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Oscillations in dynamical systems are widely reported in multiple branches

of applied mathematics. Critically, even a non-oscillatory deterministic

system can produce cyclic trajectories when it is in a low copy number, stochas-

tic regime. Common methods of finding parameter ranges for stochastically

driven resonances, such as direct calculation, are cumbersome for any but the

smallest networks. In this paper, we provide a systematic framework to effi-

ciently determine the number of resonant modes and parameter ranges for

stochastic oscillations relying on real root counting algorithms and graph

theoretic methods. We argue that stochastic resonance is a network property

by showing that resonant modes only depend on the squared Jacobian

matrix J2, unlike deterministic oscillations which are determined by J. By

using graph theoretic tools, analysis of stochastic behaviour for larger

interaction networks is simplified and stochastic dynamical systems with

multiple resonant modes can be identified easily.
1. Introduction
Systems of interacting agents are ubiquitous in the physical and biological

sciences, from predator–prey models [1–5] to mathematical biology [6–8] and

the vast field of chemical reaction networks [9–12]. Previous research highlights

how resonant amplification of noise in stochastic interaction networks can lead to

behaviour not anticipated from deterministic ordinary differential equation

(ODE) models. In particular, cyclic behaviour, often termed ‘quasi-cycles’, may

emerge in stochastic models where the deterministic counterpart does not show

a Hopf bifurcation [1,13]. Stochastic effects have been responsible for unforseen

dynamics, which are vital when agent copy numbers are low (e.g. ranging

from the creation of thrombin that results in blood clots [14], to gene action

[15], cell polarization [16], epidemics [17] and ecological systems [18–23]).

The main tools for investigating stochastic cycles are based on the direct

calculation of power spectra for the constituents of the network from a Langevin

equation [8,24,25], which demands knowledge of noise covariances. The determi-

nation of noise covariances requires extensive coarse graining, starting from a

master equation formulation of the interaction system, and via weak noise

expansions the deterministic equations, and a Fokker–Planck equation, can be cal-

culated. Eventually, coarse graining allows the use of the simpler chemical

Langevin equation [8]. In [13] an approximation procedure was presented which

focussed on the eigenvalues of a matrix to predict quasi-cycles in a stochastic

system. While the eigenvalue method is fast and elegant it can lead to false

positives when investigating the number of oscillation frequencies named resonant

modes. In this paper, we seek to streamline the coarse graining process by showing

how the desired information, namely the number of resonant frequencies of a net-

work, can be extracted from the deterministic equations only. We also find the

parameter ranges associated with a number of resonant modes using graph theor-

etical approaches developed for chemical reaction networks. The techniques

presented in this paper can be applied in a more general context than chemical
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reaction networks, namely to any stochastic dynamical system

which can be modelled by a linear Langevin equation.

There is a large body of algebraic and graph theoretic

techniques for studying deterministic mathematical models.

Usually these mathematical models have a large number of

parameters, typically one rate constant per interaction, and

the model parameters are responsible for the dynamics of the

system [10,26]. Past research focused successfully on exploiting

the network structure of an interaction system for determining

its dynamical behaviour, as network structure is a feature of a

model and unaffected by the choice of rate constants [9–11]. In

[10] it was shown how network structure can be used to deter-

mine whether a given chemical reaction network has stable

steady states, a useful tool to rule out multistationarity in a net-

work. More recently graph theoretical methods have been

employed to show how network features such as feedback

cycles can lead to oscillations and multistationarity in chemical

reaction networks [9]. Recently, a generalized theory of Turing

patterns has been developed exploiting network features [27].

Graph theoretical methods provide the additional advantage

over the approach in [10], that they allow one to explore the

bifurcation structure of the network. Despite the apparent

advantage of using graph theoretical methods for the investi-

gation of dynamical capabilities of interaction networks the

graph-based investigation of stochastic models is still in its

infancy.

