusters: (1) Canada; (2) Greenland west coast, (3)
Greenland east coast, Iceland, and Norway; and (4) North and
Baltic Seas. Fjord populations (in purple) formed a sub-cluster
within the Greenland west coast, and migratory (orange) and sta-
tionary (magenta) ecotypes also formed a sub-cluster. The first
axis of the MDS plot characterized the differentiation between
Canadian and North Sea/Baltic Sea populations and explained
72% of the variance of the pairwise FST distance matrix, whereas
the second axis highlighted the differentiation between
Norwegian migratory populations and Canadian and North Sea/
Baltic Sea populations, which explained 22% of the variance
(Figure 4D).

Figure 4 Population structure of 34 geographical samples of wild Atlantic cod (n¼ 1065; 921 SNPs). (A) Map showing population connectivity with the
magnitude of population-specific FST values. Populations connected by yellow lines are those with pairwise FST < 0.02. (B) Distribution of population-
specific FST values 6 2�SE. (C) Neighbor-joining (NJ) unrooted tree and (D) multi-dimensional scaling (MDS) based on pairwise FST overlaid with
population-specific FST values on population labels. The color of each population shows the magnitude of population-specific FST values between red
(for the smallest FST) and blue (for the largest FST).
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Wild poplar
The FST map (Figure 5A) indicated that population-specific FST

values were lowest in SBC27 and inner British Columbia (IBC15
and IBC16) (shown in red, Supplementary Figure S8). The sam-
pling points connected by yellow lines (pairwise FST < 0.02) indi-
cated migration between all populations. He was highest in
SBC27, IBC15, and IBC16, and lowest in NBC5. Figure 5B shows
that samples collected from areas close to the SBC coast had
higher population-specific FST values than other SBC samples
(Supplementary Table S7). The NBC samples had population-
specific FST values similar to those of SBC. Among the NBC sam-
ples, NBC8 had the smallest population-specific FST, and NBC5
had the highest value, followed by NBC6 and NBC7. The pairwise
FST NJ tree integrated with population-specific FST values
(Figure 5C) suggested that wild poplar originated from around
SBC27 and interior BC, and expanded in three directions: to the
southern coast of BC, NBC and south-western Alaska, and ORE.
The ordinal NJ tree based on the pairwise FST distant matrix di-
vided populations into four large clusters: (1) IBC, (2) SBC, (3)
NBC, and (4) ORE (Supplementary Figure S8). The population rep-
resented by sample ORE30 was isolated from ORE29. The first
axis of the MDS plot characterized the differentiation between
southern and northern populations and explained the 51% vari-
ance of the pairwise FST distance matrix, whereas the second axis
characterized the southernmost ORE30 population, and
explained the 18% variation (Figure 5D).

To avoid multicollinearity, we excluded 7 out of 11 environ-
mental variables that were significantly correlated with each
other: lat, lon, alt, FFD, MWMT, MSP, and AHM (Supplementary
Table S3). Our GLS of genome-wide population-specific FST values
on the four environmental variables (DAY, MAT, MAP, and SHM)
indicated that DAY, MAP, and SHM were significant (Table 1). All
estimates were positive, which indicated that higher population-
specific FST values were expected for longer DAY (longer daylight
time), higher MAP (abundant rain), and higher SHM (dry sum-
mers), and these values might reflect the directions of population
expansion. The scatter plot of DAY and SHM (with each popula-
tion colored according to the population-specific FST value)
(Figure 6A) suggested three directions of population range expan-
sion: the wild poplar that might have originated from around

Figure 5 Population structure for 25 geographical samples of wild poplar (n¼ 441; 29,355 SNPs). (A) Map showing population connectivity with the
magnitude of population-specific FST values. Populations connected by yellow lines are those with pairwise FST < 0.02. (B) Distribution of population-
specific FST values 6 2�SE. (C) Neighbor-joining (NJ) unrooted tree and (D) multi-dimensional scaling (MDS) based on pairwise FST overlaid with
population-specific FST values on population labels. The color of each population indicates the magnitude of population-specific FST values between red
(for the smallest FST) and blue (for the largest FST).

Table 1 Regression of genome-wide population-specific FST of 25
wild poplar populations on environmental variables

Variable Estimate SE Z P

DAY 0.0489 0.0164 2.99 0.003**

MAT –0.0088 0.0086 –1.03 0.305
MAP 0.0001 0.0000 2.79 0.005**

SHM 0.0022 0.0009 2.38 0.018*

DAY: longest day length (h); MAT: mean annual temperature (�C); MAP: mean
annual precipitation (mm); SHM: summer heat-moisture index.

