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Acute Kidney Injury (AKI) complicates up to 10% of hospital admissions substantially

increasing patient morbidity and mortality. Experimental evidence supports that AKI

initiation and maintenance results from immune-mediated damage. Exogenous injury

sources directly damage renal cells which produce pro-inflammatory mediators recruiting

immune cells and furthering kidney injury. Many AKI studies focus on activation of

innate immunity; major components include complement pathways, neutrophils, and

monocytes. Recently, growing evidence emphasizes T lymphocytes role in affecting AKI

pathogenesis and magnitude. In particular, T helper 17 lymphocytes enhance tissue

injury by recruiting neutrophils and other inflammatory cells, while regulatory T cells

conversely reduce renal injury and facilitate repair. Intriguingly, evidence supports local

parenchymal-T cell interactions as essential to producing T cell phenotypic changes

affecting long-term kidney and patient survival. Herein, we review T cells effects on

AKI and patient outcomes and discuss related new therapeutic approaches to improve

outcomes of affected individuals.

Keywords: AKI, IRI, regulatory T cell, Treg, TH1, TH2, TH17

Acute kidney injury (AKI) is clinically defined by rapid renal function decline indicated by serum
creatine rise ≥0.3 mg/dl (or >50% from baseline) and/or urine output ≤500 ml/day (1). It is
classified as pre-renal, post-renal or parenchymal (also known as intrinsic) depending on the
primary site of injury. Pre-renal and post-renal AKI are consequences of altered renal perfusion
or urinary tract obstruction, respectively; thus, they represent extrinsic disorders. However, if
pre/post-renal injuries persist, AKI will eventually evolve to cellular damage and intrinsic kidney
disease. Pathophysiologically, AKI represents complex interactions of exogenous injury and host
responses culminating in decreased glomerular filtration.

In the last decade, new approaches focused on more specific nomenclature across types
of parenchymal AKI (2). Indeed, while pre- and post-renal AKI are frequently reversible and
minimally impactful on patient survival (3), parenchymal AKI is an emerging global health
concern, increases patient morbidity/mortality risk, and rose in incidence over the last 30 years
(4). In industrialized countries, AKI affects 5–10% of hospitalized patients and 25–50% of those in
intensive care units (ICU) (4, 5). A 2013 meta-analysis estimated that mortality rates for hospital-
acquired AKI is ∼23% and rises to 50% in subsets requiring dialysis (5). Similarly, a large registry
study on>190,000 patients reported 90-day AKImortality rates of 37% (vs. 7% in non-AKI group).
In the same cohort 2 years post-discharge, AKI survivors’ combined risk of death, end stage renal
disease (ESRD) or chronic kidney disease (CKD) was >30%, more than double of the cohort
without AKI (6, 7).

Taken together, clinical data and experimental animal AKI models, concur that AKI associates
or contributes to lung, heart, liver, brain, or gut damage (8) that produces long-term sequelae in
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affected organs (9). Importantly, immune system function is
tightly linked to AKI with bidirectional influence. While sepsis
is a recognized leading cause of hospital-associated kidney
injury (4), AKI also associates with increased infection risk
even after full recovery of renal function (10, 11). The first
studies about immune cell activation during AKI focus on
innate immune response; more recently research shows adaptive
immunity activation during AKI contributing to renal and extra-
renal outcomes. Herein, we will review both adaptive immune
contributions to AKI and immune function changes related
to AKI.

ETIOLOGIES OF HOSPITAL RELATED
ACUTE KIDNEY INJURY

AKI encompasses a broad spectrum of renal insults causing
decreased filtration. In the last decade, multiple classifications
were proposed to identify and study underlying conditions (2).
From an epidemiological point of view, an important difference
exists between community acquired vs. hospital related AKI.
Community-AKI is more likely pre-renal and usually occurs in
older or medically compromised patients from dehydration or
from drugs that limit glomerular perfusion (e.g., non-steroidal
anti-inflammatory drugs or inhibitors of the renin angiotensin
aldosterone axis) (3). Conversely, hospital-acquired AKI is more
often intrinsic andmore likely to be severe. Another classification
identifies major clinical syndromes and procedures that have a
strong causative link with AKI (e.g., sepsis related-AKI, post-
cardiac surgery AKI etc.); the definition of these clinical settings
may guide clinicians in the diagnostic and therapeutic approach.
From an etiologic point of view, these AKI types share a large part
of the underlying mechanisms (2) (Figure 1).

