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Traces of SARS-CoV-2 RNA in Peripheral Blood Cells
of Patients with COVID-19
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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third virus that caused
coronavirus-related outbreaks over the past 20 years. The outbreak was first reported in December 2019 in
Wuhan, China, but rapidly progressed into a pandemic of an unprecedented scale since the 1918 flu pan-
demic. Besides respiratory complications in patients with COVID-19, clinical characterization of severe
infection cases showed several other comorbidities, including multiple organ failure, and septic shock. To
better understand the systemic pathogenesis of COVID-19, we interrogated the virus’s presence in the
peripheral blood cells, which might provide a form of trafficking or hiding to the virus. By analyzing >2
billion sequence reads of high-throughput transcriptome sequence data from 180 samples of patients with
active SARS-CoV-2 infection or healthy controls collected from 6 studies, we found evidence of traces of
SARS-CoV-2 RNA in peripheral blood mononuclear cells in two samples from two independent studies.
In contrast, the viral RNA was abundant in bronchoalveolar lavage specimens from the same patients. We
also devised a ‘‘viral spike-to-actin’’ RNA normalization as a metric to compare across various samples and
minimize errors caused by intersample variability in total human RNA abundance. Our observation suggests
immune presentation and discounts the possibility of extensive viral infection of lymphocytes or monocytes.
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Introduction

The severe acute respiratory syndrome cor-

onavirus 2 (SARS-CoV-2) is the third virus that caused
coronavirus-related outbreaks over the past 20 years. The first
outbreak occurred in Asia in 2002–2003, causing SARS;
hence, the name SARS-CoV, which back then was not related
to any of the known viruses (Marra et al., 2003; Rota et al.,
2003). Between 2002 and 2003, 8098 people became sick
with SARS, and of those, 774 died (i.e., a mortality rate of
9.5%). Since 2004, there have been no more reports of SARS
cases (via NHS, WHO, and CDC).

The second coronavirus-related outbreak started in
the Arabian Peninsula in 2012 (Zaki et al., 2012), caus-
ing a fatal disease, Middle East respiratory syndrome
(MERS), with a significantly higher mortality rate of 40%
of the cases infected by MERS-CoV virus (Zumla et al.,
2015).

More recently, in December 2019, the third coronavirus-
related outbreak was first reported in Wuhan, China, by the
emergence of the SARS-CoV-2, initially dubbed ‘‘the 2019
novel coronavirus’’ (2019-nCoV). The spread of the virus led
to a pandemic of an unprecedented scale since the 1918 flu
pandemic.
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As of mid-June 2021, >175 million confirmed COVID-19
cases globally, and >3.5 million deaths have been reported by
the WHO (WHO Dashboard, continuously updated). Besides
the respiratory complications in patients with COVID-19,
clinical characterization of severe infection cases indicated
further comorbidities, including multiple organ failure (liver,
kidney, and heart) and septic shock (Cascella et al., 2020; Li
et al., 2020; Poston et al., 2020).

Since the first genome sequence of SARS-COV-2 has been
determined and made public in January 2020 (Lu et al.,
2020), >2 million genomes have been sequenced worldwide
and become available through the Global Initiative on
Sharing All Influenza Data (Shu and McCauley, 2017). The
availability of those genomic sequences allows rapid
screening of viral RNA in human tissues and environmental
samples [e.g., sewage (Bibby and Peccia, 2013)] using multi-
omic wet lab technologies and in silico screening tools for
publicly available metatranscriptomic samples.

To better understand COVID-19 systemic pathogenesis,
we conducted this study to interrogate the presence of the
virus in the blood, or any of its components, as it might
provide a form of trafficking or hiding to the virus, notably
that some precarious studies reported the ability of the virus
to infect lymphocytes (Wang et al., 2020b). In contrast, others
have suggested that the virus exerts its pathogenesis through
‘‘attacking hemoglobin,’’ although this hypothesis has been
heavily criticized (Read, 2020). The virus was sporadically
reported to be found in the plasma or blood of patients with
COVID-19 (Huang et al., 2020; Wang et al., 2020a). Finally,
peripheral blood mononuclear cells (PBMCs) were shown to
harbor other infectious viruses, such as HIV, HCV, and HBV
(Li et al., 2015; Wang et al., 2002).