* p< 0.05.
** p< 0.01.
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SBC27 and IBC15 expanded its distribution to NBC, where day-
light hours are long in summer, as well as expanding to coastal
SBC with its lower SHM (humid summer and abundant rainfall),
and to the south (ORE29 and ORE30) with its higher SHM (dry
summer). This was consistent in the scatter plot of DAY and MAP
(Figure 6B).

Diverging color palette
RColorBrewer had 35 color palettes. Each palette had a minimum
of eight colors. Two palettes had 12 colors (maximum) and nine
had 11 colors. We chose a color palette with 10 colors (RdYlBu).
The color gradient better identified the middle range of
population-specific FST values, but failed to detect the ancestral
population (Supplementary Figure S9).

CPU times
With an Intel Core i7-8650U CPU, 89.8 s of CPU time were required
to compute the WG population-specific FST estimates and SEs of
wild poplar (29,355 SNPs; 25 populations, n¼ 441). To obtain the
pairwise FST (NC83) between all 300 (¼ 25� 24/2) population
pairs, 120.7 s were required. CPU time is proportional to the num-
ber of SNPs analyzed.

Discussion
Genome-wide population-specific FST traced
population history as reflected by genetic
diversity
Our simulations demonstrated that the WG population-specific
FST estimator identified the source population and traced the evo-
lutionary history of its derived populations based on genetic di-
versity (heterozygosity estimated from each population). The
NC83 pairwise FST estimator correctly estimated the current pop-
ulation structure. As explained in the Introduction, the
population-specific FST estimator is a rescaling of expected het-
erozygosity, and we expect a linear relationship between
expected heterozygosity and population FST. This shows that the

population-specific FST estimator implicitly assumes that popula-
tions closest to the ancestral population have the highest hetero-
zygosity. In our three case studies, a linear relationship between
He of each population (¼ HSi) and psF̂

i
ST was evident

(Supplementary Figure S10). The coefficient of determination, R2,
was 0.91 for 51 human populations (n¼ 1035), 0.99 for 34 Atlantic
cod populations (n¼ 1065), and 0.82 for 25 wild poplar popula-
tions (n¼ 441). The goodness of fit to the linear function should
depend on the sample size (number of individuals). Our simula-
tions evaluated the performance of the population-specific FST

estimator for such cases. However, in populations that experi-
enced extensive admixture events, heterozygosity was enhanced,
whereas a bottleneck in the ancestral population reduced hetero-
zygosity. In such cases, the population-specific FST estimator mis-
identifies the ancestral population.

In our analysis, the genome-wide WG population-specific FST

values successfully illustrated human evolutionary history, and
indicated that humans originated in Kenya, expanded from the
Middle East into Europe and from Central/South Asia into East
Asia, and then possibly migrated to Oceania and America
(Figure 2). Kenya is located just below Ethiopia, where the earli-
est anatomically modern humans were found from fossils
(Nielsen et al. 2017). Our results are also in good agreement with
the highest levels of genetic diversity being detected in Africa
(Rosenberg et al. 2002), the relationship uncovered between ge-
netic and geographic distance (Ramachandran et al. 2005), the
shortest colonization route from East Africa (Liu et al. 2006), and
major migrations inferred from genomic data (Nielsen et al. 2017).

Our analysis indicated that Atlantic cod might originate in
Canada (CAN08). Figure 4 suggested that the population expan-
sion of Atlantic cod began by minimal gene flow from Canada.
They might have first expanded to the west coast of Greenland
before spreading to Iceland, the North Sea, Norway, and the
Baltic Sea. This result was consistent with genomic evidence that
Atlantic cod inhabit both sides of the Atlantic Ocean and evolved
from a common evolutionary origin (Berg et al. 2017). The migra-
tory ecotypes characterized by deeper and more offshore habitats