In this paper, we provide an alternative route for calculat-

ing the resonant frequencies (and their parameter ranges) of

stochastically driven oscillating systems. We use the existing

techniques of Sturm’s theorem and the graph theoretic methods

of [9], but we combine them to be applicable to power spectral

methods. Instead of solving the roots of a rational function of

the power spectrum from the weak noise approximation, we

investigate the maxima of this function. To do this, we adapt

algebraic techniques (e.g. Sturm chains) and a graph theoretic

formulation for finding the coefficients of the characteristic

polynomial and thereby offering a methodology for studying

stochastically driven oscillations without requiring excessive

expansions. We will use the autocatalytic networks studied

in [13,28,29] to illustrate the use of our method.
2. Methods
In this section, we introduce autocatalytic networks as the main

example for our method and show how Sturm chains can be

applied to find stochastic resonances. We conclude this section

by finding sets of inequalities describing the phases of the

three species autocatalytic network.
2.1. Autocatalytic networks and their power spectra
We illustrate our methodology by example of the autocatalytic sys-

tems discussed in [13], but the results presented in this paper can be

applied to any dynamical system with a single stable steady state.

Autocatalytic reactions form an important class of chemical reac-

tion networks and many biological systems can be modelled by

autocatalytic reactions. The defining feature of autocatalytic net-

works is that one reaction product is the catalyst for some other

reactions and the system follows the general reaction scheme [13]

Xi þ Xiþ1�!
riþ1

2Xiþ1,

;�!ai Xi,

Xi�!
bi ;,
with

Xnþ1 ; X1,

for a set of chemical species fX1, . . ., Xng and i ¼ 1, . . ., n. In [13] a

chemical master equation for the autocatalytic system was derived

using the stochastic law of mass action [30]. Using a weak noise

expansion [8] the deterministic equations for autocatalytic

networks of n species were derived in [13]

dxi

dt
¼ (rixi�1 � riþ1xiþ1)xi þ ai 1�

Xn

j¼1

xj

0
@

1
A� bixi, ð2:1Þ

where xi denotes the concentration of the ith species. Following

the approaches of [13,28,29] we make the assumption that ri ¼ rj,

ai ¼ aj and bi ¼ bj for all i, j. With these simplifications it can be

shown that the system has a single steady state at

x�i ¼
a

bþ na
8i: ð2:2Þ

A linear stability analysis shows that the steady state is stable for all

parameter values [13]. The deterministic equations represent the

leading order of the expansion of the chemical master equation in

the limit where the particle number V is large and at the next

order we obtain a Fokker–Planck equation [8]. At steady state it

is, however, simpler to use the equivalent representation of a

chemical Langevin equation [1,8]

_x ¼ Jxþ h, ð2:3Þ

where bold quantities represent vectors, J is the Jacobian of equation

(2.1) evaluated at the fixed point and h is a vector of Gaussian

Markov processes. The covariances of the Markov processes

khi(t)hj(t0)l¼ Bijd(t 2 t0) can be calculated from the Fokker–

Planck equation. However, as will be shown in §2.2, it is not

necessary for our methods to calculate noise covariances in detail.

Only the fact that for white noise the covariances are constant

will be used. Therefore, tedious expansions as traditionally used

are not necessary, only knowing the deterministic equations

suffices. Equation (2.3) determines the stochastic behaviour of

autocatalytic networks at large, but finite V.

A useful tool to find oscillations in stochastic trajectories is

the power spectrum Pk(v2) ¼ kjx̂kj2l where x̂k is the Fourier trans-

form of the kth element of (2.3) and k . l denotes the average over

a number of realizations [24]. The general form of the power

spectrum of the kth species of any interaction network whose

stochastic behaviour can be described by equation (2.3) is

Pk(v2) ¼ Qk(v2)

R(v2)
ð2:4Þ

with

R(v2) ¼ det(J2 þ v2I) ð2:5Þ

and

Qk(v2) ¼ k[adj(J þ iv)ĥ]k [adj(J � iv)ĥ]kl, ð2:6Þ

where I is the identity matrix, adj( . ) is the adjugate matrix, det( . )

is the determinant and k . l denotes the average. R(v2) and Qk(v
2)

are polynomials of degree n and n 2 1, respectively, with n
being the number of species in the network. Note that R(v2)

reduces to the characteristic polynomial of J2 if we let v2 ¼ 2 l.

