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Abstract 

Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for 

cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses 

challenges in identifying effective therapeutic interventions. Here, we utilize various unsupervised and 

supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states 

within hundreds of cancer cell lines, elucidate their association with tissue lineage and growth 

environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and 

tissue contexts. We validate key findings using data from an independent set of cell lines, 

pharmacological screens, and via single-cell analysis of patient-derived tumors. Our analysis uncovers 

new synthetically lethal associations between the tumor metabolic state (e.g., oxidative 

phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological 

targets (e.g., mitochondrial electron transport chain). Investigating these relationships could inform the 

development of more precise and context-specific, metabolism-targeted cancer therapies. 

 

Introduction 

Cancer cells rely on metabolic pathways for a variety of functions, including proliferation, survival, and 

migration, making metabolism an attractive anti-cancer therapeutic target 1. Identifying effective 

metabolic targets for cancer therapy, however, has proven challenging 2. Tumor cells exhibit a wide 

range of metabolic states that vary by their tissue of origin, developmental stage, and genetic alterations 

3. They also have remarkable ability to rewire their intracellular metabolic networks in response to 

diverse environmental cues and changing metabolic demands 4,5. The context-dependent nature of 

cancer cell metabolism makes it difficult to identify unique metabolic pathways that are uniformly 

required for the diverse population of cancer cells across heterogeneous tumors but are not essential for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

healthy cells. Despite this challenge, the discovery of novel cancer-specific metabolic dependencies has 

provided promising opportunities via, for example, targeting genetically mutated enzymes whose 

upregulated activity is essential for tumor growth 6,7, or blocking metabolic pathways on which tumor 

cells with specific oncogenic alterations have developed extraordinarily high dependency 8–10 . 

Uncovering such context-specific metabolic alterations and dependencies can guide new approaches to 

target cancer cells. 

The search for novel anti-cancer metabolic targets is significantly benefiting from recent 

developments in characterization of large panels of diverse cancer cell lines, including their genetic 

dependency maps, genomic, transcriptomic, and metabolomic features 11,12. Systematic studies have 

generated and integrated such large-scale datasets to characterize the landscape of metabolic pathway 

alterations and dependencies across cancer cell lines, demonstrating the context-specific nature of 

metabolic dependencies, and identifying new metabolic vulnerabilities in cancer cells 13–17. Building 

upon promising outcomes from these studies, a critical next step would be to develop computational 

models that reveal metabolic state-specific gene or pathway co-dependencies to discover potential 

synthetic lethalities imposed by the cancer genotype or tissue context 2. Because metabolism is heavily 

dependent on subcellular organelle functions and integrated with processes such as kinase signaling, 

transcription and chromatin modifications 4,18–21, it is likely that a multivariate approach may reveal 

novel co-dependencies among these processes and heterogeneous metabolic states. Importantly, such co-

dependencies, which may not be initially apparent, could be exploited to guide the development of new 

drugs, or repurposing of existing ones, to target cancer cells more precisely. 

In this study, we test the hypothesis that genetic, and tissue context-specific therapeutic targets 

associated with heterogeneous metabolic states in cancer cells could be identified through conditional 

synthetic lethality. We integrate transcriptomics data from the Cancer Cell Line Encyclopedia, spanning 
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41 major cancer types, with their mutation profiles and genome-wide DepMap gene dependency scores 

12. We find heterogeneities in some metabolic pathways (such as linoleic acid, phenylalanine, ascorbate 

and aldarate metabolism) was highly associated with cancer type, while cell line-to-cell line variability 

in other pathways, such as oxidative phosphorylation (OXPHOS), could not be explained by differences 

in cancer type or lineage. Furthermore, OXPHOS was the most variable pathway across individual cell 

lines in at least 11 major cancer types with little association with their growth media composition, 

suggesting that cell-intrinsic factors drive the majority of OXPHOS heterogeneity in these cell lines. 

Therefore, we employ multivariate modeling to uncover OXPHOSHigh and OXPHOSLow state-specific 

vulnerabilities in cell lines representing these cancers. Furthermore, we find some specific driver 

mutations or tissue contexts significantly amplify the impact of OXPHOS state-specific gene 

dependencies. Loss of PTEN, for example, predicts increased dependency on mitochondrial respiratory 

chain and enhanced sensitivity to pharmacological inhibitors of mitochondrial ATP synthase in 

OXPHOSHigh tumor cells. Our approach, therefore, provides a path to identify context-specific, 

metabolic state-dependent synthetic lethalities that could be exploited to guide more precise cancer 

therapeutic opportunities. 

 

Results 

Transcriptomics analysis of cancer cell lines reveals cancer type-associated heterogeneities in 

metabolic pathways 

To systematically evaluate metabolic similarities and differences across cell lines representing diverse 

cancer types, we used RNA sequencing data from the Cancer Cell Line Encyclopedia (CCLE) 22. By 

including all cancer types of which 5 CCLE cell lines or more were available, we analyzed 1,341 cell 

lines spanning 41 major cancer types (Figure 1A). We used uniform manifold approximation and 
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projection (UMAP) clustering to visualize the degree to which the expression of 1,620 genes 

representing 85 different metabolic pathways (obtained from the KEGG database 23,24) varied with 

cancer type (Figure 1B). The UMAP projection revealed clusters of cell lines that correlated with cancer 

types based on their metabolic gene expression. Examples of cancers that clustered most distinguishably 

by UMAP were cell lines representing acute myeloid leukemia, B- and T-lymphoblastic 

leukemia/lymphoma, diffuse glioma, Ewing sarcoma, Hodgkin and non-Hodgkin lymphomas, 

neuroblastoma, melanomas, liposarcoma, rhabdoid cancer, and myeloproliferative neoplasms (Figures 

1B and S1A). UMAP also revealed patterns of association between cell lines representing distinctive 

tissue lineages. For example, cell lines of the hematopoietic lineage (including leukemias, lymphomas, 

and myeloproliferative neoplasms) were all clustered together and separated from non-hematopoietic 

cell lines (Figure 1B). Clustering of melanoma cell lines of cutaneous and ocular subtype or cell lines of 

the neuroendocrine lineage (including small cell lung cancer and neuroblastoma) were additional 

examples, where metabolic gene expression signatures revealed similarities among cancer types with 

related lineages (Figures 1B and 1C). Interestingly, however, within some cancer types such as non-

small cell lung cancer (NSCLC), ovarian epithelial tumor, or esophagogastric adenocarcinoma, we 

observed substantial differences among individual cell lines (Figures 1C and S1A). In the case of 

NSCLC, we asked whether these differences might be explained by the NSCLC subtype, including 

squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Cancer cell lines representing 

these subtypes also did not cluster together in the UMAP visualization (Figure S1B), suggesting that 

other oncogenic events or environmental factors might have a stronger effect on patterns of metabolic 

gene expression among these cancer cell lines. 

 Intrigued by the UMAP illustration of possible relationships between the expression of metabolic 

genes and specific cancer types, we sought to perform a systematic statistical analysis to quantify these 
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relationships at the level of individual metabolic pathways. To this end, we computed a score 

representing the activity of each of the 85 metabolic pathways for each cancer type relative to all cancer 

types using a three-step procedure adapted from Xiao et al 25 (see Methods). A metabolic pathway 

activity score <1 for a cancer type represents reduced pathway activity in that cancer type in comparison 

with the average pathway activity across all cancer types; scores >1 represent increased activity; and a 

score of 1 represents activity levels equivalent to the average over all cancer types. Among the 85 

KEGG metabolic pathways, 73 exhibited significantly increased or decreased activity in at least one 

cancer type (Figure 2A). Hierarchical clustering revealed associations between pathway activity scores 

and each of the 41 cancer types. Cell lines from several haemopoietic cancers (e.g., B- and T-

lymphoblastic leukemia/lymphoma, non-Hodgkin lymphoma, acute myeloid leukemia, and 

myeloproliferative neoplasms) exhibited overall reduced activity in a wide range of metabolic pathways 

in comparison with most other cancer types (Figures 2A and S2A). The activity of multiple metabolic 

pathways such as linoleic acid metabolism, metabolism by cytochrome P450, retinol metabolism, 

ascorbate and aldarate metabolism, and steroid hormone biosynthesis was substantially lower in these 

hematopoietic cancers relative to most other cancers. The activity of these metabolic pathways, 

however, were elevated in cell lines of non-small cell lung cancer, lung neuroendocrine tumor, 

hepatocellular and esophageal squamous cell carcinomas (Figure 2A).  