Figure 6 Population range expansion and key environmental variables. Longest day length vs (A) summer heat-moisture index and (B) mean annual
precipitation for 25 geographical samples of wild poplar. The colored areas by the population clusters (see Supplementary Figure S8) show the inferred
population expansion from IBC15, IBC16, and SBC27. The color of each population shows the magnitude of population-specific FST values between red
(for the smallest FST) and blue (for the largest FST).
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and long-distance migrations (Hemmer-Hansen et al. 2013a) may
have played an important role in this expansion, as suggested in
Figure 4C and Supplementary Figure S7. In our study, CAN08
had the highest He, which was lower in Iceland than in
Greenland; this result implies that Icelandic populations were
the descendants of colonists from Greenland, which in turn origi-
nated in Canada. The BAS0607 sample from the Baltic Sea had
the highest population-specific FST and the lowest He, suggesting
that Baltic cod is the newest population. This result agrees with
the findings of a previous study, which identified Baltic cod as an
example of a species subject to ongoing selection for reproductive
success in a low salinity environment (Berg et al. 2015). In the
Atlantic cod case study, CAN08 had the highest He and a very
large negative population-specific FST value of �0.21 6 0.019 com-
pared with the maximum value of 0.22 6 0.014 in BAS0607
(Supplementary Figure S10, Supplementary Table S6). The WG
population-specific FST value can be negative (Weir and Goudet
2017). In the one and two-directional models of our simulations,
the WG population-specific FST value was significantly negative
in the ancestral population, whereas He was the largest
(Supplementary Figure S2, A and B). Our consistent results be-
tween the simulations and Atlantic cod case study indicate that
when gene flow from other populations into the source popula-
tion is limited, a relatively large He (ĤSi) is maintained in the
source population. In such cases with ĤSi > ĤB, Equation (2) pro-
duces negative values for population-specific FST.

Although the wild poplar samples used in this study might not
cover the entire distribution range of the species, which extends
from southern California to northern Alaska, Montana, and
Idaho (Geraldes et al. 2013), the genome-wide population-specific
FST values suggested three directions of population expansion of
wild poplar: from SBC27 and IBC (IBC15, IBC16) to coastal British
Colombia, southern ORE, and NBC (Figure 5). The largest
population-specific FST value was found in the population with
the smallest heterozygosity, SBC22, which may have resulted
from a bottleneck (Geraldes et al. 2014).

Our continuous color gradient from red to blue successfully
detected the ancestral population, whereas the R diverging color
palettes, which had a limited number of colors (maximum of 12),
better identified the middle range of population-specific FST val-
ues (Supplementary Figure S9). Both color gradients may be use-
ful.

Genome-wide pairwise FST described current
population structure
Our stepping-stone simulations did not account for long-range
dispersal (Hallatschek and Fisher 2014). Human samples were
collected from present populations, but they might reflect history
from the Age of Discovery, when humans were travelling far be-
yond their native continents (Diamond 1997). Wild animals pri-
marily move locally, but occasionally disperse over long
distances (Hallatschek and Fisher 2014). The migratory ecotype
of the Atlantic cod is characterized by its long-distance migration
(Hemmer-Hansen et al. 2013a). Sea currents also play a role for
passive transportation of fertilized eggs and juveniles. The pollen
and small seeds with fine hairs of poplar trees enable long-range
dispersal by wind (Geraldes et al. 2014). Our stepping-stone simu-
lations were conducted with the assumption that dispersal was
step-by-step, but long-range dispersals were not taken into con-
sideration. When gene flow is limited between adjacent popula-
tions, as in our simulation scenarios, estimated population
structure reflects population history.

Genome-wide population-specific FST detects key
environments that relate to population expansion
Our GLS of genome-wide population-specific FST values revealed
that long daylight hours, abundant rainfall, and dry summer con-
ditions are the key environmental factors that relate to the demo-
graphic history of wild poplar (Table 1). Wild poplar could have
expanded its distribution by its fluffy seeds being blown away by
the wind. In the NJ unrooted tree, the root of the populations can-
not be fixed without out-group populations. There is no direct ev-
idence, but we can infer from the population-specific FST values
that wild poplar seems to have spread from SBC (SBC27) and IBC
(IBC15, 16), and expanded its distribution to NBC, where daylight
hours are long in summer, to coastal SBC with its rainy environ-
ment, and to southern ORE (ORE30) with its dry summer condi-
tions (Figures 5 and 6). A previous study on wild poplar revealed
that genes involved in drought response were identified as FST

outliers using BayeScan (Foll and Gaggiotti 2008; Geraldes et al.
2014). The FST outlier test of Geraldes and colleagues also
revealed that genes involved in the circadian rhythm and re-
sponse to red/far-red light had high locus-specific global FST val-
ues. The first principal component of SNP allele frequencies of
the poplar tree was significantly correlated with day length, and
a previous enrichment analysis for population structuring uncov-
ered genes related to circadian rhythm and photoperiod. The cir-
cadian clock pathway might play a central role in adaptation,
and clinal variation in phenological traits might be an adaptive
response to the north-south climatic variation of P. trichocarpa
(Geraldes et al. 2014; McKown et al. 2014a). Our GLS analysis does
not detect a locus-specific effect of environmental adaptation
like genome scan methods, but detects key environmental varia-
bles that affected the population history through genome-wide
population-specific FST. Our results confirmed the previous find-
ings and the hypothesis of postglacial northward expansion of
the poplar tree to refugia north of the southern margin of the ice
sheet (Geraldes et al. 2014), showing the usefulness of applying
the GLS estimate of genome-wide population-specific FST to infer
environmental effects on the population expansion of species.