We computationally analyzed high-throughput sequence
data from patients with active COVID-19 in several publicly
available RNA-Seq datasets for the reasons mentioned pre-
viously. We found only evidence of traces of SARS-CoV-2
RNA in their PMBCs, whereas their bronchoalveolar lavage
samples had large amounts of viral RNA.

Materials and Methods

Datasets and quality control

Publicly available raw RNA-Seq FASTQ sequences,
published by six studies (Arunachalam et al., 2020; Kusnadi
et al., 2021; Manne et al., 2020; Wilk et al., 2020; Xiong
et al., 2020; Zheng et al., 2020), were retrieved (Table 1). For

quality control of raw sequences, fastp (Chen et al., 2018)
was used to remove adaptor sequences, trim low-quality
ends, and remove short reads.

Detection of viral RNA

Filtered FASTQ sequences were aligned to the SARS-
CoV-2 reference genome (GenBank accession NC_045512)
by the Burrows-Wheeler aligner (Li and Durbin, 2009).
Sambamba (Tarasov et al., 2015) was used to filter generated
binary alignment map files for mapped sequences with a
quality score >40 and alignment score >90. For further ver-
ification, identified SARS-CoV-2 matching sequences were
manually inspected, and blastn (Altschul et al., 1990) was
used to check them against the NCBI nucleotide ‘‘nt’’ data-
base. Blast matches and alignments were visually reviewed. In
addition, the matching sequences were annotated by blastx
searches against the NCBI ‘‘RefSeq protein’’ database.

Viral-to-human expression normalization

To estimate viral RNA abundance in a given sample and
make a comparison between samples possible, we normal-
ized the number of any positive SARS-CoV-2 matching hits
to the total number of reads within that sample. In addition,
we used the spike gene, which is highly specific to SARS-
CoV-2, to estimate the extent of viral RNA load in a given
sample. We normalized the abundance of spike genes to
human actin RNA, being a transcript of a housekeeping gene.
This normalization generated a ‘‘spike-to-actin’’ ratio that
could be used as an accurate metric for viral RNA abundance
relative to human RNA because the total number of reads
may include nonhuman and nonviral samples.

Table 1. RNA-Seq Datasets Included in the Study

Bioproject accession

Healthy Controls Patients with COVID-19

ReferencesPBMCs Platelet BALF PBMCs Platelet

PRJCA002326 3 0 4 3 0 Xiong et al. (2020)
PRJNA633393 6 0 0 7 0 Wilk et al. (2020)a

PRJNA634489 0 5 0 0 10 Manne et al. (2020)
PRJNA639275 34 0 0 32 0 Arunachalam et al. (2020)
PRJNA644579 0 0 0 39 0 Kusnadi et al. (2021)
PRJNA662985 0 0 0 37 0 Zheng et al. (2020)

The numbers of the samples are shown by the condition of the subject, healthy controls, or patients with COVID-19, and the source of the
blood sample, BALF, PBMCs, or platelet. The number of included samples is 180 (48 healthy controls and 132 COVID-19).

aThese 13 datasets included single-cell RNA-Seq.
BALF, bronchoalveolar lavage fluid; PBMCs, peripheral blood mononuclear cells.

Table 2. Sample Types and Identified Viral Reads

COVID-19
cell type

No. of samples
with viral RNA

Median abundance
of viral RNA

Platelets 0 0
PBMCs 2 3.46E-08
BALF 4 1.07E-02

The abundance of viral RNA is estimated as the number of
detected viral RNA reads to the total number of RNA reads in the
sample.
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Dimension reduction and clustering

For dimension reduction analysis, we used the plotPCA
function implemented in the DESeq2 package (Love et al.,
2014), after applying the rlog function, which transforms the
transcript count data to the log2 scale and normalizes the
count data to the sizes of the libraries.