 To identify those metabolic pathways that varied most profoundly with cancer type, we 

performed principal component analysis (PCA) on pathway activity scores across 41 cancer types. The 

first eight principal components (PCs) captured >80% of the overall variance in data (Figure S2B). To 

quantify the relative impact of each pathway on data variance in the principal component space, we 

computed the absolute sum of PCA loadings for each pathway over the first eight PCs. Among the top 

10 variable pathways across all cancer types were pathways involved in lipid, amino acid, and vitamin 
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metabolism, such as linoleic acid, phenylalanine and histidine metabolism, steroid hormone, and 

glycosphingolipid biosynthesis, and ascorbate and aldarate metabolism (Figures 2B and S2C). On the 

other hand, the pathways with the least amount of overall variability across different cancer types were 

energy-producing and carbohydrate metabolism pathways, such as oxidative phosphorylation 

(OXPHOS), citrate (TCA) cycle, pentose phosphate pathway, and N-glycan biosynthesis (Figures 2B 

and S2C). Together, our systematic analysis of metabolic gene expression data across cell lines showed 

substantial cancer type-associated heterogeneities in some metabolic pathways (such as linoleic acid and 

ascorbate metabolism), while variability in some other pathways, such as OXPHOS, could not be 

explained by differences in cancer type.  

 

OXPHOS state exhibits substantial cell line-to-cell line heterogeneity independent of cancer type 

Focusing on each cancer type separately, we then sought to assess the extent of heterogeneity in each 

metabolic pathway among individual cell lines. To identify heterogeneous metabolic pathways in cell 

lines within each cancer type, we first performed PCA on the gene expression dataset from cell lines of 

that cancer type. We computed metabolic gene variability scores as the absolute sum of the PCA loading 

values across the top PCs accounting for at least 80% of the variance in each dataset. We then applied 

pre-ranked gene set enrichment analysis (GSEA) to the ranked lists of metabolic gene variability scores. 

GSEA revealed cell lines of the same cancer type with significant variability in genes found in 25 

metabolic pathways (Figure 3A). Hierarchical clustering revealed several cancer types exhibiting more 

profound cell line-to-cell line heterogeneity in some pathways than others. We thus ranked metabolic 

pathways according to the number of cancer types showing significant cell line-to-cell line heterogeneity 

(Figure 3B). The top three pathways with the highest level of cell line-to-cell line heterogeneity were 

retinol metabolism, cytochrome P450 metabolism, and oxidative phosphorylation (OXPHOS). The first 
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two were also among the pathways whose relative activity varied substantially from one cancer type to 

another (Figures 2A and S2C). Surprisingly, however, OXPHOS had shown the least amount of 

variability among cell lines when compared collectively across distinct cancer types (Figures 2A and 

2B). Other metabolic pathways showed different trends; ascorbate and aldarate metabolism, for 

example, was largely variable across diverse cancer types as well as among individual cell lines of some 

cancer types (Figures 2A, S2C and 3A). These distinct patterns were also clear when we visualized the 

distributions of the mean and interquartile range (IQR) values for the cumulative abundance of gene 

transcripts corresponding to each metabolic pathway (Figures 3C and S3). For example, the median and 

IQR for the abundance of ascorbate and aldarate metabolism transcripts varied largely (up to 7-fold and 

21-fold, respectively) among groups of myeloproliferative neoplasm, AML, melanoma, colorectal 

adenocarcinoma, and pancreatic adenocarcinoma cell lines. In contrast, the mean and IQR for the 

abundance of OXPHOS transcripts varied minimally (<1.5-fold and <1.3-fold, respectively) across the 

same groups of cell lines (Figures 3C).   

Cancer cell lines are grown in different culture media that influence their metabolic state and 

their dependencies 13,14,26. We thus quantified the statistical contribution of growth media composition 

toward the observed cell line-to-cell line heterogeneity in metabolic pathways. We used the same 

approach as described above to compute relative metabolic pathway activity scores for cell lines 

grouped based on their growth media compositions (Figure 4A). Hierarchical clustering and PCA 

analysis revealed subsets of metabolic pathways with activities that were associated most or least with 

each of the 21 chemically distinct media compositions (Figures 4A, 4B and S4). The top two pathways 

whose activity was most significantly associated with growth media were linoleic acid metabolism and 

ascorbate and aldarate metabolism (Figure 4B). This observation suggests that the high level of 

variability in these pathways across cancer types and individual cell lines could be also influenced by 
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differences in extrinsic factors in their growth environment. Interestingly, however, variations in a 

subset of pathways, including OXPHOS, TCA cycle, pentose phosphate pathway and thiamine 

metabolism exhibited little association with growth media composition (Figure 4B). Although these 

results do not rule out the impact of growth media composition on OXPHOS pathway, they suggest a 

dominant role for cell-intrinsic factors in driving the observed cell line-to-cell line heterogeneity in these 

pathways among the tested cell lines. 

 

Multivariate modeling uncovers pan-cancer gene vulnerabilities associated with OXPHOS state  

As shown above, OXPHOS was among the most variable pathways across individual cell lines in at 

least 11 out of 41 major cancer types and such variability could not be explained solely by differences in 

growth media composition. Therefore, we set out to leverage such heterogeneity to uncover OXPHOS 

state-associated gene vulnerabilities in these cancers. We hypothesized that novel therapeutic targets 

specific to OXPHOSHigh and OXPHOSLow states could be identified through conditional synthetic 

lethality. To test this hypothesis, we analyzed the data from genome-wide DepMap CRISPR knockout 

screen across 495 CCLE cell lines 12, representing 11 cancer types with significant levels of cell line-to-

cell line heterogeneity in OXPHOS, including non-small cell lung cancer (NSCLC), invasive breast 

carcinoma (IBC), diffuse glioma (DG), head and neck squamous cell carcinoma (HNSCC), melanoma, 

cervical adenocarcinoma (CAC), ovarian epithelial tumor (OET), pancreatic adenocarcinoma (PAC), 

breast ductal carcinoma in situ (BDCIS), colorectal adenocarcinoma (CRAC), and renal cell carcinoma 

(RCC). We used DepMap gene dependency scores as measures of the effect of 17,202 gene knockouts 

on viability of each cell line, where a score of 0 indicates no inhibitory effect (corresponding to a non-

essential gene), and 1 indicates complete inhibitory effect (corresponding to an essential gene) 27. To 

systematically identify gene vulnerabilities that were most strongly related to OXPHOS state, we 
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performed feature selection and multivariate modeling.  

We first calculated OXPHOS state scores across the cell lines, defined as the average of Z scores 

for the expression levels of 113 OXPHOS genes. To amplify the impact of OXPHOSHigh and 

OXPHOSLow groups of cell lines in feature selection, we ordered cell lines based on their OXPHOS state 

scores and included only the top and bottom 33 percentiles, resulting in 328 cell lines (Figure S5A). As 

the first step of feature selection, we removed genes with dependency scores that varied minimally 

across OXPHOSHigh and OXPHOSLow cell lines, narrowing down the list of genes to 3,624 (Figure S5B). 

We then used elastic net regularization to select a subset of the remaining genes based on their 

association with the OXPHOS state score. We optimized the parameters of elastic net model and trained 

it over 150 iterations (using 10-fold cross validation) using a randomly selected group of 296 cell lines 

out of 328 cell lines, leaving the other 32 cell lines to be used as a test set for independent validation 

(Figures S5C and S5D). 200 genes appeared in at least 50% of all elastic net iterations (Figure S5E). We 

imported these genes into Enrichr to search for potential enrichment of cellular components, biological 

processes, and pathways associated with the selected gene vulnerabilities (Figures 5A and S5F). We 

found OXPHOSHigh cell lines were vulnerable to gene knockouts associated with mitochondrial 

membrane, respiratory electron transport chain and histone acetyl transferase complexes. OXPHOSLow 

cell lines, on the other hand, were vulnerable to knockouts associated with Rho GTPase signaling, focal 

adhesion, cell-matrix junctions, lysosomes, and the trans-Golgi network.  

