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Purpose: Given the robust effectiveness of inhibiting myopia progression, orthokera-
tology has gained increasing popularity worldwide. However, identifying the bound-
ary and the center of reshaped corneal area (i.e., treatment zone) is the main challeng-
ing task in evaluating the performance of orthokeratology. Here we present automated
deep learning algorithms to solve the challenges.

Methods: A total of 6328 corneal topographical maps, including 2996 axial subtractive
maps and 3332 tangential subtractive maps, were collected from 2044 myopic patients
who received orthokeratology. The boundary and the center of the treatment zones
were annotated by experts as ground truths using axial subtractive maps and tangen-
tial subtractive maps, respectively. The algorithms based on neural network structures
of fully convolutional networks (FCNs) and convolutional neural networks (CNNs) were
developed to automatically identify the boundary and the center of the treatment zone,
respectively.

Results: The algorithm of FCNs identified the treatment zone boundaries with an
accuracy intersection over union (loU) of 0.90 4 0.06 (mean =+ SD; range, 0.60-0.97). The
algorithm of CNNs also identified the treatment zone centers with an average deviation
of 0.22 4+ 0.22 mm (range, 0.01-1.66 mm).

Conclusions: These results show that a deep learning—based solution is able to provide
an automatic and accurate tool to accomplish the two main challenges of orthokeratol-
ogy.

Translational Relevance: Deep learning in orthokeratology can shorten the time while
maintaining accurate results in clinical practice, which enables clinicians to help more
patients daily.

gained increasing popularity worldwide.> A standard

Introduction

The orthokeratology (OK) lens is a rigid reverse-
geometry contact lens that is designed to temporarily
correct myopia by reshaping the cornea.! Accumulat-
ing evidence has shown the efficacy of an OK lens on
inhibiting myopia progression’ and that the lens has
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OK lens has four curves, from the center to the periph-
ery, namely, a base curve, a reverse curve, an align-
ment curve, and a peripheral curve. Of these curves,
the radius of the base curve is designed to be larger
than that of the central cornea to achieve the treat-
ment by inducing a flattened cornea, designated as the
treatment zone. The location and size of the treatment
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zone are two critical parameters in evaluating the
performance of the OK lens treatment. In practice,
this is determined by examining the subtractive map
between the topography measured before and after OK
lens treatment using corneal topographers. Significant
dislocation of the treatment zone (i.e., deviation of the
center of the treatment zone from the pupil center) or
a too small treatment zone leads to poor visual acuity,
visual disturbance such as glare and double vision,
and poor antimyopia effect.* ® An imperfect treatment
zone usually leads to multiple adjustments of the lens’s
parameters or even ordering a new lens.

Despite the importance, there is no standard
technique to assess the center and the boundary of
the treatment zone. In general clinical practice, clini-
cians have to make decisions based on their experi-
ence. This decision-making procedure is very subjective
and inevitably introduces variations among clinicians.
In addition, the decision-making procedure in some
ambiguous cases is particularly challenging for less
experienced clinicians. In recent years, several schol-
ars have attempted to develop semiobjective techniques
to facilitate the decision-making procedure, based on
a third-party commercial software.” ! However, these
techniques were only applicable for cases when the
topography formed a complete, continuous, “bull’s-
eye” pattern (i.e., an all-round perfect contact for the
reverse curve, the cornea, and the usually well-centered
location), which are not always the perfect cases.
Another significant drawback of these techniques
is that they are time-consuming and require clini-
cians to outline the contour of the treatment zone
manually, followed by additional analysis using third-
party software.

Thanks to the remarkable developments of deep
learning algorithms, recent years have seen significant
advances in artificial intelligence (AI).!> As a new
branch of Al, deep learning has sparked tremendous
research interest and led to applications in many fields,
including health care and medical diagnosis.'*-'* The
adoption of deep learning in medical image analy-
sis, for instance, has demonstrated competitive perfor-
mance in a range of analysis tasks, such as classi-
fication, detection, segmentation, registration, and
location.!>"!® Deep learning has also shown exciting
potential in ophthalmology based on optical coher-
ence tomography and fundus photographs.'®1%-20 In
this study, we proposed and developed a deep learning
approach to evaluate the treatment effect after orthok-
eratology. Specifically, we developed and trained a
deep learning neural network with an encoder—decoder
structure to identify the boundary of the treatment
zone and developed a deep learning neural network
with a convolutional neural network structure to deter-
mine the center of the treatment zone. Both algorithms
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achieved promising performance in validation data
sets. With this approach, the critical evaluation process
can be conducted fully automatically.

