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University Tübingen, Tübingen, Germany, 2 Institute of Medical Microbiology and Hygiene, Eberhard Karls
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Abstract
Most frequently, gram-negative bacterial infections in humans are caused by Enterobacter-

iaceae and remain a major challenge in medical diagnostics. We non-invasively imaged

moderate and severe systemic Yersinia enterocolitica infections in mice using the positron

emission tomography (PET) tracer 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT), which is a

marker of proliferation, and compared the in vivo results to the ex vivo biodistributions, bac-

terial loads, and histologies of the corresponding organs. Y. enterocolitica infection is

detectable with histology using H&E staining and immunohistochemistry for Ki 67. [18F]FLT

revealed only background uptake in the spleen, which is the main manifestation site of sys-

temic Y. enterocolitica-infected mice. The uptake was independent of the infection dose.

Antibody-based thymidine kinase 1 (Tk-1) staining confirmed the negative [18F]FLT-PET

data. Histological alterations of spleen tissue, observed via Ki 67-antibody-based staining,

can not be detected by [18F]FLT-PET in this model. Thus, the proliferation marker [18F]FLT

is not a suitable tracer for the diagnosis of systemic Y. enterocolitica infection in the C57BL/

6 animal model of yersiniosis.

Introduction

Molecular imaging with positron emission tomography (PET) allows for the determination of
the metabolic and functional parameters of living cells [1] and has emerged as a rapid, non-
invasive and highly sensitive approach to identify sites of infection and inflammation more
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rapidly than conventional laboratory-baseddiagnostic techniques [2]. These traditional diag-
nostic modalities often result in long turn-around times and clinicians have to treat patients
empirically with broad-spectrumantibiotics until specific diagnostic results are available [3–4].
Infectious pathogens are a serious health issue, and their accurate detection remains a major
challenge in medicine. Effective treatment often relies on pathogen identification at an early
stage of infection, and yet many infections remain undiagnosedprior to systemic manifestation
[5].

The gram-negative bacterium Yersinia enterocolitica (Ye) belongs to the family of Entero-
bacteriaceae and causes gastrointestinal as well as systemic infections with focal abscesses in
mice and men mainly located in the spleen and liver [6]. The infection is transmitted by the
ingestion of contaminated food or drinkingwater leading to severe diarrhea, enterocolitis, and
mesenteric lymphadenitis [7].

The 18F-radiolabeled thymidine derivative 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT) has
been used as a tool for the PET imaging of cancer in preclinical as well as clinical research set-
tings for many years. There is an ongoing debate regarding the degree to which [18F]FLT PET
quantitatively reflects tumor proliferation. This issue has been controversially discussed for
more than a decade [8]. Many preclinical and clinical oncology studies have demonstrated
varying correlations between the [18F]FLT uptake of tumors and histological markers of prolif-
eration such as Ki 67 [8–14].