To quantify the relative importance of 200 gene dependencies in predicting the OXPHOS state of 

each cell line, we built a partial least-square regression (PLSR) model 28,29. The overall performance of 

the PLSR model was evaluated based on the percentage of variance in OXPHOS state scores explained 

(R2) or predicted (Q2) by the variance in gene dependency scores (Figure 5B). The model revealed high 

performance with R2 of 81.9% and Q2 of 63.3% (using leave-one-out cross-validation) for the first four 
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PLS components. To further evaluate the model performance, we correlated the true OXPHOS state 

scores and the state scores predicted (based on leave-one-out) by the PLSR model, which led to a 

Pearson’s correlation coefficient of 0.9 (P = 4.8 × 10-111) across 296 cell lines (Figure 5C; left panel). To 

independently validate the model, we used the test set of 32 CCLE cell lines that were not included in 

either elastic net regularization or PLSR training steps (Figure S5C). The trained PLSR model was able 

to predict OXPHOS state scores in the test set with a Pearson’s correlation coefficient of 0.49 (P = 

0.004) (Figure 5C; right panel).  

The high performance of the PLSR model suggests that variations in the knockout effects of 

predictive genes can explain variability in OXPHOS state across heterogeneous cell lines. This was also 

evident from the observation that cell lines with high or low OXPHOS scores could be efficiently 

separated based on their PLSR scores along PLS1 to PLS4 (Figure 5D). To identify those gene 

vulnerabilities that most significantly predicted the OXPHOS state, we calculated the variable 

importance in projection (VIP) scores along the first four PLS components. We identified 64 genes 

showing VIP scores of greater than one (Figure S5G). We then used a combination of permutation 

testing and Pearson’s correlation analysis to identify 53 out of 64 genes, which not only showed 

significant differences in their dependencies between subgroups of OXPHOSHigh and OXPHOSLow cell 

lines (P ≤ 0.05), but also retained their correlations with OXPHOS state score when evaluated across the 

complete list of 495 cell lines (FDR ≤ 0.05). Among these genes, we focused on those whose median 

dependencies between subgroups of OXPHOSHigh and OXPHOSLow cell lines were larger than 0.15. 

This led to a final list of 12 gene vulnerabilities strongly associated with the OXPHOSHigh state and 15 

gene vulnerabilities strongly associated with the OXPHOSLow state (Figure 5E).  

Among the most significant predictors of OXPHOSHigh state were gene dependencies associated 

with mitochondrial membrane and function, including MICOS10 and TAFAZZIN (which play critical 
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roles in maintaining mitochondrial inner membrane structure and function), COQ4, NDUFB8, NDUFS1 

and NDUFC2 (mediators of mitochondrial membrane respiratory chain), DNM1L (a mediator of 

mitochondrial fission), and MRPL58 (a component of the large mitochondrial ribosome required for 

mitochondrial gene translation). We also found EP300 (a histone acetyltransferase that regulates 

transcription via chromatin remodeling) and COASY (an enzyme involved in biosynthesis of coenzyme 

A, a carrier of acetyl and acyl groups) to be additional OXPHOSHigh state-specific dependencies. On the 

other hand, the list of OXPHOSLow state-specific dependencies included ENO1 (a key glycolytic 

enzyme), TIPARP (a regulator of glycolytic gene expression through HIF-1α 30), and genes involved in 

Rho and Rab GTPase signaling, such as ARHGEF7, NCKAP1 and MYH9 (involved in cytoskeleton 

regulation), RAB6A, SNAP23 and EFR3A (involved in vesicular trafficking, membrane fusion and 

Golgi organization).  

 

Statistical analysis reveals synthetically lethal associations between OXPHOS state, driver 

mutations and tissue context  

Next, we asked whether any of the OXPHOS state-associated gene vulnerabilities were enriched more 

significantly in cell lines originating from specific tissue types or those carrying specific driver 

mutations. To answer this question, we compared median gene dependency between OXPHOSHigh and 

OXPHOSLow subgroups among cell lines grouped based on cancer type or occurrence of the top 25 

commonly mutated driver genes 31 (Figure S6A). Among these genes, we focused on the top eleven, 

which carried mutations in at least 15 tested cell lines, including TP53, KRAS, PIK3CA, BRAF, APF, 

ARID1A, PTEN, NF1, FAT1, KMT2D, CREBBP (Figure S6B). To assess the statistical significance of 

the observed differences in gene dependency, we performed permutation testing by randomly shuffling 

the OXPHOS state labels (High and Low) across cell lines participating in each comparison and 
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computing permutation P values. We then used P ≤ 0.01 as the significance cutoff to identify mutations 

and tissue types associated with enhanced OXPHOS state-specific gene dependencies relative to pan-

cancer analysis (Figures 6, S6C and S6D). 

Focusing on OXPHOSHigh state-specific dependencies, we found that mutations in the tumor 

suppressor PTEN were consistently associated with significant increases in dependency on genes 

involved in mitochondrial membrane respiratory chain, including COQ4, NDUFB8, NDUFS1 and 

NDUFC2 (Figures 6A and 6B). KRAS and APC mutations were associated with enhanced dependency 

on DNM1L (Figure S6C), and the effect of EP300 gene knockout in OXPHOSHigh cell lines was 

significantly greater in the presence of mutations in chromatin regulators KMT2D or ARID1A (Figure 

6C). We also identified cases, where an OXPHOSHigh state-specific gene dependency was enriched in 

cell lines from a specific cancer type, such as EP300 dependency in melanoma and ovarian epithelial 

tumor cell lines and MRPL58 dependency in invasive breast carcinoma and head and neck squamous 

cell carcinoma lines (Figures 6A and 6C). Focusing on OXPHOSLow state-specific dependencies, we 

found that multiple gene dependencies associated with cytoskeleton regulation and vesicle trafficking 

(such as ARHGEF7, RAB6A, NCKAP1) were significantly enriched in pancreatic adenocarcinoma cell 

lines (Figure 6D). The most frequent oncogenic events correlated with OXPHOSLow state-specific gene 

dependencies were FAT1 mutations that were associated with enhanced dependency on ARHGEF7, 

ENO1 and ZFP36L1, and ARID1A mutations that were associated with increased dependency on 

RAB6A, RRAGC, TIPARP and ZFP36L1 (Figures 6D and S6D). 

Together, these results suggest that synthetically lethal relationships exist between the tumor 

metabolic state, driver mutations and specific genes or pathways that could be potentially exploited to 

selectively target cancer state-specific vulnerabilities. To further explore this idea, we focused our 

attention on PTEN mutations based on their profound association with OXPHOSHigh state-specific 
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dependencies on mitochondrial membrane structure and electron transport chain. 

 

Loss of PTEN predicts increased dependency on mitochondrial respiratory chain in OXPHOSHigh 

tumor cells 

To independently test the impact of damaging mutations in PTEN on OXPHOS state-specific 

dependencies, we used the Cancer Therapeutics Response Portal (CTRP) data to analyze the sensitivity 

of 799 genetically characterized cancer cell lines to 545 small-molecule probes and drugs 32. We used 

transcriptomics data to define groups of OXPHOSLow and OXPHOSHigh cell lines based on whether their 

OXPHOS state scores were ranked within the top or bottom 33 percentiles. We then compared the 

median sensitivity of OXPHOSLow and OXPHOSHigh cell lines to each tested small molecule based on 

the area of the dose-response curve (AUC) measurements. Within the OXPHOSHigh group, we also 

compared the median sensitivity of PTEN-wildtype (PTENWT) and PTEN-mutated (PTENMut) 

subgroups. Among all small molecules tested, we found oligomycin A, a well-known inhibitor of 

mitochondrial ATP synthase 33, to exhibit the strongest differential effect on OXPHOSHigh cell lines 

relative to OXPHOSLow cell lines (Median difference = 0.9; P = 0.04), while being more effective in the 

PTENMut subgroup than in PTENWT cells (Median difference = 1.7; P = 0.07) (Figure 7A). Although not 

statistically significant, neopeltolide, a natural product which was recently discovered as an inhibitor of 

mitochondrial ATP synthesis 34, was also among the top 4 compounds with increased median efficacy in 

OXPHOSHigh cell lines compared with OXPHOSLow cell lines (Median difference = 0.9), while also 

being more effective in the PTENMut subgroup than in PTENWT cells (Median difference = 0.9). These 

results are consistent with the evidence from the CRISPR knockout screen data, showing enhanced 

dependency of PTENMut/OXPHOSHigh tumor lines on mitochondrial electron transport chain. 