Image Data Set

The overall flowchart of this study is shown
in Figure 1. First, 6328 anonymized corneal topog-
raphy maps were collected from Changsha Aier Eye
Hospital, Aier Eye Hospital Group. The image data
set comprised axial subtractive maps (n = 2996) and
tangential subtractive maps (n = 3332) from patients
who received orthokeratology treatment between 2015
and 2018. The corneal topography of these patients
was measured using the Pentacam HR tomographer
(Oculus GmbH, Wetzlar, Germany), which is a nonin-
vasive anterior segment tomographer based on rotating
Scheimpflug technology. For each eye, corneal topogra-
phies at two different stages were taken. Specifically, the
first was taken before the OK lens was worn (t = 0 days)
and the second was taken approximately 3 months (t =
90 days) after the OK lens treatment, when the corneal
parameters were stabilized. Then, the subtractive map
was generated by subtracting the second map from the
first map. Finally, the subtractive map was extracted
as an image file for later annotation. Subtractive maps
can show the practitioner about the effect of orthoker-
atology on the corneal surface. Two types of subtrac-
tive maps were employed for analysis. Axial subtrac-
tive maps reflected the changes of optical power in
axial corneal surfaces®!*>> and were used to determine
the area of the treatment zone in the study. Tangen-
tial subtractive maps offered a better representation of
the changes in cornea?®-?* and were used to determine
the centration of the treatment zone. All the maps were
extracted as images with a size of 300 x 300 pixels,
corresponding to 10.63 x 10.63 mm; the diameter of
the corneal topography was 254 pixels, or 9 mm. The
study was approved by the institute’s ethical committee
(ATER2018IRB27). Given the nature of the data and
the study design, participants’ informed consent was
not required.

Image Annotation

To provide the ground truths for training and
validating the deep learning algorithms, we invited
clinicians to manually annotate all images. First, the
image files of axial subtractive maps were manually
segmented by three experienced clinicians indepen-
dently to indicate the boundary of the treatment zone.
Then the results were reviewed by another expert, who
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Overall flowchart of this study. A total of 6328 corneal maps from 2044 patients were collected, including 2996 axial subtractive

maps and 3332 tangential subtractive maps. All maps were manually annotated by a group of experienced experts. The treatment zones
and the treatment area centers were identified for axial subtractive maps and tangential subtractive maps, respectively. Afterward, deep
learning models of FCN and CNN were developed and trained in the training data sets independently for the tasks of identifying treatment

zones and centers, respectively. Last, the trained models were further

is one of the authors, to ensure data quality. For a given
axial subtractive map, one segmentation result was
randomly chosen from the qualified results to serve as
the ground truth. Similarly, three experienced clinicians
were invited to identify the center of the treatment zone
in the images of tangential subtractive maps indepen-
dently. The ground truth of the center was obtained
by averaging the positions of the three annotations to

evaluated in independent validation data sets.

eliminate bias. The annotations were conducted using
a tool developed in house.

Deep Learning Methods

The automatic analysis of the OK treatment maps
consisted of two tasks, namely, the identification of
the treatment zone in axial subtractive maps and the
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Figure 2.

Schematics for the structures of deep learning algorithms. (A) Neural network of FCN with ResNet-101 blocks for treatment zone

identification. The structure comprises encoder and decoder with multiple CNN layers and ResNet blocks. The encoder transforms the input
image into an abstract representation, which the decoder maps back into a mask image. The mask indicates the pixel-wise segmentation
of the treatment zone. (B) Neural network structure of CNN layers for treatment zone center identification. The CNN layers extract abstract
patterns progressively from the input image. Max-pooling layers further compress the representation into lower dimensions; finally, an
output layer generates the two coordinates of the center position in the image.

identification of the centers in tangential subtractive
maps. Since these two tasks were independent, we
developed two different deep learning algorithms to
achieve the objectives of these two tasks. Furthermore,
the two algorithms were trained using two separate
data sets of axial subtractive maps and tangential
subtractive maps to identify the boundaries and the
centers of the treatment zones, respectively.

Identification of the Treatment Zone Boundary

The first task was to automatically identify the
boundary of the treatment zone in an axial subtrac-
tive map. A semantic segmentation approach was used
for the pixel-level classification, in which all pixels
of a given axial subtractive image were labeled as
either one of the two parts, namely, the treatment
zone and the remaining nonflattened region. Deep
learning models have achieved state-of-the-art perfor-
mance in medical image semantic segmentation.!” In
this study, we adopted a deep neural network based
on the fully convolutional network (FCN) structure. It
comprised two parts, including one encoder and one
decoder.”>?’ The encoder performed the downsam-
pling to convert the original image to a smaller size.