Differential gene expression analysis

Filtered sequences, in FASTQ format, were processed in
Salmon (Patro et al., 2017) for the quantification of the ex-
pressed transcripts against the human reference GENCODE
(Frankish et al., 2019) Release 35 (GRCh38.p13). The DE-
Seq2 package (Love et al., 2014) was used for transcript
normalization and differential gene expression analysis.

The comparisons performed for the differential expres-
sion are (1) healthy controls versus patients with COVID-19
without viral RNA, (2) healthy controls versus patients with
COVID-19 with viral RNA, and (3) patients with COVID-19
without viral RNA versus patients with COVID-19 with viral
RNA. The cutoff for statistical significance was adjusted
p < 0.001. Thus, the complete set of the differentially ex-
pressed genes (DEGs) is the union of the identified DEGs from
the three comparisons. Patterns of differential gene expression
were visualized as a heatmap using the R package pheat-
map https://cran.r-project.org/package=pheatmap. Further data
processing and visualization were performed in R https://www
.r-project.org/. Toppgene (Chen et al., 2009) was used for en-
richment analysis for differentially expressed transcripts.

FIG. 1. Dimensionality reduction of PBMC transcriptomes. PCA was used to cluster the PBMC samples based on the
normalized gene expression. PBMC samples are color-coded: red, healthy controls; green, patients with COVID-19, but
without viral RNA in PBMCs; blue, patients with COVID-19 with viral RNA detected in PBMCs. PBMC, peripheral blood
mononuclear cell; PCA, principal component analysis.
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FIG. 2. Venn diagram of the counts of DEGs. The num-
bers are counts of the DEGs and the percentages relative to
the total (union) number of DEGs. DEGs, differentially
expressed genes.
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Results

We analyzed 180 RNA-Seq datasets from 6 independent
studies and found SARS-CoV-2 viral sequences in only 2
PBMC samples from 2 independent studies (Table 2).
Sample CRR119891 (Xiong et al., 2020) had four viral se-
quence reads (Supplementary Fig. S1A, B), matching
SARS-CoV-2’s polyprotein pp1ab (accession NP_828849),
with blastx e-value 1 · 10-29, and surface glycoprotein
(accession YP_009724390), with blastx e-value 2 · 10-25.
In addition, sample SRR12626644 (Zheng et al., 2020) had
two viral sequence reads (one paired-end read), matching
SARS-CoV-2’s ORF1a polyprotein (accession YP_
009725295), with blastx e-value 9 · 10-53 (Supplementary
Fig. S1C).

On the contrary, expectedly, we found viral sequences in
all the bronchoalveolar lavage fluid (BALF) samples (Xiong
et al., 2020) with a median abundance of 1.07% of the total
sequence reads, which, despite being a relatively low per-
centage of the total reads, was sufficient to cover the entire
genome of SARS-CoV-2 with coverage exceeding 4000 · for
some areas in the viral genome (Supplementary Fig. S2).

Based on the normalized gene expression values of the
PBMC samples (Xiong et al., 2020), principal component
analysis (PCA) demonstrated separation between the COVID-
19 and healthy control samples. Moreover, the t-SNE analysis
showed a further separation between the patient samples in
which viral RNA was detected in PBMCs and those with no
detected viral RNA (Fig. 1).

Our differential gene expression analysis of the PBMC sam-
ples (human transcriptome) identified 439 DEGs between the
healthy controls and patients with COVID-19 without SARS-
CoV-2 viral RNA (adjusted p < 0.001), 505 DEGs between
healthy controls and patients with COVID-19 with detected
SARS-CoV-2 viral RNA (adjusted p < 0.001), and 107 DEGs
between patients with COVID-19 without detected SARS-
CoV-2 viral RNA and patients with COVID-19 with detected
SARS-CoV-2 viral RNA (adjusted p < 0.001). The pairwise
comparisons of the three types resulted in 791 DEGs (Fig. 2).