Previous approaches proceeded by analysing all n rational func-

tions (2.4) to determine the exact shape of the power spectra, and

hence prove the existence of maxima. We will show how to deter-

mine the number of maxima and their parameter ranges by

considering a single polynomial equation.

Stochastic oscillations manifest themselves as peaks in the

power spectra which are closely linked to resonances. In analogy
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with the damped harmonic oscillator we define vR as a resonant

frequency or resonant mode such that R(v2
R) is a minimum. Our

definition implies that the resonant frequencies are properties of

the underlying network structure, represented by J2, rather than

the individual network constituents. Furthermore, our definition

implies that every species in the network will have the same

number of resonant modes, which is of course not true in general.

In this paper, we assume that we only ever analyse networks with

no disjoint subnetworks. Graph theoretically this condition trans-

lates into the graph of J, as defined in §3, being connected. If a

network has disjoint subnetworks we can perform our analysis

separately for each component of the graph of J. The polynomials

Qk(v
2) can also suppress stochastic oscillations, but for the purpose

of this paper, we use the approximation of [13] and assume

the generic case where the number of modes is solely determi-

ned by R(v2). Therefore, generically, the number of resonant

modes is independent of the noise covariances khihjl, even

though resonance in interaction networks is a stochastic effect.

2.2. Sturm chains for counting the maxima
of power spectra

We now turn to determine the number of resonant modes in a

given network and show how parameter ranges for stochastic

oscillations can be computed for the three species autocatalytic

network. At resonance the polynomial R(v2) has a minimum

which translates into the condition

dR(v2)

d(v2)
¼ R0(v2) ¼ 0 ð2:7Þ

and, since the angular frequency v is a real number, we are inter-

ested in finding all distinct, real, positive solutions to equation

(2.7). A method to determine an upper bound of such solutions is

given by ‘Descartes’ rule of signs’ [31], which states that the maxi-

mum number of real, positive roots of a polynomial is given by the

number of sign changes of consecutive non-zero coefficients, if the

terms of the polynomial are ordered with descending variable

exponent. Descartes’ rule, however, only gives an upper bound

and counts multiple roots as distinct roots.

An exact root counting algorithm is given through the com-

putation of Sturm sequences and the use of Sturm’s theorem

[32]. For a univariate polynomial p(x) Sturm’s theorem gives

the number of distinct real roots in an interval (a, b] with a , b.

To apply Sturm’s theorem we compute a Sturm chain for p(x)

p0 ¼ p(x),

p1 ¼
dp(x)

dx
¼ p0(x),

p2 ¼ �rem(p0, p1),

..

.

pi ¼ �rem(pi�1, pi�1)

..

.

and 0 ¼ �rem(pm�1, pm),

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð2:8Þ

where rem( . , . ) is the remainder of the polynomial long division.

Sturm’s theorem proceeds by considering the signs of the Sturm

chain p0, p1, . . ., pm evaluated at the points a and b. Similarly to

Descartes’ rule the number of sign changes of p0(a), p1(a), . . .,

pm(a) and p0(b), p1(b), . . ., pm(b) is counted which we denote as

s(a) and s(b). The number of distinct real roots is simply

s(a) 2 s(b). Letting a ¼ 0 and b ¼1 gives the number of all posi-

tive, distinct, real roots. For small networks, especially the case

n ¼ 2, the number of real roots follows trivially from the quadra-

tic formula and det(A þ xI) ¼ x2 þ Tr(A)x þ det(A), where Tr(A)

is the trace. When turning to larger networks, however, Sturm

chains become an invaluable tool.
2.3. Application to the three-species autocatalytic
network

In this subsection, we will illustrate the usefulness of Sturm chains

by example of a small system in the form of the n ¼ 3 autocatalytic

network. The three-species network is in fact the Rock–Paper–

Scissors game for which stochastic simulations have been studied

in [33]. In §4 we will show that the same reasoning can be extended

easily to larger networks.