Sepsis is a leading cause of in-hospital AKI accounting for
30–50% of cases (4). During sepsis, microbial and released host
products act as alarm signals (or alarmins) targeting pattern
recognition receptors (PRR) (12). Renal endothelium, tubular
epithelial cells (TEC) and immune cells express PRR that sense
a wide variety injury related molecular motifs. PRR activation
produces pro-inflammatory phenotypes in renal cells which
also activate programmed cell death pathways. Immune cells
migrate to the site of alarmin release and contribute to local
inflammation. In addition to infection consequences, patient
courses are further complicated by nephrotoxic drugs (e.g.,
aminoglycosides) and sepsis-related ischemic injury, discussed in
more depth below.

Ischemia-reperfusion injury (IRI) is probably the most
studied experimental AKI model. Clinically, it occurs from
severe renal hypoperfusion caused by blood loss, septic shock,
and other anatomical abnormalities of renal blood supply.
Some authors classify post-surgical AKI as a distinct entity
due to predictable complicating factors of alarmin release (as
consequence of bacterial contamination or tissue damage) or
nephrotoxic drug administration (e.g., contrast dye) (13). In
animal models, protracted IRI induces acute tubular necrosis
(ATN), a lesion characterized by the extensive necrosis of the
proximal tubular segments at the corticomedullary junction.

However, renal biopsies from patients with ischemic AKI show
mild parenchymal damage, despite severe organ dysfunction;
thus, since 2000, more studies hypothesize microvascular failure
and forms of cellular dysfunction (e.g., loss of polarity, epithelial
leaking, organelle injury etc.) being predominant features in
humans (14).

Multiple interacting etiologies contribute to cancer-related
AKI. Oncologic patients suffer AKI from combinations of tumor
lysis syndrome, infections, procedural complications, neoplastic
renal invasion, paraproteinemia (mostly related to plasma-
cell cancers) and drug toxicity. Traditionally, alkylating agents
most frequently caused ATN (e.g., platin compounds). In the
last decade new agents, most prominently immune checkpoint
blockade inhibitors, are increasingly used. Multiple studies
showed how immune checkpoint inhibitors can trigger intra-
renal inflammation and autoimmune renal damage (15).

AKI frequently occurs in hospitalized patients but is
rarely the cause for admission and frequently occurs from
distant organ injury/dysfunction. In hepatorenal syndrome, for
example, vasoactive aminic metabolites accumulate in liver
failure and produce renal circulatory failure (8). Subtypes of
acute cardiorenal syndromes involve renal injury resulting from
decreased cardiac output or venous congestion, while others
involve cytokine release and neurohormonal changes. Other
relevant detrimental cross-talk are mediated by lung (hypoxia,
cytokine release), brain (natriuretic peptides, cytokines), or
intestine (leaking of bacteria and toxic metabolites) (12). Finally,
massive muscle cell lysis seen in crush injuries cause injury.
Cell lysis byproducts produce electrolyte unbalance, alarmin
release, increased circulating waste products, and myoglobin
precipitation in tubular lumen (cast nephropathy) that can
combine with dehydration and profoundly injury kidneys (16).

ROLE OF THE INNATE INFLAMMATORY
RESPONSE IN AKI PATHOGENESIS

Innate immune cells perpetrate AKI damage directly (e.g.,
neutrophil degranulation) or by recruiting the adaptive immune
cells. At baseline, renal tissue hosts mainly macrophages and
dendritic cells (DC), while immature monocytes and neutrophils
migrate to the kidney in response to the alarm signal.

Neutrophils
Neutrophils are the most abundant leucocytes infiltrating the
kidney immediately after IRI (17) and multiple studies have
shown that in-hospital risk of AKI positively correlates with the
percentage of circulating neutrophils, suggesting an involvement
of these cells in AKI pathogenesis (18). In response to stress,
tubular cells acutely release IL-18 which recruits and activates
neutrophils (19). Activated renal endothelial cells express E-
selectins that bind neutrophil β-integrins and initiate the
diapedesis process (20). Neutrophils damage renal tissue by
degranulation, IFN-γ release and by recruiting of NKT-cells (21).