Previously, we could show that the PET glucosemarker Fluorine-18 fluorodeoxyglucose
([18F]FDG), the major clinical PET tracer used for the detection of malignancies, is able to
detect inflammation in the spleen of high dose Ye-infected mice, but not in low dose Ye-
infected animals [15]. However, [18F]FLT is able to detect inflammation in arthritic ankles of
glucose-6-phosphate-isomerase (GPI) serum-injectedmice [16] and proliferation of carcinoma
cells in subcutaneous CT26 mouse colon tumors [17]. While [18F]FLT is able to detect prolifer-
ation in these inflammation models, proliferation with this tracer has not been demonstrated
in models of sterile inflammation [8, 18]. [18F]FLT uptake is associated with the salvage path-
way, which typically provides DNA precursors to proliferating cells. A second mechanism, the
de novo synthesis pathway, is also able to produce thymidine monophosphate for DNA inte-
gration in proliferating cells, but does not lead to uptake of [18F]FLT [8, 19]. Despite this, the
mechanisms limiting [18F]FLT PET in the de novo thymidine pathway have yet to be deter-
mined[8]. Tissues with high proliferative potential, including lymphoid tissue, predominantly
utilize the salvage pathway instead of the de novo pathway for DNA synthesis [20]. Our animal
model for Ye infection is characterized by fast proliferation of the bacteria and a highly acti-
vated immune system with immune cells infiltrating the infected spleens of the mice [21]. The
eradication of Ye is dependent on proliferating CD4+ T cells, thus we expected that [18F]FLT,
specific for cell proliferation, is suitable for detection of Ye infection.Moreover, Ye highly pro-
liferate, at least during high dose infection, and so we expected high Tk-1 activity associated
with elevated [18F]FLT uptake in those infected organs. Furthermore, successful detection of
localized bacterial infections with [18F]FLT has been previously reported in an animal model,
where Staphylococcus aureus was implanted into the tibia of rabbits [22], and in a mouse
model of Salmonella typhimurium infection in the thigh muscle [23]. Recently, Heinzmann
et al. evaluated the relationship between endogenous thymidine concentrations and the uptake
of [18F]FLT in preclinical tumor models and concluded that tumor thymidine concentrations
were not correlated with [18F]FLT uptake in the models tested [24]. This work implies that
endogenous thymidine concentrations in tumors alone is not sufficient to predict [18F]FLT
uptake [24], which is line with the findings of McKinley et al. [8]. This conflicts with other
studies, where endogenous thymidine in rodent’s serum can strongly affect the in vivo uptake
of [18F]FLT in the target organs, further demonstrating the conflicting results of [18F]FLT PET
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imaging in small animals [18, 25]. Based on these findings, the aim of this study was to evaluate
the suitability of [18F]FLT for its use in the detection of a Ye induced inflammation. A well-
established murine model of yersiniosis was used for our experimental setup, which resembles
the course of Ye infection in humans [26].

Materials and Methods

Mice and Infection

All animal procedures were performed according to protocols that were approved by the
RegierungspräsidiumTübingen (Permit Number: IZ1/10) as per guidelines from the European
Health Law of the Federation of Laboratory Animal Science Associations (FELASA). The ani-
mals were kept under standardized environmental conditions (20 ± 1°C room temperature,
50 ± 10% relative humidity, 12 h light-dark cycle) and received food and water ad libitum.
Female C57BL/6JOlaHsd mice were infectedwith 5 x 104 (high-dose, n = 8) or 1 x 103 (low-
dose, n = 7) colony forming units (CFU) of Ye WA-314 (serotype 0:8) in 200 μl of PBS via
injection into the tail vein. PBS treated mice served as control group (n = 3). The health and
general wellbeing of the mice were assessed daily, and body weights were measured daily. No
adverse events occurredduring the time course of 3 days of infection and no or marginal
weight loss was observed in mice due to infection and/or anesthesia. All animals were sacrificed
by cervical dislocation under deep anesthesia.

[18F]FLT PET Tracer Production, PET/MR Imaging and ex vivo

Biodistribution

Fluorine-18 was produced as [18F]fluoride at a PETtrace cyclotron using the 18O(p,n)18F
nuclear reaction, and [18F]FLT was synthesized as described elsewhere [27]. Approximately
11–13 MBq [18F]FLT was intravenously (i.v.) injected into the Ye-infected and PBS-treated
control animals under anesthesia (1.5% isoflurane and 0.8 L/min 100% oxygen), and the mice
remained conscious during the 90 min uptake time. The imaging protocol included sequential
PET/MR imaging of the PBS-treated control and Ye-infected mice on three consecutive days.
The animals were examined at 1, 2 and 3 days post infection (p.i.). Mice were imaged using a
small animal PET scanner (Inveon, Siemens Preclinical Solutions, Knoxville, TN, USA) that
yielded a spatial resolution of approximately 1.3 mm in the reconstructed images. A 10 min
static PET scan was acquired after the uptake time with no attenuation correction.During the
PET and MR imaging, the animals were anesthetizedwith 1.5% isoflurane mixed with 100%
oxygen and anesthesia was monitored via measurement of respiratory frequency, and the body
temperature was maintained at 37°C using a heating pad placed underneath the mouse. MR
imaging was performed on a 7 T small animal MR tomography system (Clinscan, Bruker Bios-
pin MRI, Ettlingen, Germany) to obtain anatomical information directly after the PET scan.
The bed with the anesthetizedmouse was carefully passed from the PET scanner into the MR
without moving the animal. A T2-weighted 3D-space sequence (TE / TR 202 / 2500 ms, image
matrix of 137 x 320, slice thickness 0.27 mm) was used for whole-body imaging. The iterative
two-dimensional ordered subset expectationmaximization algorithm (OSEM2D) recon-
structed PET images were normalized to each other according to the injected activity, were
manually fused using anatomical landmarks to the respectiveMR images and analyzed using
Inveon Research Workplace software (IRW, Siemens Preclinical Solutions) by drawing regions
of interests (ROIs) following anatomical information retrieved from MR images. The results
are expressed as the % of the injected dose per cm3 (%ID/cc) of tissue. After the final PET scan,
all animals were sacrificedby cervical dislocation under deep anesthesia and dissected. The
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organs were removed, and radioactivity in the tissue samples was quantified with an aliquot of
the injected radiotracer in a γ-counter (Wallac 1480 WIZARD 3” Gamma Counter; Perkin
Elmer, Waltham, MA, USA) using an energywindow between 350 and 650 keV. The results
are expressed as % of the injected dose per g (%ID/g) of tissue or as the spleen-to-muscle ratio.