The n ¼ 3 autocatalytic network is described by the determi-

nistic equations

_x1 ¼ rx1(x3 � x2)þ a(1� x1 � x2 � x3)� bx1,

_x2 ¼ rx2(x1 � x3)þ a(1� x1 � x2 � x3)� bx2

and _x3 ¼ rx3(x2 � x1)þ a(1� x1 � x2 � x3)� bx3

9>=
>; ð2:9Þ

with a steady state

x�i ¼
a

bþ 3a
ð2:10Þ

for every i ¼ f1, 2, 3g and hence we will drop the index. The

Jacobian of (2.9) evaluated at the steady state is

J ¼
�a� b �a� ar

bþ3a �aþ ar
bþ3a

�aþ ar
bþ3a �a� b �a� ar

bþ3a
�a� ar

bþ3a �aþ ar
bþ3a �a� b

0
@

1
A ð2:11Þ

and, therefore, R(v2) will be a degree three polynomial. Follow-

ing the reasoning of the previous section we will need to

compute Sturm chain for a quadratic polynomial, namely

p0(x) ¼ 3x2 þ 2a2xþ a1,

p1(x) ¼ 6xþ 2a2

and p2(x) ¼ a2
2

3
� a1:

9>>>=
>>>;

ð2:12Þ

To find stochastic oscillations we will need to evaluate the Sturm

chain at the points x ¼ 0 and x! 1,

p(1) ¼ 3, 6,
a2

2

3
� a1

� �
, ð2:13aÞ

and

p(0) ¼ a1, 2a2,
a2

2

3
� a1

� �
ð2:13bÞ

and their sign changes. For a stochastic resonance we will need

the difference of sign changes to be either one or two. This fol-

lows from the fact that R(�1)! �1 and R(1)! 1 and,

therefore, a maximum exists if and only if a minimum exists

too and v2 of the minimum will be larger than that of the maxi-

mum. As we are only interested in the minimum we need at least

one sign change, hence for stochastic oscillations

a1 , 0

and a2 . 0,

)
ð2:14Þ

or

a1 . 0,

a2 , 0

and
a2

2

3
� a1 . 0:

9>>>=
>>>;

ð2:15Þ

To relate the abstract notion of polynomial coefficients back to

model parameters we will need to compute expressions for the

coefficients ai.

From equations (2.14) and (2.15) it becomes apparent that often

we only need to evaluate specific coefficients of R(v2) rather than

find the polynomial itself. Often, unless exact parameter ranges

are needed, even fewer polynomial coefficients need to be con-

sidered due to some coefficients’ inability to change sign, a

feature easily identified from network motifs in the graph of J2.
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In the next section, we will outline a graph-based method to

facilitate the finding of coefficients of R(v2) based on [9].
3

Figure 1. The directed graph associated with J2 of the n ¼ 3 autocatalytic net-
work. The edges have weights: 1! 1 ¼ 2! 2 ¼ 3! 3: (aþ b)2þ
2(aþ ar=(3aþ b))(a� ar=(3aþ b)), 2! 1 ¼ 3! 2 ¼
1! 3: 2(aþ b)(aþ ar=(3aþ b))þ (a� ar=(3aþ b))2 and
3!1 ¼ 1! 2¼2!3: (aþ ar=(3aþ b))2 þ 2(aþ b)(a� ar=
(3aþ b)).

Table 1. A summary of all relevant factors in the n ¼ 3 autocatalytic
network graph.

k 5 1 cycles cardinality

f(1)
1 f1g 1

f(2)
1 f2g 1

f(3)
1 f3g 1

k 5 2 cycles cardinality

f(1)
2 ff1, 3gg 1

f(2)
2 ff1, 2gg 1

f(3)
2 ff2, 3gg 1

f(4)
2 ff1g, f2gg 2

f(5)
2 ff1g, f3gg 2

f(5)
2 ff2g, f3gg 2
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3. Graph theoretic approach
In [9] a graph theoretic formula for the coefficients of the

characteristic polynomial of the Jacobian of a chemical reaction

network is given. A more general relation between the coeffi-

cients of a characteristic polynomial of a general square

matrix A and the graph associated to A can be found in the ear-

lier work of Maybee et al. [34]. We adapt the ideas of [9,34] for

stochastic systems. We use the squared Jacobian J2, which is

always a square matrix, as an adjacency matrix for a directed

graph G. Define the vertex set V(G) ¼ {1, . . . , n} for an n species

interaction network. Note that in contrast to the reasoning in [9]