Macrophages
Macrophages are the most abundant kidney resident immune
cells. During AKI, TEC acutely release IL-34 that activates
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FIGURE 1 | Injured renal cells release different alarm signals that recruit and activate local and circulating lymphoid cells (upper panel). Subsequently, the different

lymphocyte subsets participate to renal injury perpetration or inhibition (lower panel).
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resident macrophages and promotes tubular injury (22). TEC
damage induces also the recruitment and the activation of
circulating monocytes (23), which perpetrate the injury by
releasing pro-inflammatory cytokines as IL-1β, TNF-α, IL-6,
and IL-12 (24). Subsequently, both resident and infiltrating
macrophages switch to the regulatory phenotype and promote
tissue repair. In particular, resident macrophages develop an
embryonic-like gene signature soon after IRI and secrete WNT4,
which in turn activates β-catenin pathway in TEC and promotes
their proliferation (17, 23).

Dendritic Cells and NK Cells
Resident renal dendritic cells (DC) are the predominant source of
TNF-α during AKI and promote TH1 activation by secreting IL-
12p40 (25, 26); moreover, they release TH17 inducing cytokines as
IL-1 and IL-23 (27).

Natural killer (NK) cells migrate to the kidney in
inflammatory conditions and induce TEC damage by releasing
perforin (28). A subset of NK expresses an invariant form
of T cell receptor (NKT or invariant NK) and substantially
contributes to interferon production after renal IRI (21).

Complement System
Complement cascade is acutely activated during AKI and
contributes to renal damage, as indicated by data from C3
knock-out mice that are protected from IRI (29). Human and
murine data have shown that complement get activated during
AKI trough the alternative (30) and the mannose binding
leptin pathways (31). Additionally, C3 can be activated in
kidney parenchyma after binding ammonia (amidic-C3) (32).
Complement activation injuries perpetrates renal injury trough
the generation of membrane attack complex, the recruitment of
immune cells and the activation of C3b and C5b receptors on
tubular and endothelial cells (33).

ADAPTIVE IMMUNE RESPONSE

Most studies investigating the role of T cells as AKI mediators
focus on CD4 (i.e., T helper cells) while CD8 (cytotoxic)
involvement is controversial (see below). Depending on
inflammatory context, naïve CD4 cells differentiate to T-helper
(TH) 1, 2, 17, or regulatory T cells (Treg). After AKI, TEC
primarily release TH1 inducing signals and renal myeloid
cells polarize toward TH17; TH2 activation during AKI is
less understood.

TH1 CELLS

TH1 responses are orchestrated by master regulator transcription
factor T-bet and characterized by expression of surface
marker CXCR3. TH1 are classically associated with IFN-
γ secretion and responses to intracellular pathogens. IFN-
γ is a cytokine with a ubiquitous receptor promoting MHC
expression, autophagy, reducing cell proliferation, and activating
inflammatory death pathways (e.g., necroptosis and pyroptosis)
(34). TH1 differentiation and activity are promoted by IL-12, IL-
18, and IFN-γ itself. Upon injury, TEC release IL-18, leading to

conversion of naïve CD4T cells into TH1 (35). Rapid intrarenal
migration of IFN-γ+ CD4 cells after LPS injection is prevented
in IL-18 receptor deficient mice that, in turn, limits kidney injury
(36). Cytokines alone cause cell injury, but TH1 cells also recruit
other immune cells. Li et al. reported TH1 rapidly travel to
ischemic kidneys and promote neutrophil and NK chemotaxis
(that peaks after 3 h) (21). Additionally, IFN-γ alters TEC
making them apro-inflammatory via expression of costimulatory
molecules ICOS-L and B7-1 (37), preventing TEC proliferation
(38), and promoting their death by necroptosis (39).

Although T cells promote inflammatory transformation
of TEC, cytokine dependent damage appears predominantly
based on TH1 responses. Day et al. observed that infiltrating
lymphocytes were the main source of IFN-γ, while the cytokine
fraction released by TEC was dispensable (40) in experimental
models. Human data is corroboratory: in a multicenter
prospective study on 1,400 patients undergoing cardiac surgery,
post-operatory increase in serum IFN-γ significantly and directly
associated with AKI incidence and 1-year mortality (41). Rather
than non-specific responses to damage associated molecular
patterns (DAMP) experimental evidence points to antigen-
specific T cell function. Renal injury was worse after IRI in T-
cell depleted mice reconstituted with heterogeneous CD4 cells
compared to those given monoclonal ones (42).