Histology

The spleens were fixed for 48–72 hours in 4% formalin and embedded in paraffin. For histol-
ogy, 3–5 μm sections were prepared and stained with hematoxylin and eosin (H&E). The
immunohistochemistrywas performed on an automated immunostainer (Ventana Medical
Systems, Inc.) according to the manufacturer’s protocols for open procedures with slight modi-
fications. All slides were stained with antibodies against Ki67 (catalog number: KI681R06,
ready to use, SP6, DCS Innovative Diagnostik-SystemeGmbH u. Co. KG, Hamburg, Germany)
and Tk-1 (catalog number: ab57757, dilution 1:500, Abcam plc, 330 Cambridge Science Park,
Cambridge, UK). For the retrieval conditions—as part of the automated immunostainer—the
program “cc1” for Ki 67 and Tk-1, which used EDTA buffer (ethylenediaminetetraaceticacid
buffer) at pH 8 was used. For Ki 67 the retrieval programme “mild” was used with 32 minutes
of pretreatment at 90°C to 100°C and “std” for Tk-1 with 64 minutes duration of pretreatment
at 90°C to 100°C. Positive and negative controls were used to confirm the adequacy of the
staining.

Statistical Analysis

Statistical significancewas determined using one-way analyses of variance (ANOVA) followed
by Tukey’s multiple comparison tests. The tests were conducted with Origin 8 software (Origi-
nLab Corporation,Northampton, MA, USA). The data were considered statistically significant
at p<0.05. All quantitative data are presented as the mean ± 1 standard deviation (SD).

Results

PET/MR imaging of Ye with [18F]FLT

The clinical PET tracer of cell proliferation [18F]FLT was used to image systemic Ye infections
in mice. As we demonstrated in a previous study, the bacteriamainly localize to the spleen,
liver, lung and bone marrow upon systemic infection in mice, [28]. Here, the mice were
infected with either 5 x 104 (high-dose) or 1 x 103 (low-dose) Ye and examined in PET and
MRI one to three days p.i. In vivo evaluations of the tracer revealed similar uptake patterns of
[18F]FLT in the spleens in the low- and high-dose groups throughout the course of infection,
which demonstrated that tracer uptake was independent of the infection level. More precisely,
the [18F]FLT uptake in the spleens was comparable to that of the background signal in the mus-
cle tissue (Fig 1A, Table 1). Quantification of the [18F]FLT uptake of various organs revealed
results similar to those obtained in the ex vivo biodistribution study and confirmed the PET
results (Table 2).

Immunohistochemistry

To confirm the PET results, sections of the spleens from all groups of mice were analyzed via
immunohistochemistry. Macroscopically, the PBS-treated and low-dose Ye-infected mice had
normal-sized spleens, whereas the spleens of the high-dose infected animals were enlarged.
Additionally, the spleens of the high-dose infectedmice exhibited lymphoid hyperplasia with
germinal centers, multiple abscesses and necrosis as detected by H&E staining (Fig 1B). The
proliferation rate was analyzed with Ki 67 in the spleens. Normal distribution of the
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proliferation (white pulp vs red pulp) was detected in the spleens of the PBS-treated and low-
dose infectedmice, and no difference between these two groups was observed. In contrast, the
spleens of the high-dose infectedmice revealed increasedKi 67 expression in the hyperplastic