In agreement with the PCA analysis, hierarchical cluster-
ing delineated the patterns of DEGs and confirmed the sep-
aration of the three groups: controls, COVID-19 without
SARS-CoV-2 viral RNA, and COVID-19 with SARS-CoV-2
viral RNA (Fig. 3).

PBMC Condition
Healthy Control
COVID-19
COVID-19 with viral RNA

−2

−1

0

1

2

Normalized Expression

FIG. 3. Heatmap of the expression patterns of the DEGs. Control: health control, COVID19: COVID-19 with no detected
viral RNA, COVID-19 with detected viral RNA.
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Toppgene enrichment analysis for genes that were differen-
tially expressed between healthy controls and COVID-19 sam-
ples with viral RNA and between COVID-19 without viral RNA
and COVID-19 with viral RNA using provided enriched Gene
Ontology (GO) terms under the Molecular Function, Biological
Process, and Cellular Component categories (Table 3).

When the statistically enriched terms were filtered to ad-
justed p < 0.05, the following categories stood out. Under the
Molecular Function category, there was only one statistically
significant enriched term, GO:0003823 (antigen binding).
Likewise, only one statistically significant enriched term under
the Cellular Component category satisfied the statistical filter,
that is GO:0019814 (immunoglobulin complex). Under the
Biological Process category, 19 statistically significant en-
riched terms were shortlisted. Many of these terms were related
to immune responses and viral life cycle, including
GO:0051707 (response to other organisms), GO:0002250
(adaptive immune response), GO:0045087 (innate immune
response), and GO:0002449 (lymphocyte-mediated immunity).

When we calculated a spike-to-actin RNA ratio for each
sample, values for all four BALF samples, as well as the one
PBMC sample with SARS-CoV-2 transcripts, followed the
same pattern of viral RNA abundance ratios and were strongly
correlated (Spearman correlation q = 0.96, p = 0.00047; Fig. 4C)

Discussion

Coronavirus-related infections are reported to be associ-
ated with hematological changes, including lymphopenia,
thrombocytopenia, and leukopenia, by infecting blood cells,

bone marrow stromal cells, or inducing autoantibodies (Yang
et al., 2003). In a former study characterizing the clinical
features of patients with COVID-19, Huang et al. (2020)
showed that using reverse-transcription polymerase chain
reaction (RT-PCR) allowed them to detect coronavirus in
plasma-isolated samples from the patients. Their report pre-
ferred to use the term ‘‘RNAaemia,’’ rather than ‘‘viraemia,’’
which they defined as the presence of viral RNA in the blood
because they did not perform tests to confirm the presence of
infectious SARS-CoV-2 virions in the blood of the patients.

A handful of early reports detected amplifiable viral RNA
in the blood (Peng et al., 2020; Wang et al., 2020a); however,
to our knowledge, no studies used an unbiased systematic
approach to report SARS-CoV2 RNA in PBMCs (Azghandi
and Kerachian, 2020). In their preliminary analysis of RNA
isolated from PBMCs, Corley et al. confirmed that they did
not detect viral sequences (a preprint 10.1101/2020.04.13.
039263v1). High-throughput sequencing has been repeatedly
demonstrated to be a practical approach for the identification
and quantification of viruses in the blood (Moustafa et al.,
2017) following similar methods as those used in viral me-
tagenomics (Aziz et al., 2015; Breitbart et al., 2003) and
uncultivated viral genomics (Roux et al., 2019).