TH2 CELLS

Little is known regarding T helper 2 (TH2) cells during AKI.
TH2 constitutively express transcription factor GATA3 and
surface marker Crth2 (CCR4 in mice): canonically, these cells
orchestrate the anti-parasitic immune response via IL-4 and
IL-13 secretion and are associated with asthma and allergic
diseases. Yokota and colleagues induced IRI in mice lacking the
transcription factors STAT4 or 6; the first is essential for TH1

response while STAT6 induces TH2 phenotype (43).While STAT4
deficient mice were protected from AKI, STAT6 knock down
associated with worse outcomes. Increased tubular injury in IL-4
deficient mice further supports a renoprotective designation for
TH2 responses (43). Conversely, human data from post-cardiac
surgery patients showed direct relationships between IL-4 and
IL-13 serum concentrations, AKI incidence, and 1-year mortality
(41). Clearly, further experimental and clinical evidence are
required to understand how TH2 responses affect AKI.

TH17 CELLS

T helper 17 cells (TH17) are a subset of CD4 lymphocytes
characterized by expression of IL-17A, IL-17F, and the
transcription factor ROR-γt. TH17 are frequently identified
by surface marker CCR6, with variable expression of IL-23R,
CCR4, and CCR2 (humans) or CCR7 (mice) (27). In both
humans and mice, naïve CD4 experimental polarization is driven
by TGF-β, IL-6, IL-21, and IL-23. Other stimuli contribute to
mature TH17 activation: angiotensin II, salt excess and IL-1β
(27, 44). TH17 cells are particularly abundant in barrier epithelia
(e.g., skin, gut) and respond primarily to fungal and extracellular
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bacterial infections by recruiting neutrophils and activating
epithelium via IL-17. TH17 are linked to various autoimmune
diseases; the prototypical TH17 disease is psoriasis and it is
effectively treated with anti-IL-17 therapies (45).

More recently, TH17 cells emerged as main players in AKI
pathophysiology. Different groups demonstrated that TH17 are
the most abundant kidney infiltrating lymphocytes infiltrating
following AKI in mice (27, 44). Pindjakova et al. observed that
resident dendritic cells and TEC release IL-1 (α and β), IL-23,
and IL-6 to promote intrarenal IL-17 migration and activation
after AKI from ureteral obstruction. IL-1 signaling dominates
the phenomenon and its suppression pushes lymphocytes
phenotypes to TH1 (27). Mehrota and colleagues demonstrated
that TH17 cells expressing calcium channel Orai1 are solely
responsible for IL-17 production after IRI and, ultimately, for
renal injury (46). A 10-fold increase in circulating Orai1+ TH17

cells are found in ICU patients with AKI compared to those
without (46). In vivo, intra-renal expression of Orai1 persisted
for days after AKI resolution and its inhibition prevented the
transition to chronic kidney disease (CKD) (46). Intriguingly,
the kidney also possesses mechanisms to counteract TH17 cell
activation. Our group observed that erythropoietin (EPO),
a kidney produced hormone, prevents TH17 induction (47)
and ameliorates renal injury in a murine model of Balkan
nephropathy. Together with studies demonstrating EPO prevents
IRI, current experimental evidence strongly support inhibition of
dominant TH17 responses are feasible to prevent AKI and related
progression to CKD.

T REGULATORY CELLS

CD4 regulatory cells (Treg) are immunosuppressive T cells
characterized phenotypically by constitutively high levels of IL-
2 receptor (CD25) expression and maintained functionally via
transcription factor FOXP3.

Research suggests that Treg attenuate AKI (48). Jaworska
and colleagues observed IRI amelioration after Treg transfer, an
effect that was dependent on programmed death ligand 1 and
2 (PD-L1/2) expression by Treg. The relevance of PDL to renal
inflammation is supported by experimental demonstration of
PD-1 expression by tubular cells (49) and clinical observations of
renal adverse events in patients treated with immune checkpoint
inhibitors targeting PD-1/PD-L1 axis (50).