 To further explore the clinical relevance of the role of PTEN loss in tumor cells’ dependency on 
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mitochondrial electron transport chain, we turned our focus on diffuse gliomas, the most common 

malignant adult brain cancer, in which genetic loss of PTEN expression is frequently observed 35. 

Multiple studies have reported the sensitivity of glioma cell lines and tumors to OXPHOS inhibitors that 

block mitochondrial electron transport chain protein complexes in vitro and in vivo 36–38. However, little 

is known about how the genetic background of glioma tumors might influence such metabolic 

dependency. To explore this, we analyzed DNA- and RNA-sequencing data and matched clinical 

annotation for glioma patients across glioma subtypes assembled by the GLASS consortium 39. Tumors 

from 64 out of 222 patients (i.e., ~29% of patients) carried PTEN mutations, including truncating, 

missense, in-frame, and splice-site mutations. The presence of such mutations in tumors were associated 

with significantly shorter overall survival in glioma patients (Figure 7B). To infer how PTEN expression 

might be associated with glioma tumor state, we performed transcriptome-wide co-expression analysis 

across 79 tumor samples for which RNA-sequencing data were available. We used Spearman’s 

correlation analysis to rank transcripts based on the association of their abundance with PTEN 

expression (Figure S7A). We then imported the list of 571 transcripts that significantly and negatively 

correlated with PTEN expression (Spearman’s r < 0; FDR ≤ 0.05) into Enrichr to identify cellular 

components and biological processes associated uniquely with loss of PTEN. The most significantly 

enriched components and biological processes were mitochondrial membrane, mitochondrial respiratory 

chain complex, proton-transporting ATP synthase complex and cellular respiration (Figures 7C, S7B, 

S7C and S7D). These results suggest that glioma tumors with loss of PTEN expression exhibit a higher 

expression of components of the mitochondrial electron transport chain and ATP synthase complex.  

To further test the association of PTEN loss with mitochondrial electron transport chain 

components at a single-cell level, we analyzed single-cell RNA-sequencing data of genetically profiled 

patient-derived glioblastoma tumors, including 10,268 PTENMut malignant cells isolated from a group of 
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6 patients and 23,229 PTENWT tumor cells from a group of 20 patients 40. We then compared the 

abundance of transcripts representing individual components of the electron transport chain, including 

Complex I-IV and ATP synthase, between PTENMut and PTENWT cells. We observed significantly 

higher expression levels for Complex I, III, IV and ATP synthase genes among PTENMut cells and a 

lower level of cell-to-cell variability in their expression (as evaluated by IQR) in comparison with 

PTENWT cells (Figure 7D). Together, these results reveal a notable upward shift in the expression of 

mitochondrial respiratory chain complex genes among PTENMut glioma cells, that is consistent with 

their enhanced dependency on electron transport chain in comparison with PTENWT tumor cells. 

 

Discussion 

In this paper, we used a combination of unsupervised and supervised multivariate analysis approaches to 

integrate transcriptomics data from hundreds of cancer cell lines with their gene dependency scores and 

mutation profiles, and thereby predict metabolic state-specific vulnerabilities across various tumor 

lineages and common oncogenic contexts. Our systematic analysis complements previous studies 

11,13,15,16 by revealing the extent to which heterogeneity in diverse metabolic pathways across cancer cell 

lines can be explained by differences in their growth environment, their tissue of origin and 

developmental lineage, or potentially other cell-intrinsic mechanisms. Furthermore, we uncover 

synthetically lethal associations between the cancer cells’ metabolic state, their driver mutations, and 

potentially actionable biological targets, that could guide future studies toward more precise and 

context-specific therapeutic opportunities. 

We used transcriptomics data to infer the activity of metabolic pathways across more than a 

thousand cell lines without directly accounting for metabolic changes at the flux level or abundance of 

metabolites. Despite this limitation, we were able to capture key variations in inferred metabolic 
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pathway activities that were consistent with those derived from metabolomics studies of cell lines grown 

in identical conditions. For example, our analysis highlighted previously reported metabolic differences 

between hematopoietic and non-hematopoietic cancers as well as other metabolic variations associated 

with cancer types 11,15,16. We also unmasked metabolic similarities among cell lines derived from 

cancers with related development lineage but in distinct anatomic positions. For example, cell lines of 

the lung neuroendocrine lineage (represented mostly by the small cell lung cancer cell lines) 

metabolically clustered more closely with neuroblastoma cell lines rather than with non-small cell lung 

cancer lines; esophageal squamous cell carcinoma lines also clustered with head and neck squamous cell 

carcinoma lines rather than with esophagogastric adenocarcinoma lines; and melanoma cell lines of 

cutaneous and ocular type clustered together. These examples are consistent with previous reports 

indicating strong associations between metabolic programs and epigenetically regulated tissue lineage 

and differentiation programs 15,41, and highlight the need for integrative multi-omics approaches to build 

a comprehensive picture of tumor metabolism 19.  

Consistent with data from the metabolomics studies 15, we also observed that pathways 

associated with lipid, amino acid and carbohydrate metabolism as well as mitochondrial pathways such 

as OXPHOS accounted for the majority of metabolic heterogeneity among cancer cell lines. For many of 

these pathways, the observed heterogeneity was highly associated with either cancer type and/or growth 

media. However, cell line-to-cell line heterogeneity in OXPHOS appeared to be mostly independent of 

cancer type. Focusing on cancer cell lines within each cancer type separately, we found OXPHOS was 

highly variable across individual cell lines in at least 11 major cancer types with little association with 

growth media composition. We found that the OXPHOS state in these cell lines was associated with 

significant and reproducible gene dependencies. Major OXPHOSLow state-specific dependencies 

included genes involved in cytoskeleton regulation, vesicular trafficking, Golgi organization and 
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membrane fusion. These results show that alterations in cellular energy status could influence tumor cell 

dependency on the function of other subcellular organelles such as the Golgi apparatus, and support the 

idea to target such organelles as potentially selective vulnerabilities associated with tumor metabolic 

state 18. On the other hand, OXPHOSHigh state-specific vulnerabilities included genes encoding enzymes 

that mediate the mitochondrial membrane respiratory chain and ATP synthesis, as well as genes with 

key roles in the control and maintenance of mitochondrial shape, crista junctions, and architecture. 

These findings are consistent with various evidences, indicating a tight connection between 

mitochondrial network structure and bioenergetics 21,42,43, and suggest that mitochondrial network 

dynamics are linked to metabolic state-specific therapeutic vulnerabilities 44. 

Finally, our analysis revealed that OXPHOS state-specific gene dependencies were enhanced in 

the presence of some common driver mutations or in specific tissue lineages. We found, for example, 

that loss of tumor suppressor PTEN was associated with the increased dependency of OXPHOSHigh 

tumor cells on mitochondrial respiratory chain and their enhanced sensitivity to pharmacological 

inhibitors of mitochondrial ATP synthase. This finding is also supported by a previous report pointing to 

increased sensitivity of PTEN-deficient fibroblasts to inhibition of mitochondrial complex I in 

comparison with PTEN-wildtype cells 45. These observations may be especially significant given the 

narrow therapeutic index of recently developed complex I inhibitors such as IACS-010759 in clinical 

trials 46,47, and highlight the importance of identifying specific subsets of patients that may actually 

benefit from such therapies despite the side effects. Importantly, loss of PTEN mutations are prevalent 

and predict poor survival in multiple cancers, including gliomas 39. Our transcriptomics analysis of 

patient-derived glioma tumors revealed a strong association between loss of PTEN and increased 

expression of genes encoding mitochondrial electron transport chain. These findings are consistent with 

a recent discovery of a glioma subtype signified by a substantial increase in OXPHOS and 
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mitochondrial function and enhanced sensitivity to inhibitors of mitochondrial protein translation and 

electron transport chain 48. Multiple reports have demonstrated the increased efficacy of these inhibitors 

against high-grade glioma tumors both in vitro and in vivo 36–38,49, providing a promising path toward 

their clinical evaluation individually or in combination therapies 50. For example, an ongoing phase II 

trial is testing the efficacy of mitochondrial complex I inhibitor metformin in combination with 

temozolomide and radiotherapy in patients with tumors that express an OXPHOSHigh signature at 

diagnosis (NCT04945148). Findings from our study may inform this trial and other clinical studies of 

mitochondrial inhibitors (e.g., NCT02780024, NCT05929495, NCT05183204, NCT05824559) by 

proposing that PTEN loss, in addition to the tumor OXPHOS state, may serve as a predictor of 

therapeutic response. Future studies may also leverage these findings to elucidate the mechanistic basis 

of the identified synthetically lethal associations and further evaluate their clinical relevance and 

therapeutic potential in the presence of key microenvironmental players of tumor metabolism.  