Fig 1. PET imaging of the proliferation in Ye-infected mice and the histological findings. (A) Coronal

[18F]FLT-PET and fused PET and MR images from PBS-treated (n = 3), low- (n = 7) and high dose- (n = 8)

infected mice 3 days p.i. The arrows indicate the positions of the spleens, which showed no increased uptake

of [18F]FLT in Ye infected animals compared to PBS-treated controls. (B) Immunohistochemical stainings of

spleen tissue sections from the PBS-treated, low dose-, and high dose-infected mice 3 days p.i. Sections

were stained for H&E, Ki 67 and Tk-1.The encircled areas indicate germinal centers. A: abscess, RP: red

pulp, WP: white pulp. Data are representative of 6 analyzed mice.

doi:10.1371/journal.pone.0164163.g001
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germinal center and in the neutrophils (based on nuclear morphology) located in the abscesses.
Moreover, the low [18F]FLT uptake presented in PET imaging correspondedwith thymidine
kinase 1 (Tk-1) staining, which revealed no Tk-1 staining in the spleens of infected or PBS-
treated mice (Fig 1B).

Discussion

The PET tracer [18F]FLT acts as a surrogate marker for cell proliferation and is primarily used
for the detection of cancer cells [29]. [18F]FLT has received little attention as a possible tracer
for inflammation and the diagnosis of infectious diseases [17–18]. In the salvage pathway, [18F]
FLT is transported across the cell membrane by nucleoside carrier proteins, and is phosphory-
lated by S-phase-specific thymidine kinase 1 (Tk-1) up-regulated in the late G1-S phase of the
cell cycle of proliferating cells. This leads to trapping of the tracer in the cytosol as monophos-
phate without DNA incorporation and its subsequent availability as a substrate for cytoplasmic
Tk-1 [29–30]. A second mechanism for DNA synthesis in proliferating cells has been identified
as the de novo pathway. In this pathway deoxyuridinemonophosphate is converted into thymi-
dine monophosphate by the enzyme thymidylate synthase. Thymidine monophosphate is
subsequently phosphorylated and incorporated into the DNA. Both pathways are complemen-
tary to each other and are able to provide sufficient thymidine for DNA synthesis during
proliferation.

Table 1. In vivo biodistributions of [18F]FLT in the PBS-treated control, low-dose and high-dose Ye-infected mice. The averages and standard devi-

ations are given for indicated organs based on the ROIs of the PET images. Static 10 min PET scans of PBS-treated, low-dose- and high-dose infected mice

were acquired 1, 2 and 3 days p.i. The errors indicate one standard deviation. 11 to 13 MBq of [18F]FLT were administered to each mouse.

[18F]FLT, %ID/cc (± 1 SD)

Group Acquisition Spleen Liver Spine Brain Muscle

PBS 1 0.18 ± 0.01 0.17 ± 0.01 0.27 ± 0.02 0.06 ± 0 0.13 ± 0.02

2 0.43 ± 0.2 0.21 ± 0.02 0.4 ± 0.2 0.08 ± 0.02 0.17 ± 0.02(n = 3)

3 0.55 ± 0.29 0.2 ± 0.07 0.36 ± 0.13 0.06 ± 0.01 0.19 ± 0.05

Low dose 1 0.26 ± 0.09 0.2 ± 0.07 0.25 ± 0.06 0.09 ± 0.03 0.14 ± 0.05

2 0.33 ± 0.08 0.24 ± 0.05 0.29 ± 0.06 0.08 ± 0.02 0.19 ± 0.04(n = 7)

3 0.64 ± 0.23 0.34 ± 0.24 0.38 ± 0.11 0.09 ± 0.06 0.24 ± 0.16

High dose 1 0.17 ± 0.07 0.17 ± 0.07 0.15 ± 0.04 0.09 ± 0.02 0.11 ± 0.04

(n = 8) 2 0.22 ± 0.04 0.21 ± 0.05 0.19 ± 0.05 0.14 ± 0.03 0.17 ± 0.04

3 0.37 ± 0.18 0.36 ± 0.14 0.42 ± 0.16 0.21 ± 0.06 0.29 ± 0.09

doi:10.1371/journal.pone.0164163.t001

Table 2. Ex vivo biodistribution of selected organs of PBS-treated control, low-dose and high-dose-infected animals at day 3 p.i. No increased

[18F]FLT uptake was observed in any of the tested organs. The errors indicate one standard deviation or the spleen-to-muscle ratios. 11 to 13 MBq of [18F]

FLT were administered to each mouse.