After injury, renal Treg inhibit inflammation inmultiple ways;
they release TGFβ and IL-10, halt production of IL-1β, TNF-
α, and IFN-γ, and reduce overall CD4 proliferation (51). It is
unclear which between intra-renal or circulating Treg represent
the active pool during AKI, though evidence exists supporting
both central and peripheral sources. Investigators observed that
DC heat shock protein 70 (HSP70) production increased splenic
Tregs that migrated to the kidney and attenuated IRI (52), while
another recent paper pointed out the role of renal resident Treg
during IRI (53). The authors observed a progressive increase
in CD3+ T cells after ischemia that paralleled the development
of tissue fibrosis. Among the most expanded subsets there
was a resident Treg population that was characterized by the

expression of IL-33 receptor, a marker usually associated with
TH2 phenotype. The administration of IL2 and IL33 at the time
of IRI activated this population, promoted rapid recovery, and
prevented tissue fibrosis. Of note, a previous study demonstrated
that IL-33 is released by renal endothelium after cisplatin
administration (54). Given these conflicting results, the answer
may be model dependent.

OTHER T CELLS (GAMMA-DELTA,
DOUBLE NEGATIVE, CD8)

Nomenclature of T cells is receptor based: αβ T cells constitute
the majority (i.e., TH1, T2, TH17, and Treg subsets) while γδ

T cells, resident in skin and the gut epithelia, constitute <1%
of peripheral T cells. Their effector responses, based on still
undefined antigens, include release of IL-17, IFN-γ, and TNF-α.
In murine IRI, γδ lymphocytes rapidly infiltrate kidney tissue and
promote subsequent migration of αβ cells; of note, γδ depletion
delays but does not prevent injury, while αβ T cell ablation is
protective (55). This suggests γδ T cells affect kinetics of kidney
injury but are not necessary for AKI. In a clinical study of
20 patients undergoing abdominal aortic repair, magnitude of
γδ T cells disappearance from the circulation was proportional
to kidney injury markers (56). The same pattern was seen
experimentally in mice where TEC HMGB1 release induced γδ

T cell kidney migration, supporting the paradigm that early γδ T
cell AKI responses facilitate αβ T cell recruitment.

CD8T cells role in AKI is less defined, if it exists. A 2001
study found no significant pathogenic role for CD8 cells in
IRI (57). A subsequent paper reported that CD8 deficient mice
were mildly protected from cisplatin induced AKI, but less than
those with CD4 depletion (58). Finally, in a study on acute
aristolochic acid nephropathy, authors reported both CD4 and
CD8 depletions were detrimental. In particular, absence of CD8
cells was associated to higher intra-renal TNF-α production and
reduction of anti-inflammatory macrophages (59). More work is
required to more clearly define how, and if, CD8 cells affect AKI.

Double negative (DN) T cells represent an early stage of
T cell maturation lacking CD4 and CD8 expression. DN T
cells are ubiquitous and some authors hypothesize they are an
independent differentiated population rather than a maturation
stage (60). These lymphocytes constitute more than 30% of
kidney T cells at baseline and rapidly proliferate after tubular
damage. Martina et al. reported that DN cells secrete IL-10 after
IRI thus being anti-inflammatory (61) and, ostensibly, protective.

B CELLS

Experimental B-cells work has not definitively defined their
role in AKI. One IRI study with B-cell deficient mice showed
decreased AKI. Serum from control mice having restored AKI;
these results suggests an antibody-mediated mechanism (62).
Renner et al. observed the opposite effect; B-cell deficient
mice had less intra-renal IL-10 production and a worse renal
outcome (63). Of note, the same study reported a harmful B-cell
subset; natural-IgM from peritoneal lymphocytes precipitated on
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the glomerular basal membrane and activated the complement
alternative pathway. Conversely, Lobo and Okusa reported that
infusion of natural-IgM was actually protective from IRI by
inducing B-regulatory cells (64). These conflicting studies are
emblematic of ongoing conflict regarding B cells and AKI.

Larger consensus has been reached about the B-cell role in
post-AKI renal fibrosis (65). It has been shown that fibroblasts
increase their collagen production in tissues with a higher
B cell signature (66). Consistently, B-cell depleting therapy
(anti-CD20) prevented kidney interstitial fibrosis after ureteral
obstruction (67).