 

Methods 

Transcriptomic analysis and visualization of metabolic heterogeneity in cancer cell lines 

To systematically evaluate metabolic similarities and differences across cell lines representing diverse 

cancer types, we used RNA sequencing data from the Cancer Cell Line Encyclopedia (23Q2 release). 

Cancer types were selected if 5 or more cell lines were RNA-sequenced, resulting in 1,341 cell lines 

spanning across 41 cancer types. Log2-transformed gene expression data (i.e., log2(TPM+1)) was z-

scored for all unique KEGG metabolic genes (1,620 genes in 85 metabolic pathways 25) across all cell 

lines. Uniform manifold approximation and projection (UMAP) clustering was performed in R using the 

umap package (0.2.10.0) with z-scored data using the following parameters: nearest neighbor 

(n_neighbors) = 50, minimum distance (min_dist) = 0.5, and distance metric (metric) = Pearson.  
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Calculation of pathway activity scores across different cancer types (or growth media) 

We computed a score representing the activity of each of the 85 metabolic pathways for each of the 

cancer types (or growth media) relative to all cancer types (or all growth media) using a three-step 

procedure adapted from Xiao et al 25. In the first step, we calculated the mean expression level (Ei,j) for 

each of the 1,620 metabolic genes (i.e., the i-th metabolic gene) across cell lines within each of the 41 

cancer types (i.e., the j-th cancer type) or each of the 21 distinct growth medium compositions (i.e., the 

j-th growth medium): 

��,� �  
∑ ��,�
��
���

��
  (1) 

, where nj is the number of cell lines associated with the j-th cancer type (or the j-th growth medium 

type), and gi,k is the log2(TPM+1) expression level of the i-th gene in the k-th cell line in this cancer type 

(or medium type). In the second step, the relative gene expression level of the i-th gene in the j-th cancer 

type (or the j-th medium type) or ri,j was calculated as the ratio of Ei,j to its average over all cancer types 

(or all medium types): 
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   (2) 

, where N is the number of cancer types (i.e., 41) or medium types (i.e., 21). ri,j values above 1 indicates 

that the expression level of gene i is higher in cancer type j (or medium type j) compared to the average 

expression level over all cancer types (or all medium types). In the third step, pathway activity score 

(pt,j) for the t-th pathway and the j-th cancer type (or the j-th medium type) was calculated as the 

weighted average of ri,j over all genes included in the pathway: 

��,� �  
∑ 	�
��,�
	

���

∑ 	�
	

���

   (3) 

, where mt is the number of genes in pathway t, and wi is a weight factor equal to the reciprocal of the 
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number of pathways that include the i-th gene. To avoid pathway activity scores being affected by genes 

with low and high expression levels, we removed outliers in each pathway defined by genes with 

expression levels < 0.001 and genes with relative expression levels greater than 3 × 75th percentile or 

below 1/3 × 25th percentile. We calculated activity scores for pathways that had at least 5 genes after 

filtering. Statistical significance of lower or higher pathway activity in a certain cancer type (or medium 

type) was evaluated by a random permutation test. Cancer type labels (or media culture labels) were 

randomly shuffled 5,000 times to simulate a null distribution of the pathway activity scores. We then 

statistically compared the shuffled pathway activity scores to the original, non-shuffled dataset and 

computed an empirical P value defined as the fraction of random pathway activity scores larger than pt,j 

(if pt,j > 1) or smaller then pt,j (if pt,j < 1) to determine if activity of a pathway is significantly higher or 

lower in a cancer type (or medium type) than average. If a pathway activity was insignificant (i.e., P > 

0.05), the activity score was assigned a value of 1. For the analysis of growth media, only those 

associated with at least 10 cell lines were used. 

 To determine the least and most variable metabolic pathways across cancer types or growth 

media, we performed principal component analysis (PCA) on pathway activity scores using the prcomp 

built-in R function. For each metabolic pathway, we calculated the sum of the absolute value of the 

loadings in the top 8 PCs (for cancer type analysis) or the top 4 PCs (for media type analysis) as they 

accounted for at least 80% of the variance in data. 

 

Analyzing cell line-to-cell line heterogeneity in metabolic pathways 

To determine the extent of cell line-to-cell line heterogeneity in each cancer types, we used a three-step 

procedure adapted from Xiao et al 25. Frist, we performed PCA on z-scored metabolic gene expression 

data within each cancer type. We computed metabolic gene variability scores as the absolute sum of the 
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PCA loading values across the top PCs accounting for at least 80% of the variance in data. To identify 

which metabolic pathways were most variable across cell lines within each cancer type, we applied pre-

ranked gene set enrichment analysis (GSEA) to the ranked lists of metabolic gene variability scores. 

Scores were ranked in descending order and ran in pre-rank GSEA using the fgseaSimple function in the 

fgsea package in R (1.20.0). GSEA was performed against the same 85 KEGG metabolic pathways. A 

cancer type was determined to be significantly heterogeneous for a metabolic pathway if the GSEA 

generated FDR ≤ 0.05. If a cancer type was significantly heterogeneous for a specific metabolic 

pathway, we calculated metabolic state scores (e.g., OXPHOS state scores) across the cell lines within 

the cancer type. Metabolic state scores were calculated as mean z-score values across the genes found 

within the specific metabolic pathway. 

  

Feature selection and multivariate modeling to reveal gene dependencies associated with 

OXPHOS state  

To systematically identify gene vulnerabilities associated with OXPHOS state, we performed feature 

selection and multivariate modeling using DepMap gene dependency scores, representing the effect of 

genome-wide knockout effects on cell viability. A dependency score of 0 indicates no inhibitory effect 

(corresponding to a non-essential gene), and 1 indicates complete inhibitory effect (corresponding to an 

essential gene) 27. We first calculated OXPHOS state scores across the cell lines, defined as the average 

of z-scores for the expression levels of 113 OXPHOS genes. To amplify the impact of OXPHOSHigh and 

OXPHOSLow groups of cell lines in feature selection, we ordered cell lines based on their OXPHOS state 

scores and included only the top and bottom 33 percentiles, resulting in 328 cell lines. As the first step 

of feature selection, we removed genes with dependency scores that varied minimally across 

OXPHOSHigh and OXPHOSLow cell lines. To this end, gene dependency score interquartile range (IQR) 
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values were calculated across cell lines and genes with IQR < 0.09 were removed, narrowing down the 

list of genes from 17,202 to 3,624. We then used elastic net regularization, which integrates the penalty 

functions of least absolute shrinkage and selection operator (LASSO; L1 penalty) and ridge regression 

(L2 penalty), to further reduce the number of features and select a subset of the remaining genes based 

on their association with the OXPHOS state score. Elastic net was run in R using the cv.glmnet function 

in the glmnet package (4.1-7). We first optimized the alpha (α), the parameter that controls the weight of 

L1 and L2 penalties, across the 296 cell lines in the training dataset. We held out a random set of 32 cell 

lines with variable OXPHOS state scores as the test dataset for independent validation. 150 elastic net 

iterations (using 10-fold cross validation) were run with α ranging from 0.1 to 0.9 for a total of 1,350 

models. We reported the smallest mean squared error (MSE) associated with each model based on the 

minimum lambda (lambda.min or λmin). Optimized elastic net α was determined based on the smallest 

reported median MSE. We selected genes that appeared in at least 50% of the 150 optimized elastic net 

iterations. The list of 200 selected genes with positive and negative mean coefficients were used in 

Enrichr (https://maayanlab.cloud/Enrichr/) 51 to determine pathways and cellular components associated 

with OXPHOSHigh and OXPHOSLow state dependencies, respectively.  