[18F]FLT PBS-treated mice low-dose infected mice high-dose infected mice

%ID/g (± 1 SD)

Organ (n = 3) (n = 7) (n = 8)

Blood 0,19 ± 0,04 0,29 ± 0,20 0,38 ± 0,17

Spleen 0,80 ± 0,36 1,10 ± 0,59 0,76 ± 0,56

Liver 0,34 ± 0,14 0,40 ± 0,22 0,58 ± 0,35

Bone marrow 0,68 ± 0,24 0,53 ± 0,18 0,80 ± 0,23

Brain 0,08 ± 0,04 0,10 ± 0,05 0,29 ± 0,24

Muscle 0,24 ± 0,03 0,42 ± 0,22 0,56 ± 0,19

Spleen/muscle 3,28 ± 1,03 4,10 ± 3,89 1,40 ± 0,90

doi:10.1371/journal.pone.0164163.t002
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In nuclear medicine and molecular imaging, considerable efforts have been made to detect
pathogens by using new radiopharmaceuticals based on small molecules, peptides, intact anti-
bodies or their fragments [4, 31–35]. Antibody-guided immunoPET has been reported to spe-
cifically visualize SIV in vivo in an animal model [35]. We recently applied this powerful tool
for the specific detection of the fungal pathogen Aspergillus fumigatus and bacterial pathogen
Ye [15, 36]. The advantage of immunoPET over conventional small molecule PET tracers, such
as [18F]FLT, is that immunoPET enables the pathogen-specific detection of infections and the
discrimination of infections from general inflammatory responses.

Only a very limited number of studies have investigated the proliferation marker [18F]FLT
as a means of imaging infectious diseases in animal models. However, [18F]FLT-PET was used
in an animal model of the parasitic disease alveolar echinococcosisby Porot et al. [37] and by
Rolle et al. [38]. Although both groups showed elevated uptake of [18F]FLT in parasitized tissue
in vitro, contradictory findings were presented for in vivo imaging studies. Porot et al. showed
no uptake of [18F]FLT in their animal model of the disease, whereas Rolle et al. showed elevated
uptake of [18F]FLT in parasitized tissues, which was likely caused by inflammation at the site of
infection [37–38]. Successful detectionwith [18F]FLT of localized bacterial infections has also
been reported in an animal model, where Staphylococcus aureus was implanted into the tibia of
rabbits [22], and in a mouse model of Salmonella typhimurium infection in the thigh muscle
[23].

In our imaging studies, the high-dose Ye-infected mice exhibited no uptake of [18F]FLT,
whereas the immunohistochemical staining with Ki 67 revealed proliferation in the hyper-
plastic germinal centers. Our results are consistent with tumor imaging studies performedwith
[18F]FLT that have demonstrated varying degrees of correlation between the uptake of the pro-
liferation tracer and the immunohistochemicalmarker Ki 67 [8, 39]. Our PET findings were
confirmedwith additional Tk-1 immunohistochemical staining that revealed no Tk-1 staining
in the spleens of the infected or PBS-treated mice. The intensity of Tk-1 in ex vivo immunohis-
tochemistry staining is dependent on the DNA synthesis pathway utilised in the different tis-
sues investigated. As Tk-1 expression is correlated with the salvage pathway, no Tk-1 staining
can be observed in proliferating tissues that use the de novo pathway. However, Ki 67 is an anti-
gen, which is expressed during all active phases of the cell cycle (G1, S, G2, and M) of prolifer-
ating cells and is independent of the pathway used for DNA synthesis. The antigen is not
expressed during the G0 phase of resting or quiescent cells [40]. It might be considered unfor-
tunate that Ki 67 has historically been used as the gold standard for validation of [18F]FLT-PET
imaging, as evidencedby the conflicting correlations betweenKi 67 and the PET marker [18F]
FLT as stated by McKinley et al. [8]. Based on our findings, we conclude that the proliferation
marker [18F]FLT is not suitable for the in vivo imaging of Ye infections.
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