IMMUNE THERAPIES IN AKI

The important effects adaptive immune responses have in
AKI pathogenesis suggest, that immune modulatory therapies
might effectively achieve clinically desirable results. Pechman
and coworkers observed that mycophenolate mofetil (an
immunosuppressive agent that inhibits purine synthesis in
lymphocytes) prevented AKI long-term sequalae as renal fibrosis
and salt-sensitive hypertension (68). Experimental models
further link T cells, MMF, and CKD; a murine study modeling
AKI transitions to CKD, showed an inverse association between
mycophenolate treatment vs. TH17 proliferation and CKD (69).
Clinically relevant approaches preventing TH17 responses (i.e.,
EPO receptor agonism and Orai1 inhibition) effectively halted
kidney disease in murine models. Moreover, targeting TH17

effector molecule, IL-17, prevented calcineurin inhibitor related
renal fibrosis (70). Taken together, these findings justify further
studies targeting TH17 responses to prevent CKD.

A promising approach to treat AKI is the promotion of
endogenous Treg expansion. A known strategy promoting Treg
expansion involves IL-2 function. The IL-2/anti-IL2 complex is
a mixture of IL-2 with an antibody that prevents IL-2 binding to
the β-chain of its receptor (CD25); this complex strongly induced
Treg proliferation and attenuated IRI by reducing neutrophil
and macrophage migration in renal tissue (71). Other authors
generated a fusion IL-2/IL-33 cytokine that expanded intra-
renal IL-33R+ Treg, halted CD4 effector cell proliferation and
prevented 100% of the observed mortality in a murine IRI model
(72). Dimethylsphingosine (DMS) promotes CD4 migration to
kidneys at baseline and after ischemia; Lai et al. demonstrated
that FOXP3+ lymphocytes were proportionally more abundant
in the renal tissue after DMS treatment and prevented IRI in
mice (73).

Treg adoptive transfer effectively downregulates IRI and
other types of renal injury in pre-clinical models (48); however,
its clinical application remains challenging. Therapeutic cell
products need specific cell factories, are temperature and

time-sensitive (thus needing complicated stock and transport
procedures), are prone to contamination, may degenerate in
neoplastic disease and can trigger the host immune response
toward allo-antigens (73).

Stem cell therapies have been proposed for the management
of AKI; in particular, mesenchymal stromal cells (MSC) have
been successfully used in different preclinical models and are
currently under investigation in clinical trials (74). MSC are
immune-regulatory; importantly, MSC infusion expands intra-
renal Treg after IRI. Consequent reductions in circulating
IL-6, TNF-α and IFN-γ levels are Treg dependent (75).
Treg strategies, therefore, intersect with other established
experimental protocols.

However, cell infusion poses previously mentioned challenges,
even if MSC are relatively easy to expand and not immunogenic.
An interesting alternative comes from the observation that MSC
conditionedmedium is as effective asMSC infusion in promoting
tissue regeneration (76). Indeed, MSC beneficial effects in AKI
are not contact-mediated and MSC do not differentiate in
any mature kidney cell. If future efforts identify substances
inducing intra-renal Treg expansion therapies would avoid cell
infusion complications.

CONCLUSIONS

Inflammation produces AKI via reciprocal interactions between
renal parenchyma, resident immune cells, and recruited immune
cells. Increasing recent evidence indicates a dominant role of
the adaptive immune response, and T cells in particular, as
prominent pathogenic elements as well as mitigating factors.
Myriad AKI etiologies frequently condense into recurrent
identifiable immune patterns associated with tubular injury
and T cells. In particular, CD4 and γδ T cells are initial
immune effectors migrating to kidneys and orchestrating
activation of innate cells. Early injury phases are characterized
by a strong IFN-γ response, possibly produced by TH1 cells.
In later phases, TH17 perpetuate injury and tissue fibrosis.
Conversely, Treg and possibly TH2 exert opposing anti-
inflammatory roles and limit or prevent injury. Pre-clinical
and observational studies provide strong bases of feasibility
for future pharmacological interventions targeting lymphocyte
function to prevent and limit AKI as well as subsequent
renal fibrosis.
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