To quantify the relative importance of 200 gene dependencies in predicting the OXPHOS state of 

each cell line, we built a partial least-square regression (PLSR) model 28,29 using the built-in MATLAB 

function plsregress. To evaluate the predictability of the linear relationship between the input (i.e., gene 

dependency values) and output variables (i.e., OXPHOS state scores), we used leave-one-out cross-

validation. The goodness of fit for each model was calculated using R2. Prediction accuracy was 

evaluated by Q2 and pairwise Pearson’s correlations between the measured and predicted OXPHOS state 

scores. To independently validate the model, we also used the test set of 32 cell lines that were not 

included in either elastic net regularization or PLSR training steps. For the assessment of relative 
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variable importance in the PLSR model, the information content of each variable was assessed by its 

variable importance in the projection (VIP) score 52. Based on |VIP| ≥ 1, we identified 64 genes whose 

dependency scores appeared to be the most significant predictors of the OXPHOS state. 

To further narrow down the list of genes (based on significance) for the next steps of analysis, 

we used a combination of correlation and permutation testing. OXPHOS state scores for all 495 cell 

lines were correlated with their associated gene dependency scores for each of the 64 genes using 

Pearson’s correlation (R built-in function cor.test). Correlation P values were adjusted by calculating 

FDR values using R’s built-in function p.adjust. In the permutation test, we assessed the gene knockout 

effect in OXPHOSHigh versus OXPHOSLow cell lines (164 cell lines per group) by calculating the 

difference between the states’ median gene dependency scores. A positive difference indicates 

OXPHOSHigh cell lines are more sensitive to the gene knockout (i.e., OXPHOSHigh vulnerability) while a 

negative difference indicates OXPHOSLow cell lines are more sensitive to the gene knockout (i.e., 

OXPHOSLow vulnerability). Statistical significance of gene knockout effect was evaluated by a random 

permutation test. OXPHOS states (i.e., OXPHOSHigh, OXPHOSLow) were randomly shuffled 8,000 times 

to simulate a null distribution of the differences between the states’ median gene dependency. We then 

statistically compared the shuffled differences to the original, non-shuffled dataset and computed an 

empirical P value to determine if gene knockout effect is a significant OXPHOSHigh or OXPHOSLow 

vulnerability. The overlap between correlation and permutation analyses found 53/64 gene knockouts to 

be significant (P ≤ 0.05 for permutation test and FDR ≤ 0.05 for Pearson correlation). Among these 

genes, we focused on those whose median dependencies between subgroups of OXPHOSHigh and 

OXPHOSLow cell lines were larger than 0.15. This led to a final list of 12 gene vulnerabilities strongly 

associated with the OXPHOSHigh state and 15 gene vulnerabilities strongly associated with the 

OXPHOSLow state.  
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Analysis of statistical associations between OXPHOS state, driver mutations and tissue context  

To determine whether any of the OXPHOS state-associated gene vulnerabilities were enriched more 

significantly in cell lines originating from specific tissue types or those carrying specific driver 

mutations, we compared median gene dependency between OXPHOSHigh and OXPHOSLow subgroups 

among cell lines grouped based on cancer type or occurrence of the top 25 commonly mutated driver 

genes 31. Among these genes, we focused on the top eleven, which carried mutations in at least 15 tested 

cell lines, including TP53, KRAS, PIK3CA, BRAF, APF, ARID1A, PTEN, NF1, FAT1, KMT2D, 

CREBBP. To assess the statistical significance of the observed differences in gene dependency, we 

performed permutation testing by randomly shuffling (8,000 times for each cancer type; 4,000 times for 

each mutation) the OXPHOS state labels (High and Low) across cell lines participating in each 

comparison and computing permutation P values. We then used P ≤ 0.01 as the significance cutoff to 

identify mutations and tissue types associated with enhanced OXPHOS state-specific gene dependencies 

relative to pan-cancer analysis. 

 

Bioinformatics analysis on patient-derived glioma tumors 

Clinical history, mutation profiles, and gene expression correlation were accessed using the cBioPortal 

for Cancer Genomics (http:// cbioportal.org/) 53. Diffuse glioma patient samples from the GLASS 

Consortium were used for analysis 39. Diffuse glioma patients were classified based on their PTEN 

mutation status, resulting in 64 patients with PTEN mutations (PTENMut) and 158 patients with wildtype 

PTEN (PTENWT). Of these patients, 57 PTENMut and 150 PTENWT had survival data. Overall survival of 

PTENMut versus PTENWT patients were compared using two-sided P value computed by log-rank 

(Mantel–Cox) test. To infer how PTEN expression might be associated with glioma tumor state, we 
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performed transcriptome-wide co-expression analysis across 79 tumor samples for which RNA-

sequencing data were available. We used Spearman’s correlation analysis to rank transcripts based on 

the association of their abundance with PTEN expression. P values were then corrected using 

Benjamini-Hochberg FDR correction. Genes that were negatively or positively correlated with PTEN 

expression and had FDR ≤ 0.05 were selected for gene set enrichment analysis using Enrichr. 

 

Single-cell RNA sequencing analysis of glioma tumors 

To test the association of PTEN loss with mitochondrial electron transport chain components at a single-

cell level, we analyzed a published single-cell RNA-sequencing dataset of genetically profiled patient-

derived glioblastoma tumors 40. Malignant cells were classified based on the PTEN mutation status, 

resulting in 10,268 PTEN-mutant cells found in 6 patients and 23,229 PTEN-wildtype cells found in 20 

patients. For gene expression analysis, we used the log-normalized gene expression data, as reported by 

Ruiz-Moreno et al 40, for computing mean gene expression scores. Mean gene expression scores were 

calculated for every single cell using the follow gene sets: Respiratory Chain Complex I (GO:0045271), 

Respiratory Chain Complex II (GO:0045273), Respiratory Chain Complex III (GO:0005750), 

Respiratory Chain Complex IV (GO:0045277), and ATP synthase (GO:0045259). Significance of gene 

set expression between PTEN-mutant and PTEN-wildtype cells was determined using a one-sided, 

permutation test (5,000 permutations per test), hypothesizing that PTEN-mutant cells are higher in gene 

expression compared to PTEN-wildtype. The permutation test MATLAB function was accessed via 

MathWorks File Exchange (https://github.com/lrkrol/permutationTest; retrieved 13 September 2023).   

 

Drug sensitivity analysis  

To test the impact of damaging mutations in PTEN on OXPHOS state-specific dependencies, we used 
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the Cancer Therapeutics Response Portal (CTRP) data to analyze the sensitivity of 799 genetically 

characterized cancer cell lines to 545 small-molecule probes and drugs 32. We used transcriptomics data 

to define groups of OXPHOSLow and OXPHOSHigh cell lines based on whether their OXPHOS state 

scores were ranked within the top or bottom 33 percentiles. We then compared the median sensitivity of 

OXPHOSLow and OXPHOSHigh cell lines to each tested small molecule based on the area of the dose-

response curve (AUC) measurements. Within the OXPHOSHigh group, we also compared the median 

sensitivity of PTEN-wildtype (PTENWT) and PTEN-mutated (PTENMut) subgroups. Significance of 

comparison was determined using one-sided Wilcoxon rank sum test by MATLAB function ranksum. 

 

Hierarchical clustering 

Unsupervised hierarchical clustering of pathway activity scores and P values from pre-rank GSEA were 

carried out in R using the pheatmap package (1.0.12). Clustering was performed using the pheatmap 

function using default settings with Euclidean distance metric.  

 

Software 

Statistical analyses were performed using MATLAB (2022b), R (4.1.1), and RStudio (2022.07.2). 