Therefore, we planned to exhaustively mine publicly
available RNA-Seq PBMC datasets for SARS-CoV-2 RNA
sequences. As of the writing of this report, only one study
reported viral RNA in an RNA-Seq PBMC dataset (Xiong
et al., 2020). In that study, the authors profiled global gene
expression in BALF and PBMC specimens of patients with
COVID-19. Predictably, we detected viral RNA in all BALF

Table 3. Statistically Enriched Gene Ontology Terms

GO category GO term Description Adjusted p-value

GO: Molecular Function GO:0003823 Antigen binding 2.53E-02
GO: Biological Process GO:0051707 Response to other organisms 7.63E-05
GO: Biological Process GO:0043207 Response to external biotic stimulus 7.96E-05
GO: Biological Process GO:0009607 Response to biotic stimulus 1.77E-04
GO: Biological Process GO:0002443 Leukocyte mediated immunity 2.25E-04
GO: Biological Process GO:0002250 Adaptive immune response 2.55E-04
GO: Biological Process GO:0045087 Innate immune response 3.41E-04
GO: Biological Process GO:0002252 Immune effector process 4.77E-04
GO: Biological Process GO:0002449 Lymphocyte-mediated immunity 6.95E-04
GO: Biological Process GO:0006958 Complement activation, classical pathway 1.93E-03
GO: Biological Process GO:0033197 Response to vitamin E 3.19E-03
GO: Biological Process GO:0016050 Vesicle organization 4.63E-03
GO: Biological Process GO:0098542 Defense response to other organisms 4.82E-03
GO: Biological Process GO:0002460 Adaptive immune response based

on somatic recombination
of immune receptors built
from immunoglobulin
superfamily domains

5.06E-03

GO: Biological Process GO:0002455 Humoral immune response
mediated by circulating immunoglobulin

6.08E-03

GO: Biological Process GO:0072376 Protein activation cascade 6.53E-03
GO: Biological Process GO:0006956 Complement activation 7.48E-03
GO: Biological Process GO:0019058 Viral life cycle 8.37E-03
GO: Biological Process GO:0030449 Regulation of complement activation 1.07E-02
GO: Biological Process GO:0006952 Defense response 1.31E-02
GO: Cellular Component GO:0019814 Immunoglobulin complex 2.18E-04

Statistically significant enriched GO terms with Bonferroni-adjusted p < 0.05.
GO, Gene Ontology.
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samples (2 patients, 2 replicates each) with an average
abundance of 1.07% of the total RNA reads in those samples,
including human RNA (Table 1). We also confirmed the
finding by Xiong et al. (2020) and detected the viral RNA
sequences in one of their PBMC samples from patients with
COVID-19 (Table 1). Furthermore, we identified another

PBMC sample in a patient with COVID-19 in a dataset
published by Zheng et al. (2020) (Table 1). Those authors
described the whole-transcriptome expression profiles in
PBMCs of 18 patients with COVID-19 over three time points.
However, the authors have not investigated or reported the
detection of viral RNA in their samples (Zheng et al., 2020).
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FIG. 4. Abundance of SARS-CoV-2 sequence reads relative to the host gene expression. (A) Normalized abundance of
SARS-CoV-2 sequence reads, estimated as the number of SARS-CoV-2-specific hits per million sequence reads. (B) SARS-
CoV-2 spike-to-human actin ratio for each sample. (C) A scatter plot showing the correlation between SARS-CoV-2 spike-
to-human actin ratio and SARS-CoV-2 sequence reads abundance (in ppm). ppm, parts per million; SARS-CoV-2, severe
acute respiratory syndrome coronavirus 2.
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Of note, to estimate the viral RNA load in a given sample
and to compare between different samples, we normalized
viral read counts to the total number of reads in each dataset
(Fig. 4). Because the total number of human-related reads
may be strongly affected by potential microbial RNA (from
pulmonary microbiota, for example) or by extensive viral
counts, we also sought to estimate the ratio of viral genomic
RNA to human cellular RNA. For that purpose, we used actin
RNA, being a transcript for a human housekeeping gene—
not expected to be seen in bacterial cells or viral genomes and
expected to have constitutive expression levels. We esti-
mated the ratio of hits to RNA encoding the spike protein (S)
to actin transcripts in the sample. Quite interestingly, the
spike-to-actin ratio strongly correlated with viral RNA
abundance values (computed as SARS-CoV-2 RNA reads
normalized to the total number of reads) (Fig. 4C).

