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Abstract: The identification of arsenic direct-binding proteins is essential for determining the
mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines
close together in the amino acid sequence are crucial to the binding of arsenic and essential to
the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were
pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer
(LC-MS/MS). More than 40 arsenic-binding proteins were separated, and redox-related proteins,
glutathione S-transferase P1 (GSTP1), heat shock 70 kDa protein 9 (HSPA9) and pyruvate kinase M2
(PKM2), were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for
arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These
observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL) suppressive
effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells
and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation
into specific signal pathways by which PKM2 mediates APL developments may lead to a better
understanding of arsenic effects on APL.

Keywords: arsenic-binding protein; arsenic-biotin; acute promyelocytic leukaemia; LC-MS/MS;
pyruvate kinase M2

1. Introduction

Although arsenic can be a poison and may cause serious health problems with chronic exposure,
arsenic has been used as a cancer chemotherapeutic agent for many years due to its significant
medicinal effects. Acute promyelocytic leukaemia (APL) is an acute myeloid leukaemia associated
with a recurrent abnormal chromosomal translocation of t(15;17) and the subsequent expression of
a novel fusion protein, PML-RARα [1]. In many clinical trials, both newly diagnosed and all-trans
retinoic acid resistant APL patients can achieve complete remission after arsenic trioxide (As2O3)
treatment [2–4]. APL is particularly sensitive to As2O3, which makes As2O3 a promising cure for
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APL patients, even as a single agent [5]. As2O3 specifically induces the degradation of PML-RARα,
and consequently, the differentiation of leukaemic cells [6,7]. Twenty-four arsenic-binding proteins
in the membrane fraction were identified in human lung cancer cells, whereas two additional
arsenic-binding proteins, pyruvate kinase M2 (PKM2) and beta-tubulin, were identified in human
breast cancer cells. Using direct cross-linking with cellular targets, beta-tubulin has been proven to
be a target protein in acute myeloid leukaemia [8–10]. However, the medicinal effects of As2O3 are
not explained solely by the degradation of the PML-RARα fusion protein in APL cells. Inhibition of
other enzymes and proteins that directly bind to arsenic may also cause the therapeutic effect.

The identification of arsenic direct-binding proteins is essential for determining the mechanism
by which As2O3 achieves its chemotherapeutic effects. Many arsenic-binding proteins have been
identified in mammalian cells, and the biological functions of these arsenic-binding proteins are
related to the formation of adducts between closely spaced SH groups in cysteine residues [11]. At
least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and
crucial to identify the arsenic-binding proteins [12]. The direct binding of arsenic through cysteines
residues may suppress the functions of arsenic-binding proteins [13]. Therefore, it is important to
identify the arsenic-binding proteins that target cysteine residues.

Our present study focuses on the identification of arsenic-binding proteins in NB4 human APL
cells using biotin-conjugated trivalent arsenic. We identified novel candidate proteins that directly
bind to As2O3.

2. Results

2.1. Arsenic-Biotin Inhibits APL Cell Proliferation

Different concentrations of As2O3, biotin-As I and biotin-As II were utilised to assess the effects
of arsenic-biotin conjugates on the growth inhibition of the NB4 cells. We established a cubic equation
linking the cell inhibition rate to the drug concentration, and obtained IC50 values for As2O3,
biotin-As I, and biotin-As II at 24 h of 2.71 ˘ 2.89 µM, 0.64 ˘ 0.10 µM and 0.98 ˘ 0.60 µM, respectively
(Figure 1). Biotin-As I showed the greatest effect, with a significant difference from As2O3 (p < 0.01).
As a result, 1 µM biotin-As I was used for subsequent experiments.
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Figure 1. Effect of As2O3, biotin-As I (BAS1) and biotin-As II (BAS2) on NB4 cell growth. Each value 
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2.2. Measurement of Arsenic-Binding Proteins by Western Blot 

To identify the arsenic-binding proteins pulled down with streptavidin, a fraction of the NB4 
cell lysate was combined with arsenic-bound resin, and the bound and unbound proteins were 
identified by Western blot. Figure 2 shows the proteins specifically bound in the arsenic-biotin 
elution compared to the negative control and As2O3, demonstrating the high affinity of 
arsenic-binding proteins. 

Figure 1. Effect of As2O3, biotin-As I (BAS1) and biotin-As II (BAS2) on NB4 cell growth. Each value
represents the mean ˘ SD (n = 6) of three independent experiments. ** p < 0.01.