 

Data availability 

RNA sequencing data for cell lines in the Cancer Cell Line Encyclopedia (CCLE) were downloaded 

from the Cancer Dependency Map (DepMap) portal (https://depmap.org/portal/; filename: 

OmicsExpressionProteinCodingGenesTPMLogp1.csv, 23Q2 release). Growth media metadata was 

downloaded from DepMap portal (filenames: Media.csv, Model.csv, 23Q2 release). Gene knockout 

effect data (i.e., gene dependency scores) were downloaded from DepMap portal (filename: 
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CRISPRGeneDependency.csv, 23Q2 release). CCLE mutation data were downloaded from DepMap 

portal (filename: OmicsSomaticMutations.csv, 23Q2 release). Drug sensitivity (AUC) data, originally 

released by the Cancer Therapeutics Response Portal (CTRP), were downloaded from the NCI CTD2 

Data Portal (https://ocg.cancer.gov/programs/ctd2/data-portal; filename: 

CTRPv2.0_2015_ctd2_ExpandedDataset.zip). The single-cell RNA sequencing data from glioma 

tumors were accessed from CELLxGENE (https://cellxgene.cziscience.com/; Dataset: Harmonized 

single-cell landscape, intercellular crosstalk and tumor architecture of glioblastoma; file: Core GBMap 

rds, accessed 27 August 2023). Single cells were selected for further analysis if their cell type was 

“malignant cell” and their PTEN mutation status was “mutated” or “no mutated.” 

 

Code availability 

The original codes for data analysis performed in this paper are publicly available at 

https://github.com/fallahi-sichani-lab/metabolicStateVulnerabilities. 
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Figure Legends 

Figure 1. UMAP analysis of metabolic gene expression reveals clusters of cancer cell lines 

associated with cancer type and developmental lineage. (A) Total 1,341 CCLE cell lines, 

representing 41 cancer types, were included in the analysis. Number of cell lines for each cancer type 

are shown. (B) UMAP visualization of cell lines based on the expression levels of 1,620 metabolic 

genes. Cell lines are colored based on their cancer type (as shown in A). (C) Examples of metabolic 

similarities across tumor lineages (top) or heterogeneities within cancer types (bottom) are shown. 

Individual cell lines from indicated cancer types are highlighted on UMAP plots.  

 

Figure 2. Metabolic pathway analysis of cancer cell lines reveals cancer type-associated variations 

in the activity of pathways. (A) Hierarchical clustering of relative activity scores for 73 significantly 

variable metabolic pathways across 41 cancer types. A metabolic pathway activity score < 1 for a cancer 

type represents reduced pathway activity in that cancer type in comparison with the average pathway 

activity across all cancer types; scores > 1 represent increased activity; and a score of 1 represents 

activity levels equivalent to the average over all cancer types. (B) Ranking of metabolic pathways based 

on the extent to which their heterogeneity is associated with cancer type, evaluated by computing the 

absolute sum of PCA loadings for each pathway over the first eight principal components. The top 5 and 

bottom 5 variable pathways are shown.  
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Figure 3. OXPHOS state exhibits substantial cell line-to-cell line heterogeneity independent of 

cancer type. (A) Metabolic pathways enriched in genes with highest contribution (determined by PCA) 

to the metabolic heterogeneities among individual cell lines from different cancer types. Data are 

clustered based on -log10(FDR) values derived from gene set enrichment analysis (GSEA). Pairs of 

pathway/cancer type with significant cell line-to-cell line heterogeneity (FDR ≤ 0.05) are highlighted 

with an asterisk (*). (B) Metabolic pathways ranked according to the % of cancer types showing 

significant cell line-to-cell line heterogeneity. (C) Distinct patterns of cell line-to-cell line variability in 

two representative metabolic pathways, ascorbate and aldarate metabolism (left) and oxidative 

phosphorylation (right), across indicated cancer types. Mean pathway transcript per million (TPM) 

levels, their median and interquartile ranges (IQR) across cell lines are highlighted. 

 

Figure 4. Metabolic pathway analysis of cancer cell lines reveals variations in the activity of 

pathways associated with growth media. (A) Hierarchical clustering of relative activity scores for 73 

significantly variable metabolic pathways across 21 chemically distinct growth media. A metabolic 

pathway activity score < 1 for a growth medium represents reduced pathway activity in that growth 

medium in comparison with the average pathway activity across all growth media; scores > 1 represent 

increased activity; and a score of 1 represents activity levels equivalent to the average over all growth 

media. (B) Ranking of metabolic pathways based on the extent to which their heterogeneity is associated 

with growth media, evaluated by computing the absolute sum of PCA loadings for each pathway over 

the first four principal components.  

 

Figure 5. Multivariate modeling uncovers pan-cancer gene vulnerabilities associated with 

OXPHOS state. (A) The top enriched biochemical pathways (from Reactome Pathway Database) 
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associated with gene vulnerability features selected by elastic net regularization (FDR ≤ 0.05). Genes 

with positive and negative elastic net coefficients were used to infer vulnerabilities in OXPHOSHigh and 

OXPHOSLow cell lines, respectively. (B) Performance of the partial least squares (PLSR) model 

evaluated by variance in OXPHOS state scores explained (R2) or predicted based on leave-one-out 

cross-validation (Q2) with increasing number of PLS components. (C) Comparison between OXPHOS 

state scores and predicted scores by PLSR for the training set of 296 cell lines (left) and independent test 

set of 32 cell lines (right). Two-sided Pearson’s correlation analysis was performed between OXPHOS 

state scores and PLSR predicted scores. (D) PLSR scores colored according to their OXPHOS state 

score. (E) The list of pan-cancer gene vulnerabilities strongly associated with the OXPHOSHigh or 

OXPHOSLow state. For each gene, the median difference between dependency (Δ gene dependency) for 

OXPHOSHigh and OXPHOSLow subgroups of cell lines are shown. 

 

Figure 6. Statistical analysis reveals synthetically lethal associations between OXPHOS state, 

driver mutations and tissue context. (A) Statistical enrichment of OXPHOSHigh-associated 

mitochondrial gene vulnerabilities in cell lines associated with specific tissue types or driver mutations. 

Enrichment is considered significant if the median gene dependency difference (Δ gene dependency) 

between OXPHOSHigh and OXPHOSLow subgroups of cell lines associated with a cancer type or driver 

mutation is significantly larger than the median gene dependency difference between OXPHOSHigh and 

OXPHOSLow groups regardless of cancer type and mutation (i.e., pan-cancer median difference level 

highlighted by the black circle and dotted line). Statistical significance of median differences was 

determined by empirical P values computed based on permutation testing. (B) The impact of PTEN 

mutation on mitochondrial gene dependencies in OXPHOSHigh and OXPHOSLow cell lines. Statistical 

significance of median differences was determined by empirical P values computed based on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

permutation testing. (C) Statistical enrichment of OXPHOSHigh-associated EP300 dependency in cell 

lines associated with specific tissue types or driver mutations. Statistical significance of median 

differences was determined by empirical P values computed based on permutation testing. (D) Statistical 

enrichment of OXPHOSLow-associated gene vulnerabilities in cell lines associated with specific tissue 

types or driver mutations. Statistical significance of median differences was determined by empirical P 

values computed based on permutation testing. 