we no longer have a one to one correspondence between the

vertex i and the chemical species xi as we consider J2 rather

than J. By definition there is an edge from vertex i to vertex j
if J2

ji = 0. The convention used in [9,34] is to only draw self

loops if Aii . 0, however, for convenience, we will always

draw a self loop if J2
ii = 0. It will become apparent that the

choice to always draw self loops will only change the visual

character of the graph but does not alter the calculations

involved in any way. The reason for the convention in previous

research was that often the diagonal elements Aii had the same

sign for any parameter values, e.g. the diagonal elements of

(2.11) are always negative. As we will be dealing with the

square of a matrix the diagonal elements will generically

contain multiple terms and hence the sign will depend on

the parameter values. Using these conventions we can define

a vertex and an edge set which allow us to draw the directed

graph for the k ¼ 3 autocatalytic network as shown in figure 1.

In graph theory, a cycle c of length k in the graph G is

defined as a series of distinct vertices fvi1, . . ., vikg connected

by edges vi1vi2, vi2vi3, . . ., vikvi1 [35]. For a cycle c we denote

J2[c] ¼ (J2)vi2 vi1
(J2)vi3 vi2

. . . (J2)vi1 vik
which is the product of all

the edge weights in the cycle. The cycles in an interaction

graph such as figure 1 will be the fundamental building

blocks for this graph theoretic approach. The graph in figure 1

has eight cycles, two of length three (f1, 2, 3g and f3, 2, 1g),
three of length two (f1, 3g, f1, 2g and f2, 3g) and three length

one cycles which are the self loops. In the method presented

in this paper we are essentially dealing with complete directed

graphs only, as, even though the Jacobian matrix of a chemical

reaction system may be sparse, its square will generically be a

dense matrix. Therefore, efficient cycle enumeration will be a

non-trivial limitation of this method. However, computational

experiments in SageMath [36] show that cycle enumeration is

not a time limiting step in the calculation of phase diagrams.

Using the directed cycles of a graphG as building blocks we

can define the concept of factors. A factor fk of degree k of G is a

collection of pairwise disjoint cycles covering k distinct vertices.

The number of cycles in a factor fk is denoted by jfkj, which we

shall call the cardinality of the factor. Hence, a graph can have

multiple factors of the same degree, but with a vastly different

number of cycles, e.g. the graph in figure 1 has a factor of

degree three f(1)
3 ¼ ff1, 2, 3gg with jf(1)

3 j ¼ 1 and a factor of the

same degree f(2)
3 ¼ ff1g, f2g, f3gg with jf(2)

3 j ¼ 3. Other factors

of degree three can be built from the cycles.

Consider the characteristic polynomial p(x) ¼ xnþP(n�1)
i¼0 aixi of a matrix A. We can now adapt a graph theoretic

formula to find the coefficients ai, derived in [34] and applied
to interaction networks in [9]. If the graph associated to the

matrix A is G then

an�k ¼
X
fk[G

(� 1)jfk jþk
Y
c[fk

A[c] k ¼ 1, . . . , n, ð3:1Þ
where in our example A ¼ J2 and all other quantities are as

previously defined.

While finding factors is trivial for small graphs the task can

become computationally intractable for larger networks with

more than six vertices. This is mainly due to the fact that no effi-

cient algorithms for finding all possible factors of a graph exist.

Additionally, the complexity is increased as the we are consid-

ering directed graphs which are generically complete. Finding

all factors is the main bottleneck of the method.