2.2. Measurement of Arsenic-Binding Proteins by Western Blot

To identify the arsenic-binding proteins pulled down with streptavidin, a fraction of the NB4 cell
lysate was combined with arsenic-bound resin, and the bound and unbound proteins were identified
by Western blot. Figure 2 shows the proteins specifically bound in the arsenic-biotin elution compared
to the negative control and As2O3, demonstrating the high affinity of arsenic-binding proteins.
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Figure 2. Detection of arsenic-biotin conjugating proteins in NB4 cells. NC (negative control). 
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identified in the elution fraction of the NB4 cells treated with arsenic-biotin were compared to the 
NB4 cells treated with As2O3 and the negative control. 
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were tested in a binding assay using a His and biotin antibody. Figure 3 shows that no protein 
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The arsenic binding proteins were pulled down with streptavidin. Many protein bands identified
in the elution fraction of the NB4 cells treated with arsenic-biotin were compared to the NB4 cells
treated with As2O3 and the negative control.

2.3. Identification and Characterisation of Arsenic Binding Proteins

In the present study, 2-DE was used to identify and analyse the arsenic-binding proteins based
on the observation that two vicinal cysteines can bind to arsenic. Over 40 proteins contain at least
two nearby cysteines compared to the negative control. These proteins are divided into 7 categories
based on their functions (Table 1).

Table 1. Arsenic-binding proteins identified by MS.

Function Protein

Redox-related proteins GSTP1, PKM2, HSPA9, LEG1 Galectin-1, AT8B4,
XRRA1, GAPDH, LCE1B, TET2.

DNA-dependent transcription RL12, Med29, DNA topoisomerase 1, DNA ligase 1,
RL21, RS4X, RL23.

Regulation of glycometabolism
and lipid metabolism

SGSM2, RREB1, NFYC, FBN1, AL1A3,
haemoglobin, ACSM4.

G-protein coupled receptor family LPAR1, GPCRs, RXFP2.

Inflammation response Eosinophil peroxidase, NK-tumour recognition
protein, RXFP2, DHX8.

Cell proliferation and cell cycle DNLI1, UBP2, LAMB2, Galectin-1, HNRPR, PCDGI,
HTRA1, Cytochrome P450.

Proteasome homeostasis UBXN1, PIAS3, ML12, RING finger protein 144A-B.

2.4. Confirmation of Binding of Redox-Related Proteins to Arsenic

In this study, more than two cysteines close together were required for the identification of
arsenic binding proteins. Redox-related proteins (GSTP1, PKM2 and HSPA9) were identified using
this criterion. To confirm the direct combination of redox-related proteins (GSTP1, PKM2 and HSPA9)
to arsenic, the recombinant plasmids pET-22b-GSTP1, pET-22b-PKM2 and pET-22b-HSPA9 were
tested in a binding assay using a His and biotin antibody. Figure 3 shows that no protein specifically
bound to HSPA9 with the His/biotin antibody compared to the negative control. Although GSTP1
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was detected with the His antibody, there was a negative result with the biotin antibody. After
pull-down with streptavidin, PKM2 was confirmed with the His and biotin antibody. These data
indicate that PKM2 is an arsenic-binding protein in NB4 cells.
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3. Discussion

Arsenic has garnered attention as a multi-functional anticancer chemical. However, the
mechanism by which arsenic exerts its clinical efficiency in APL is not fully understood. Although
researchers found that arsenic specifically induces degradation of the PML-RARα fusion protein in
APL, as well as its normal PML counterpart [14–17], this pathway cannot be the only molecular
basis of arsenic in APL. To determine whether arsenic directly alters the biochemical features of
APL cells, we examined the arsenic direct-binding proteins in NB4 cells. Notably, biotin-As I was
significantly more potent than As2O3 in NB4 cells. One possibility is that biotin increases the ability
of As2O3 to combine with proteins. In the anti-leukaemia mechanisms of arsenic compounds, arsenic
is the main active element. However, different arsenic compounds show different activities towards
leukaemia. In addition to As2O3, tetra-arsenic tetra-sulphide (As4S4), melarsoprol and phenylarsine
oxide also have anti-leukaemia effects [18–20]. However, the mechanisms of anti-leukaemia effects
are unknown. In the present study, more than 40 arsenic-binding proteins were separated, and the
redox-related proteins GSTP1, HSPA9 and PKM2, were further investigated using a binding assay.

Because cysteine residues are crucial for the activity of many redox enzymes, it is possible
that the interaction between arsenic and cysteine residues may suppress the function of the
arsenic-binding proteins. Proteins with high affinity for arsenic that are related to redox-related
proteins were the focus of this study.