This encoder is similar to a standard convolutional
neural network (CNN) involving convolutional and
max-pooling layers. Down through the encoder, multi-
ple levels of feature representations were extracted to
learn the context information. In the decoder, however,
the features were expanded back into a larger image
by upsampling. Transposed convolutions were used
to obtain the localization information. By concate-
nating the corresponding layers of the encoder and
decoder, information at both higher and lower resolu-
tions was used to achieve precise segmentations at the
pixel level. As a result, the pixels of the output image
were labeled as the treatment zone or the nontreat-
ment zone. Figure 2A illustrates a detailed schematic
diagram of the encoder—decoder architecture.

Identification of the Treatment Zone Center

In the second task, identifying the treatment zone
center, the output of an input image is a tuple
comprising the two coordinates of the treatment zone
center. Therefore, we needed a neural network struc-
ture that was capable of extracting features by way of
dimensionality reduction. In this study, we designed a
four-layer CNN to calculate the coordinates of the



translational vision science & technology

Evaluation of Orthokeratology Using Deep Learning

treatment zone center. In each convolutional layer, a
convolutional operation was performed using a kernel
in a sliding window approach to scan the input image.
Afterward, a rectified linear unit activation layer was
conducted to introduce nonlinearity before a max-
pooling operation was performed to shrink the dimen-
sionality. The four convolutional layers were performed
sequentially before the final two coordinates were
output to indicate the treatment zone center. Figure 2B
presents the detailed structure of the CNN model.

We developed the deep learning models in Python
(version 3.7.3) using the open-source deep learning
library PyTorch (version 1.1.0). Additional Python
libraries used in this study were NumPy (version
1.16.2), Pandas (version 0.24.2), and Matplotlib
(version 3.0.3). The models were trained and evalu-
ated using the Nvidia-SMI 418.67 Tesla P40 (Nvidia,
Santa Clara, CA, USA) graphical processing unit with
the compute unified device architecture toolkit (version
10.1.105).

Algorithm Development

The boundary and the center of the treatment zone
were pixelwise annotated by experts before they were
used to develop the algorithm. Both the data sets of the
axial subtractive maps and the tangential subtractive
maps were randomly split into a training set (90%) and
a validation set (10%) for deep learning model training
and evaluation, respectively. First, deep learning neural
networks of the FCN structure were trained to identify
the boundary of the treatment zone based on the axial
subtractive maps. At the same time, the CNN struc-
tures were trained to identify the treatment zone centers
based on tangential subtractive maps.

Evaluation of Treatment Zone Boundary
Identification

To evaluate the performance of the deep learn-
ing models in identifying the treatment zone bound-
ary, we adopted the evaluation metric of intersection
over union (IoU = TP/(TP + FP + FN)), where
TP is true positive, FP is false positive, FN is false
negative. The IoU was calculated using the predicted
area obtained by the proposed model and the ground
truth annotated by the human expert for each valida-
tion sample. A larger value of IoU closer to 1 indicated
better performance compared to poor performance
with a smaller IoU. Therefore, the main task in devel-
oping the segmentation algorithm was to maximize
the IoU value. We reported the average IoU as the
performance of a given deep learning model over the
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samples in the whole validation set. Besides [oU, in line
with segmentation literature, we also reported the value
of the Dice similarity coefficient (DSC = 2TP/(TP +
FP + TP + FN)) as the secondary evaluation metric
to describe the overlapping of the ground truth and
the prediction.'®-2%:2° To visualize the result of treat-
ment zone identification, we drew the boundaries of the
ground truth area and the predicted area in the same
axial subtractive map.

Evaluation of Treatment Zone Center
Identification

The prediction of the treatment zone centers was
to find the two values of coordinates in the tangen-
tial subtractive map. Given the two positions of the
ground truth annotated by the experts and the predic-
tion obtained by the proposed CNN model, adopt-
ing the Euclidean distance between the two centers to
indicate the deviation was straightforward. The devia-
tion was described as pixels in the image and later
converted into the physical distance in millimeters. The
optimization target of the model was to minimize the
gap between the predicted center and the ground truth
center. As described above, the ground truth center was
obtained by averaging the three centers annotated by
the three experts. To visualize the result of treatment
zone center identification, the two centers were plotted
in the same tangential subtractive map.