The two types of FSTs can also be calculated for the genomic
windows. By comparing the pairwise FST among genomic win-
dows, it is possible to identify the genomic regions that are largely
differentiated due to local adaptation by using the population
branch statistics (Yi et al. 2010). The local principal component
analysis using lostruct software (Li and Ralph 2019) and MDS
(Fuller et al. 2020) also identify genomic regions linked to local ad-
aptation. Likewise, by comparing population-specific FST among
windows, it is possible to identify unique genomic regions for ad-
aptation (Akey et al. 2002; Weir et al. 2005; Oleksyk et al. 2008).

Genome-wide FST moment estimators converge
to their true means
Previous studies have suggested or indicated that the “ratio of
averages” works better than the “average of ratios” as the number
of independent SNPs increases (Reynolds et al. 1983; Weir and
Cockerham 1984; Bhatia et al. 2013). Because “the combined ratio
estimate (ratio of averages) is much less subject to the risk of bias
than the separate estimate (average of ratios)” (Cockran 1977),
scholars recommend using the “ratio of averages” estimators
(Bhatia et al. 2013). To explicitly show the underlying mechanism,
we used the observed heterozygosity of population i (ĤSi) as de-
rived by Nei and Chesser (1983) (Supplementary Note). When the
number of loci (L) increases, the average observed heterozygosity
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over all loci converges to its expected value according to the law
of large numbers as:
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The observed gene diversity thus converges to the expected
value:
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Similarly, ĤS and ĤT converge to their expected values. This
example indicates that the numerators and denominators of
bias-corrected FST moment estimators, whether global, pairwise,
or population-specific, converge to their true means and provide
unbiased estimates of FST in population genomics analyses with
large numbers of SNPs.

Bayesian FST estimators measure the deviation
from the average of the sampled populations
In the Bayesian framework, the population-specific FST is the co-
efficient of the genetic drift that represents the among-
population variation of the allele frequencies at neutral loci from
the allele frequencies of the ancestral population. The allele fre-
quency of the ancestral population is assumed to be the among-
population mean allele frequency. The analysis of human popu-
lations (Figure 3A) highlights the need to account for geographi-
cal heterogeneity in sampling fractions of populations. The
unbiased estimate of the allele frequency of the ancestral popu-
lation will be obtained as the weighted among-population aver-
age. The weights are inversely proportional to the sampling
fractions.

The shrinkage effect on allele frequencies in Bayesian infer-
ence (Stein, 1956) may shift population-specific FST values toward
the average of the entire population. Because of the shrinkage to-
ward mean allele frequencies, the maximum likelihood and
Bayesian estimators of locus-specific global FST improve the
power to detect genes under environmental selection (Beaumont
and Balding 2004; Foll and Gaggiotti 2008). An empirical Bayes
genome-wide pairwise FST estimator (Kitada et al. 2007) is useful
in cases involving a small number of polymorphic marker loci,
particularly in high gene flow scenarios, but it suffers from the
shrinkage effect when larger numbers of loci are used. The
shrinkage of allele frequencies should affect inference in
genome-wide population-specific FST, particularly in cases when
samples (populations) were not representative of the popula-
tions.

Conclusions
The WG genome-wide population-specific FST moment estima-
tor can identify the source population and trace the evolution-
ary history of the derived populations based on genetic
diversity under the assumption that populations closest to the
ancestral population have the highest heterozygosity.
Conversely, the NC83 genome-wide pairwise FST moment esti-
mator represents the current population structure. By integrat-
ing population-specific and pairwise estimates on FST maps, NJ
trees, and MDS plots, we obtain a picture of population struc-
ture by incorporating evolutionary history. Our GLS analysis of
genome-wide population-specific FST, which accounts for the

correlation between populations, provides insights into how a
species expanded its distribution in different environments.
Given a large number of loci, bias-corrected FST moment esti-
mators—whether global, pairwise, or population-specific—pro-
vide unbiased estimates of FST supported by the law of large
numbers. Genomic data highlight the usefulness of the bias-
corrected moment estimators of FST.

Data availability
The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, figures,
tables, and supplementary material. The R codes for our repre-
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in the Supplementary material at figshare: https://doi.org/10.
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