The activity of GSTP1 is correlated with As2O3 sensitivity [21]. Some studies indicated that
GSTP1-1 had an inhibitory impact on the As2O3 activity in lymphoma cells. Bernardini S et al.
found that APL cells treated with As2O3 showed a high level of oxidative stress that was related
to an increase of cellular GSH levels [22]. GSTP1 polymerisation was detectable and was followed
by an increased apoptotic rate of the leukaemia cells. GSTP1 polymerisation was not found in
As2O3-resistant cells. Notably, human GSTP1-1 has four cysteine residues, of which Cys47 displays
a low pKa value and is the most reactive [23]. Also, Cys47 is the target modified by a variety of
compounds or drugs with different chemical natures. Therefore, GSTP1 was selected in this study
because it is an important arsenic-binding protein in APL cells.

Leukaemia cells have increased glycolytic activity [24–26]. Recent studies demonstrated that
PKM2 functions as a protein kinase and plays a potential role in tumour metabolism and growth [27].
The glycolytic enzyme activity of PKM2 is regulated by various oncogenes and tumour suppressors.
These regulations modulate aerobic glycolysis. Favouring a shift of the dimer-tetramer dynamic
towards dimerisation is critical for PKM2 to promote oncogenic anaerobic glycolysis (“Warburg
effect”) leading to tumourigenesis and cancer cell proliferation [28,29]. Recently, PKM2 has been
reported to play a critical role in protecting against oxidative stress in primary haematopoietic
cells. PKM2 deletion enhances oxidative phosphorylation at the expense of glycolysis and biomass
intermediates in primary haematopoietic progenitors [30]. Because PKM2 is important for leukaemia
initiation, we tested whether PKM2 could be combined with arsenic directly because arsenic binds
proteins neighbouring cysteine residues.

Heat shock 70-kDa protein 9 (HSPA9) has been localised to chromosome 5, band q31, which
is a region frequently deleted in some kinds of myeloid neoplasms. HSPA9 has been proved to be
a candidate tumour suppressor gene [31]. One study showed that knockdown of HSPA9 delayed
the maturation of erythroid precursors in human hematopoietic cells and reduced the erythroid
precursors, B lymphocytes, and megakaryocyte/erythrocyte progenitors in a murine model [32]. It
is interesting to note that HSPA9 has a relationship with intracellular nitric oxide (NO), in which
nitronate cysteine residues at the thiol group generate nitrosocysteine [33]. Therefore, HSPA9 was
also investigated as a possible arsenic-binding protein in our study.

In this study, we investigated the characteristics of redox-related proteins (GSTP1, HSPA9
and PKM2) combined with arsenic. We performed an arsenic-biotin combination test to detect
arsenic-biotin proteins in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2,
GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that
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arsenic-mediated APL suppressive effects could be relevant to PKM2. Prior to our present study,
PKM2 had not been investigated as an arsenic direct-binding protein in APL cells. As predicted,
arsenic-biotin had an interesting effect on PKM2 activity. Arsenic-biotin significantly inhibited the
PKM2 activity in NB4 cells.

In summary, we identified several arsenic direct-binding proteins in APL cells and investigated
the therapeutic effect of arsenic for APL. Investigation of specific signalling pathways in which PKM2
mediates APL development may lead to further understanding of arsenic’s effects on APL.

4. Materials and Methods

4.1. Chemicals and Cells

The arsenic-biotin conjugates were kindly provided by Professor Ronggui Hu. As2O3 (Sigma,
Chemical Co., St. Louis, MO, USA) was dissolved in 1 M NaOH as a stock solution. The human
APL cell line NB4 (kindly provided by Professor Jingyi Shi of Shanghai Institute of Haematology,
Rui-Jin Hospital, Shanghai, China) was maintained in RPMI-1640 containing 10% foetal bovine serum
(Invitrogen Ltd, Carlsbad, CA, USA). Cells were cultured at 37 ˝C in a humidified atmosphere
containing 5% CO2.

4.2. MTT Assay

To verify the effect of arsenic-biotin conjugates on the viability of NB4 cells, an MTT assay was
performed. Briefly, NB4 cells were seeded in 96-well plates (Corning, St. Louis, MO, USA) at a
density of 2 ˆ 104 cells/well and cultured overnight. Then, the media were replaced with 100 µL
fresh media containing different concentration of As2O3, biotin-As I or biotin- As II (0.01, 0.05, 0.1,
0.5, and 1 µmol/L) and the cells were cultured for 24 h. At the end of the incubation, 10 µL of the
MTT solution (5 mg/mL) was added to each well and the plates were incubated for 4 h at 37 ˝C.
Then, 50 µL of DMSO (Sigma) was added to each well. The optical density for absorbance values
each experiment was assessed with a Microplate Reader 550 (Bio-Rad, Hercules, CA, USA) at 570 nm.