Data Description

A total of 6328 maps of 2044 patients treated with
the OK lens were included in this study. The average
age at the initiation of OK lens wear was 13.56 4 2.78
years, ranging from 8 to 23 years. Among them, 909
were male (44.47%) and 1135 were female (55.53%). As
a result, 2996 axial subtractive maps and 3332 tangen-
tial subtractive maps were obtained and anonymized to
develop the deep learning algorithms.

Performance of Treatment Zone Boundary
Identification

For the identification of the treatment zone bound-
ary in axial subtractive maps, the interclinician loU was
0.54 £ 0.11, 0.50 £ 0.11, and 0.83 £ 0.09, respectively
(all P < 0.01). Despite the significantly good agree-
ment between these three experienced clinicians, only
one segmentation result was randomly chosen to serve
as the ground truth for each axial subtractive map,



translational vision science & technology

Evaluation of Orthokeratology Using Deep Learning

TVST | December 2021 | Vol. 10 | No. 14 | Article 21 | 6

Mean = 0.2240

A Mean = 0.8958
100

Frequency

Figure 3.

126

120

Frequency

20

0. 00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Deviation (mm)

Histogram of the performance in validation data sets. (A) Histogram of loU for treatment zone identification in the validation set of

axial subtractive maps. Larger loU values indicate good segmentation of treatment zones. (B) Histogram of deviation (millimeters) for treat-
ment zone center identification in the validation set of tangential subtractive maps. Small values of deviation indicate good identification

of treatment zone centers.

A

50?2

w
2
E

P

Wdso

¢08T
rowses S —ry

Figure 4.

08T

Examples of treatment zone identification in the axial subtractive maps with the best (A) and the worst performance (B). The

white contour was annotated by Al, while the black contour was annotated by the human expert. (A) Good segmentation of the treatment
zone with the greatest loU of 0.96. (B) Poor segmentation of the treatment zone with the smallest loU of 0.66, which was due to the relatively
great decentration of the OK lens and the resultant unclear treatment boundary. Cases with this type of corneal change usually lead to
borderline unacceptable visual quality and require adjustment of the lens parameter to achieve better lens centration.

to reduce possible bias of the readers. Based on the
data set of the ground truth, we first trained the FCN
model on the training set, then evaluated the model
on another independent validation set. The perfor-
mance in the training stage was a mean + SD IoU of
0.92 + 0.04 and DSC of 0.98 & 0.02. The final results
of the segmentation model in the validation set were
very promising, with an IoU of 0.90 £+ 0.06 and a
DSC of 0.94 + 0.04. The distribution of IoU values is
illustrated in Figure 3A. The results indicated that the
FCN deep learning structure can accurately identify

the treatment zone boundary in the axial subtractive
map with encouraging performance. Figure 4 shows
examples of the best and worst performance in the
segmentation of the treatment zone.

Performance of Treatment Zone Center
Identification

Similarly, we trained and evaluated the CNN deep
learning model to identify the treatment zone center
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Figure 5.
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Examples of treatment zone center identification in the tangential subtractive maps with the best (A) and the worst performance

(B). The white dot was annotated by Al. The black dots were annotated by the three human experts, and then the averaged location was
represented by a red dot. (A) Good identification of the treatment center with the smallest deviation of 0.01 mm. (B) Poor identification of
the treatment zone center with the greatest deviation of 1.66 mm, which was due to a rare case called “central island” (i.e., an abnormally
raised ridge on the cornea after a failed OK lens treatment); therefore, the judgment by Al was misleading.

using the training and validation sets of the tangen-
tial subtractive maps, respectively. In the training stage,
the CNN model achieved an average deviation of 5.33
=+ 4.42 pixels between the ground truth center and the
predicted center, namely, 0.19 + 0.16 mm. The perfor-
mance on the validation set was 6.32 + 6.23 pixels
or 0.22 + 0.22 mm. The distribution of deviation in
the validation set is plotted in Figure 3B. The results
demonstrate that the deep learning model can identify
the treatment zone center with high accuracy. Figure 5
shows examples of the best and worst performance in
the identification of the treatment zone center.

Discussion

Deep learning is a new branch of artificial neural
network characterized by multiple layers, a large
number of neurons, and complicated network struc-
tures.'” By training the connectivity matrices, a deep
learning network can effectively learn the abstract
representations of the training samples in a variety
of inference tasks with unprecedented performance.
To our knowledge, this is the first time deep learning
has been applied in facilitating OK lens treatment. It
was found that a deep learning-based approach can
identify the boundary and the center of the treatment

zone automatically, with precision comparable to that
of human experts and instant efficiency.