These RNA traces are indeed quite rare; however, they
confidently and unambiguously belong to SARS-COV-2
(Supplementary Fig. S1). One viral RNA read translates into
polyprotein (pp1ab, accession NP_828849), the largest pro-
tein of coronaviruses and involved in replicating and tran-
scribing the viral genome. The other viral RNA from the
same sample translates into surface (spike) glycoprotein
(accession YP_009724390), which mediates the entry of the
viral RNA into human cells expressing human angiotensin-
converting enzyme 2(hACE2) (Ou et al., 2020; Walls et al.,
2020). The third viral RNA was from a different sample, and
it translated into ORF1a polyprotein (accession number
YP_009725295), a leader protein, from which the nonstruc-
tural proteins are derived.

In our differential expression analysis of the human tran-
scriptome, we opted to limit the analysis to the samples from
the Xiong et al. (2020) study because (1) it includes PBMCs
from healthy donors and patients with COVID-19 with and
without RNA viral sequences and (2) to exclude possible
batch effects across RNA-Seq datasets generated from dif-
ferent studies. Our analysis shows a clear separation between
the PBMC transcriptomes from healthy donors and patients
with COVID-19 (Figs. 1 and 3). The analysis also shows a
further separation within the COVID-19 PBMC samples
between samples without detected viral RNA and the sample
with viral RNA, suggesting that the PBMC transcriptome
with the presence of the viral RNA differs from that with no
detected viral RNA sequences.

Although we do not reject the possibility of cross-
contamination or barcode bleeding (Kircher et al., 2012;
Mitra et al., 2015) for detecting the viral RNA in two PBMC
RNA-Seq samples, such possibility is unlikely, given that
control samples had no hits to SARS-CoV-2 RNA. A more
likely possibility is that SARS-CoV-2 is being sampled by
antigen-presenting cells (most likely dendritic cells) or pre-
sented to T lymphocytes, which are in the PBMC population.
Because such an event (antigen presentation) may be rela-
tively difficult to detect, this explains why it was detected in
only 2 of 118 datasets.

One more possibility, which needs many more samples to
consider, is that SARS-CoV-2 may be transiently or coinci-
dentally internalized by one of the mononuclear cell types,
suggesting a mechanism for the chronicity of the SARS-
CoV-2 infection. This hypothesis requires further testing.
However, in light of our analysis, it is difficult to support the
early reports that SARS-COV-2 targets T lymphocytes

in vivo, as suggested earlier, in a correspondence, based on
cell culture experiment with pseudotyped viruses (Wang
et al., 2020b).

It is important to emphasize that, after 1.5 years of the start
of the COVID-19 pandemic, a scientific consensus has been
reached that this disease is not merely respiratory, but is a
systemic disease involving multiple organs. Our results about
the paucity of detectable SARS-CoV-2 RNA in peripheral
blood cells are not contradictory to the systemic nature of the
disease or the possibility of viral transport through the cir-
culatory system. What the study reports, quite specifically, is
that PBMCs are not specifically targeted by the virus. This
finding is supported by reports on the lack of ACE2 expres-
sion by those immune cells (Hamming et al., 2004; Sala-
manna et al., 2020).

Although publicly available SARS-CoV-2 genomic data
have accumulated to a historical record (>2 million genome
sequences), blood transcriptome and RNA-seq data remain
insufficient. With more data becoming publicly available, it
will be possible to revisit this hypothesis and others to improve
our understanding of the progression, replication, chronicity,
and recurrence of SARS-CoV-2 in infected individuals.
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