4.3. Identification of Arsenic Direct-Binding Proteins

First, NB4 cells were blocked with sulphhydryls on protein, and then cells were treated with
arsenic -biotin conjugates for 12 h. The NB4 cells were washed with PBS and urea buffer. Then the
cell lysate was digested with trypsin at 37 ˝C overnight. The cell lysate was mixed with streptavidin
resin (100 µL) after inactivation with 1% formic acid. The resin was agitated at 4 ˝C for 3 h, and then
was washed and resuspended in loading buffer before the separation on gel. All proteins pulled
down with streptavidin were collected. The arsenic direct-binding proteins were determined by
comparing the elution fraction of the negative control with the NB4 cells treated with arsenic-biotin.
These protein bands were cut into slices for LC MS/MS analysis.

4.4. Proteins Extraction and LC-MS/MS

NB4 cell lysate treated with arsenic-biotin was blocked with N-ethylmaleimide, and then the
proteins were enriched using streptavidin beads. The peptides were concentrated with streptavidin
after trypsin digestion and then analysed by LC-MS/MS.

The nano-LC MS/MS experiments were performed on an LTQ-Orbitrap mass spectrometer
(ThermoFisher, San Jose, CA, USA) coupled with an LC-20AD nano-flow HPLC system
(Shimadzu, Tokyo, Japan). The sample was separated with a PICOFRIT C18 reverse-phase column
(New Objective Inc., Woburn, MA, USA) and the flow rate was 300 nL/min. The mobile phases
included phase A (2% acetonitrile with 0.1% formic acid) and phase B (95% acetonitrile with 0.1%
formic acid). A 90-min linear gradient from 5% to 45% phase B was used to acquire separation. The
mass spectrometer was done in a data-dependent mode. Each cycle of duty consisted of one full MS
survey scan in the mass range 350~1800 Da with a high resolution power Orbitrap section, followed
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by MS2 for the 10 strongest peaks using the LTQ section. Peptides were fragmented in the LTQ
section using collision-induced dissociation (CID) with helium, and the normalised collision energy
value was set at 35%.

4.5. Database Search

Proteins were searched using the BioWorks 3.3.1 sp1 software (ThermoFisher, San Jose, CA, USA)
against the Swissprot databases for humans using the TurboSequest search engine v.27 with the
following criteria: 2 possible missed cleavage sites, peptide mass tolerance of 20 ppm, fragment mass
tolerance of 1.00 Da, and 15 Da shift for oxidised Met were regarded as possible modifications. The
same filtration criteria was used to determine the acceptance criteria for peptide identification by
searching the files against a reversed Swissprot databases. Using these stringent filtration criteria,
the rate of false positive identification was less than 5%, thereby increasing the confidence of the
identified proteins.

4.6. Arsenic-Binding Protein Analyses

GSTP1, PKM2 and HSPA9 genes were amplified by PCR with specific primers based on
the encoding gene sequence. The amplified genes were recovered and cloned into the pET-22b
expression plasmid. There recombinant plasmids were named pET-22b-GSTP1, pET-22b-PKM2 and
pET-22b-HSPA9. All constructed vectors were confirmed by DNA sequencing. The binding assay was
performed as follows: first, the protein was deoxidised at 4 ˝C for 20 min, and then the protein was
desalted and eluted at 200 µL/tube for SDS-PAGE. A total of 5 µg protein was incubated with 10 µM
arsenic-biotin for 1 h, and then the mixture was rotated at 4 ˝C for 2 h. The resin was resuspended
in 50 µL loading buffer, and then 15 µL Ni-NTA beads were added. Then the mixture was rotated at
4 ˝C for 2 h and the supernatant was transferred to nitrocellulose membranes after SDS–PAGE. The
membranes were incubated with His and biotin primary antibody overnight at 4 ˝C, and then the
membranes were washed and incubated with the secondary antibody.

4.7. Pyruvate Kinase Activity Assay

To observe the effect of arsenic-biotin on the intracellular PKM2 activity, we used arsenic-biotin
to treat NB4 cells with a concentration gradient (0, 0.5, 1 or 5 µM for 6 h) or a time gradient (5 µM
for 0.5, 1, 3, 6 or 12 h). NB4 cells in logarithmic phase were cultured in 6-well plates at a density
of 1 ˆ 105 cells/well in 2 mL RPMI-1640 + 10% fetal calf serum (FBS). Arsenic-biotin was added to
the final concentration and the cells were cultured at 37 ˝C and 5% CO2. The cells were collected by
centrifugation at 3000ˆ g and subjected to PKM2 activity assay using the Pyruvate Kinase Activity
Colorimetric Assay Kit (BioVision, Milpitas, CA, USA) according to the manufacturer’s instructions,
followed by data analysis.
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