Hiraoka et al.” were among the first scholars to
attempt to define the treatment zone after OK lens
treatment with computer assistance. They manually
outlined the contour of the treatment zone with 16
discrete dots based on the annotator’s personal experi-
ence and then approximated an ellipse and its center
using a customized data analysis program written in
a third-party programming language (MATLAB; The
MathWorks, Natick, MA, USA). The authors reported
the technique had good reproducibility (the repeata-
bility between examiners had not been reported in the
literature). A later study by our team in which this
technique was adopted showed a much poorer level
of intraindividual repeatability,*’ indicating the perfor-
mance of the approach relies heavily on the annota-
tor’s experience. More recently, Mei et al.'! introduced
another technique based on image analysis software
(Image-Pro Plus; Media Cybernetics Corporation,
Rockville, MD, USA). Similarly, the boundary of the
treatment zone was manually depicted by the annota-
tor. The technique was reported to demonstrate “excel-
lent” reproducibility by one examiner and repeatability
between two examiners. However, the authors admitted
several inherited drawbacks of the technique to restrict
its application in practice. For instance, the treatment
zone could not be drawn completely when its bound-
ary was discontinuous due to lens decentration or
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incomplete acquisition of image data by the topogra-
pher. In addition, they pointed out that the manual
depiction required highly detailed operation skills with
the software; therefore, they did not suggest the method
for extensive analysis.

Unlike the aforementioned studies, our approaches
are based on advanced deep learning algorithms that
can learn the abstract experience of professional
experts. Therefore, the trained algorithms can mimic
the decision making of experts in evaluating the treat-
ment zone. Our results show that the algorithms devel-
oped performed very well in the identification of both
the boundary and the center of the treatment zone.
The level of accuracy fully met the need for clini-
cal practice. Compared with the previous techniques,
the current approach has several advantages. First,
the annotation was conducted by three independent
experts, but not one or two experts, to avoid individ-
ual bias. Second, the large data set covered all possi-
ble patterns of the treatment zones, including irregu-
lar, discontinuous boundaries (e.g., Fig. 4B) or even
some rare cases such as “central island” (e.g., Fig. 5B).
This diversity of the data set ensures the generaliza-
tion as well as the robustness of our algorithms in
real practice. Additionally, the developed algorithm can
assist practitioners in completing the time-consuming
evaluation task almost instantly, which can signifi-
cantly improve clinical efficiency. Furthermore, our
deep learning—based algorithms can also be continually
improved by learning from growing data accumulated
in practices, leading to better accuracy. The most excep-
tional advantage is that the fully automated proce-
dure provides a standardized approach, which could
minimize the judgment variation between follow-up
visits and between clinicians.

However, the study also has several limitations.
First, the deep learning algorithms require all input
images to be in the same format, and the users need
to export the images with an identical standard before
applying the algorithms. However, this can be solved
in future algorithm development by training differ-
ent images to be compatible with all formats. Second,
the images were all captured using the Pentacam HR
tomographer. It is unknown to what extent the perfor-
mance of the algorithms developed would be in other
topographers. However, according to the nature of
the topographical images, the performance should be
at a comparable level. Although different formats of
the topographical images are used by other instru-
ments, the procedures and algorithms are transferrable
to shorten the development process. Meanwhile, with
the availability of images taken by other tomogra-
phers, it is possible to simply train current models to
be able to analyze those new images. Third, although
average satisfactory performance has been achieved by
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the approach, some errors might happen in some rare
cases (e.g., Figs. 4B and 5B). However, this could be
easily noticed by clinicians in practice. With the assis-
tance of Al annotations on the images, clinicians can
easily evaluate the magnitude of the treatment zone
dislocation of the lens or the overlapping proportion.
In conclusion, this study shows the capabilities of
deep learning models to assess the treatment zones
and centers after orthokeratology with performance
competitive with that of human experts, which can
be employed as an automated solution to facilitate
the assessment and reduce interindividual subjectiv-
ity during the follow-up visits of orthokeratology.
However, similar to other algorithm-based approaches,
the performance of the system needs further evalua-
tion using other data sets for external validation. There-
fore, this fully automated system has been published
online for public test and application (see Supplemen-
tal Appendix and Video). Meanwhile, the system can
be also employed as a teaching platform to train practi-
tioners’ evaluation on the lens fitting in the future.
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