Returning to equations (2.14) and (2.15) we need to find

expressions for a1 and a2 and hence we will need to find all

factors of degree two and one which are summarized in

table 1. Therefore, by utilizing equation (3.1) we can find

expressions for the coefficients a1 and a2,

a2 ¼
3(27a4 þ 36a3bþ 24a2b2 þ 8ab3 þ b4 � 2a2r2)

9a2 þ 6abþ b2
ð3:2Þ
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curve is the numerical solution of the ODE system (2.9) and the oscillating
trajectory is the stochastic trajectory. (Online version in colour.)
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the dotted blue line is the average power spectrum of 200 simulations. Fol-
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is flat. (Online version in colour.)
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and

a1 ¼
3(486a6b2 þ 972a5b3 þ 837a4b4 þ 396a3b5)

81a4 þ 108a3bþ 54a2b2 þ 12ab3 þ b4

þ 3(108a2b6 þ 16ab7 þ b8 þ 3a4r4)

81a4 þ 108a3bþ 54a2b2 þ 12ab3 þ b4

� 18(27a6 þ 36a5bþ 15a4b2 þ 2a3b3)r2)

81a4 þ 108a3bþ 54a2b2 þ 12ab3 þ b4
: ð3:3Þ

From the relations (2.14), (2.15) and (3.2), (3.3) we can plot a

phase diagram of the system by either simplifying the resulting

set of inequalities using cylindrical algebraic decomposition

[37] or numerically by plugging in parameter values. A sum-

mary of the phases of the n ¼ 3 autocatalytic network can be

found in figure 4.

We simulated the trajectory of the stochastic n ¼ 3 auto-

catalytic network in the parameter regime which satisfies

condition (2.15) using Euler–Maruyama [38] integration of

equation (2.3), figure 2 and plotted the power spectrum
averaged over 200 repetitions. Our results can be found in

figure 3 and show good agreement with the theoretical

curve calculated in [13, equation (14)].
4. Application to larger networks
In this section, we will show that our method can be

applied with ease to larger networks by example of the n ¼ 5

autocatalytic network. Traditional methods include the exact

calculation of the power spectrum from the chemical Langevin

equation [1] or approximations via the eigenvalues of the

Jacobian matrix [13]. These tools have the capabilities of

achieving the same results of finding the number of modes of

a stochastic system; however, they are subject to serious draw-

backs. Analytic expressions for the exact power spectra of a

network can be calculated quickly in symbolic packages such

as Mathematica [40] or SageMath [36]. However, such a calcu-

lation involves knowledge of the correlations of the Markov

processes hi, khi(t)hj(t0)l ¼ Bijd(t 2 t0), which are cumbersome

to compute. Moreover, the full analytic form does not a

priori give away any information about the number of stochas-

tic modes of a system. To extract this information one would

need to analyse the full rational function that is the power spec-

trum. While this is at best impractical, it can often be impossible

and approximations need to be used. One such approximation

was outlined in [13] and it focused on the pairs of complex con-

jugate eigenvalues of the Jacobian matrix. In [13] it was argued

that the system will have a stochastic resonance if there exists

a complex conjugate pair of eigenvalues li, l*i such that

=(li)
2 2 <(li)

2 . 0. While this is a quick and elegant method

which also gives additional information about the relative

intensities of resonances, it can lead to false positives.

In particular, parameter regions for stochastic oscillations

will be smaller than predicted as the approximation focuses

at one factor of the characteristic polynomial of J2 at a time.

In practice, however, other factors can ‘destroy’ the resonance.

The method outlined in this paper will be able to exactly

predict the parameter regions and the number of stochastic

resonances; however, there are limitations on the network

size which we will discuss in this section.
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Figure 5. The phase diagram for the a ¼ b slice of the parameter space of
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no oscillations are possible. (Online version in colour.)
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curve is the numerical solution of the ODE system (4.1) and the blue
curve is the stochastic trajectory. (Online version in colour.)
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The five species autocatalytic network is described by the

equations

_x1¼ rx1(x5�x2)þa(1�x1�x2�x3�x4�x5)�bx1,

_x2¼ rx2(x1�x3)þa(1�x1�x2�x3�x4�x5)�bx2,

_x3¼ rx3(x2�x4)þa(1�x1�x2�x3�x4�x5)�bx3,

_x4¼ rx4(x3�x5)þa(1�x1�x2�x3�x4�x5)�bx4,

and _x5¼ rx5(x4�x1)þa(1�x1�x2�x3�x4�x5)�bx5:

9>>>>>>=
>>>>>>;
ð4:1Þ

The steady state of the system is

x�i ¼
a

bþ 5a
, ð4:2Þ

for every i ¼ f1, . . ., 5g. The Jacobian evaluated at the steady

state is

J ¼

J0 J1 J2 J2 J3

J3 J0 J1 J2 J2

J2 J3 J0 J1 J2

J2 J2 J3 J0 J1

J1 J2 J2 J3 J0

0
BBBB@

1
CCCCA, ð4:3Þ

with

J0 ¼ �a� b,

J1 ¼ �a�
ra

bþ 5a
,

J2 ¼ �a,

and J3 ¼ aþ ra
bþ 5a

:

9>>>>>>>>=
>>>>>>>>;

ð4:4Þ

A linear stability analysis guarantees that system (4.1) is

stable for any positive parameter values.

To determine the phase diagram we can follow the exact

same procedure described above, namely

(1) compute the Sturm chain for a generic degree n 2 1

polynomial;

(2) determine sets of inequalities on the Sturm coefficients to

give resonances;

(3) compute the relevant coefficients of the polynomial using

graph theoretic methods;

(4) use the information from steps 2 and 3 to plot a phase

diagram.

In practice, however, this turns out to be cumbersome due to

the vast number of sets of inequalities involved in step two, in

addition to the quickly rising number of cycles and factors

involved in step three. Furthermore, the explicit expressions

for the Sturm coefficients can be cumbersome to work with.

While it is possible to do step three on a computer, the

inequalities involved in step two need to be formulated by

hand. Therefore, to optimize the algorithm for automation

we use the algorithm:

(1) compute the Sturm chain for a generic degree n 2 1

polynomial;

(2) compute the relevant coefficients of the polynomial using

graph theoretic methods;

(3) substitute parameter values and compute the number of

real, positive roots;

(4) use this information to find the number of stochastic

modes;

(5) plot the phase diagram.
Step four is necessary due to the fact that a real, positive root

could indicate a maximum or a minimum of R(v2). This

second algorithm can easily be implemented on a computer

and phase diagrams can be calculated quickly. The only

input required is a Jacobian evaluated at the steady state. We

implemented our method in SageMath to plot a phase diagram

for the n ¼ 5 autocatalytic network in the a ¼ b plane. Our

results are summarized in figure 5. There are three regions in

the phase diagram with two, one and no stochastic modes.

We performed an Euler–Maruyama integration of equation

(2.3) in the two-resonance regime and plotted the power spec-

trum. Our simulation results, summarized in figures 6 and 7,

show that we accurately predict the number of resonant modes.

In principle, the method presented in this paper could be

applied to networks of arbitrary number of species; however,

there are a number of problems one encounters in networks

with more species. The first problem is of fundamental nature

and was already discussed in §3, namely the fact that we are

generally dealing with complete, directed graphs and finding

the factors of such a graph is a non-trivial task. The second

issue is to do with numerical errors during computations.
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Substituting parameter values into the Sturm coefficients

requires extensive floating point arithmetic and when the

Sturm coefficients are small numerical errors will change the

result. While our method should generally be robust, as only

signs and sign changes are needed, as soon as one coefficient

is small numerical fluctuations will become significant.
5. Conclusion
Numerous dynamical systems, which appear stable in a deter-

ministic regime, can exhibit oscillatory behaviour when model
stochasticity is accounted for. Such stochastically driven oscil-

lations are likely to be missed in many applications. Here we

have developed simple and general graph theoretic tools that

allow ODE systems to be analysed as to the possibility of the

occurrence of quasi-cycles. A vital tool to investigate stochastic

oscillations is the power spectrum which is traditionally calcu-

lated from the Langevin equation. Current methods, however,

require detailed knowledge of the underlying stochastic

process which can be difficult to calculate. In this paper, we

showed how resonance can be understood as a network

property, independent of the noise correlations involved. We

used Sturm chains to count the number of resonant modes

and outlined a graph based method to determine parameter

ranges in which stochastic oscillations occur. Future work

will seek to extend the application of graph based methods

to stochastic spatial systems such as stochastic Turing patterns

in interaction networks.
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