 

Figure 7. Loss of PTEN predicts increased dependency on mitochondrial respiratory chain in 

OXPHOSHigh tumor cells. (A) Analysis of the Cancer Therapeutics Response Portal (CTRP) data, 

including sensitivity measurements (evaluated based on area under the dose response curve; AUC) for 

545 small-molecule probes and drugs in 799 cell lines. For each compound, the difference in median 

sensitivity (Δ drug AUC) between OXPHOSLow and OXPHOSHigh subgroups of cell lines is shown 

against the difference in median sensitivity between OXPHOSHigh/PTENWT and OXPHOSHigh/PTENMut 

subgroups. Statistical significance was determined using one-sided Wilcoxon rank sum test. (B) Overall 

survival analysis of glioma patients with PTEN-mutated (PTENMut) or PTEN-wildtype (PTENWT) 

tumors. Statistical significance was determined by two-sided log-rank (Mantel-Cox) test. (C) The top 

Gene Ontology (GO) biological processes (FDR ≤ 0.05) associated with genes whose expression 

negatively correlated with PTEN mRNA levels across 79 glioma tumors. (D) Single-cell analysis of 

PTENMut versus PTENWT glioma tumors. Mean log-normalized levels of transcripts representing 

individual components of the electron transport chain, including Complex I-IV and ATP synthase, 

between PTENMut (n = 10,268) and PTENWT (n = 23,229) malignant cells. Statistical significance was 

determined by one-sided, permutation test. 
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Supplementary Figure Legends 

Figure S1. UMAP analysis of metabolic gene expression reveals clusters of cancer cell lines 

associated with cancer type and developmental lineage. Related to Figure 1. (A) UMAP 

visualization of cell lines based on the expression levels of 1,620 metabolic genes. Cell lines are colored 

based on their cancer type. (B) Non-Small Cell Lung Cancer (NSCLC) cell lines and their subtypes, 

including Giant Cell Carcinoma of the Lung, Large Cell Lung Carcinoma, Lung Adenocarcinoma, Lung 

Adenosquamous Carcinoma, Lung Squamous Cell Carcinoma, Mucoepidermoid Carcinoma of the 

Lung, Non−Small Cell Lung Cancer, and Poorly Differentiated Non−Small Cell Lung Cancer, are 

highlighted on UMAP plot. 

 

Figure S2. Variability of the overall metabolic activity across cell lines of different cancer types. 

Related to Figure 2. (A) Calculated metabolic activity scores (original, non-permutated scores) of 73 

pathways across 41 cancer types. A metabolic pathway activity score < 1 for a cancer type represents 

reduced pathway activity in that cancer type in comparison with the average pathway activity across all 

cancer types; scores > 1 represent increased activity; and a score of 1 represents activity levels 

equivalent to the average over all cancer types. (B) Principal component analysis (PCA) of metabolic 

pathway activity scores across 41 cancer types. Percentage of variance captured by the first eight 

principal components (PC) are shown. (C) Ranking of metabolic pathways based on the extent to which 

their heterogeneity is associated with cancer type, evaluated by computing the absolute sum of PCA 

loadings for each pathway over the first eight principal components.  

 

Figure S3. Distinct patterns of cell line-to-cell line variability in two representative metabolic 

pathways. Related to Figure 3. The data are shown for oxidative phosphorylation (top) and ascorbate 
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and aldarate metabolism (bottom) across indicated cancer types. Mean pathway transcript per million 

(TPM) levels, their median and interquartile ranges (IQR) across cell lines are highlighted. 

 

Figure S4. Principal component analysis (PCA) of metabolic pathway activity scores across 21 

distinct growth media. Related to Figure 4. Percentage of variance captured by the first four principal 

components (PC) are shown. 

 

Figure S5. Elastic net regularization selects a subset of gene features based on their association 

with the OXPHOS state score across cell lines. Related to Figure 5. (A) Distribution of oxidative 

phosphorylation (OXPHOS) states scores across 495 cell lines. OXPHOSHigh and OXPHOSLow groups 

of cell lines (each containing 164 cell lines) were determined based on the top and bottom 33 

percentiles. (B) Distribution of interquartile ranges (IQR) of gene dependency scores for 17,202 genes. 

IQR for each gene was calculated across 328 cell lines. IQR threshold (dotted red line) and remaining 

genes after IQR filtering (right of the dotted red line) are shown. (C) Distribution of OXPHOS states 

scores across randomly selected training set (296 cell lines) and test set (32 cell lines). (D) Optimization 

of elastic net model parameter α. Boxplots of mean squared error (MSE) across 150 elastic net iterations 

(for each α) with varying α values of 0.1 to 0.9. (E) Fraction of occurrence for a given gene appearing 

across 150 random elastic net iterations. Genes that occurred in at least 50% of the iterations were used 

in the next step (i.e., PLSR modeling). (F) The top enriched GO cellular components associated with 

gene vulnerability features selected by elastic net regularization (P ≤ 0.05). Genes with positive and 

negative elastic net coefficients were used to infer vulnerabilities in OXPHOSHigh and OXPHOSLow cell 

lines, respectively. (G) PLSR-derived VIP scores ≥ 1 or ≤ -1. The sign of the VIP scores shows whether 

the identified gene is a vulnerability in OXPHOSHigh cell lines (red) or OXPHOSLow cell lines (blue). 
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Figure S6. Statistical analysis reveals synthetically lethal associations between OXPHOS state, 

driver mutations and tissue context. Related to Figure 6. (A) The number of cell lines bearing each 

of the top 25 most frequent driver mutations across eleven OXPHOS-variable cancer types. Total 

mutation frequency for each of the 25 mutations is shown on the bottom. Total number of cell lines for 

each OXPHOS-variable cancer type is shown on the right. (B) The top 25 most frequent driver 

mutations and their associated frequencies across OXPHOSHigh and OXPHOSLow cell lines. Number of 

cell lines that have a given mutation is shown next to each bar. (C, D) Statistical enrichment of 

OXPHOSHigh-associated (C) and OXPHOSlow-associated (D) gene vulnerabilities in cell lines associated 

with specific tissue types or driver mutations. Enrichment is considered significant if the median gene 

dependency difference (Δ gene dependency) between OXPHOSHigh and OXPHOSLow subgroups of cell 

lines associated with a cancer type or driver mutation is significantly larger than the median gene 

dependency difference between OXPHOSHigh and OXPHOSLow groups regardless of cancer type and 

mutation (i.e., pan-cancer median difference level highlighted by the black circle and dotted line). 

Statistical significance of median differences was determined by empirical P values computed based on 

permutation testing. 

 

Figure S7. Loss of PTEN predicts increased dependency on mitochondrial respiratory chain in 

OXPHOSHigh tumor cells. Related to Figure 7. (A) Spearman’s correlation analysis to rank transcripts 

based on the association of their abundance with PTEN expression in 79 patient-derived glioma tumors. 

Transcripts negatively correlated (blue) or positively correlated (red) with PTEN mRNA levels were 

highlighted as significant if FDR ≤ 0.05. (B) The top Gene Ontology (GO) cellular components (FDR ≤ 

0.05) associated with genes whose expression negatively correlated with PTEN mRNA levels across 79 
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glioma tumors. (C, D) The top GO biological processes (C) or cellular components (D) associated with 

genes whose expression positively correlated with PTEN mRNA levels across 79 glioma tumors (FDR ≤ 

0.05). 

 

References 

1. Finley, L.W.S. (2023). What is cancer metabolism? Cell 186, 1670–1688. 
10.1016/j.cell.2023.01.038. 

2. Stine, Z.E., Schug, Z.T., Salvino, J.M., and Dang, C.V. (2022). Targeting cancer metabolism in the 
era of precision oncology. Nat Rev Drug Discov 21, 141–162. 10.1038/s41573-021-00339-6. 

3. Bi, J., Wu, S., Zhang, W., and Mischel, P.S. (2018). Targeting cancer’s metabolic co-dependencies: 
A landscape shaped by genotype and tissue context. Biochim Biophys Acta Rev Cancer 1870, 76–
87. 10.1016/j.bbcan.2018.05.002. 

4. Fendt, S.-M., Frezza, C., and Erez, A. (2020). Targeting Metabolic Plasticity and Flexibility 
Dynamics for Cancer Therapy. Cancer Discovery 10, 1797–1807. 10.1158/2159-8290.CD-20-0844. 

5. Kondo, H., Ratcliffe, C.D.H., Hooper, S., Ellis, J., MacRae, J.I., Hennequart, M., Dunsby, C.W., 
Anderson, K.I., and Sahai, E. (2021). Single-cell resolved imaging reveals intra-tumor heterogeneity 
in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Reports 
34, 108750. 10.1016/j.celrep.2021.108750. 

6. Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C., Tsoi, J., Clark, 
O., Oldrini, B., Komisopoulou, E., et al. (2013). An inhibitor of mutant IDH1 delays growth and 
promotes differentiation of glioma cells. Science 340, 626–630. 10.1126/science.1236062. 

7. Yen, K., Travins, J., Wang, F., David, M.D., Artin, E., Straley, K., Padyana, A., Gross, S., 
DeLaBarre, B., Tobin, E., et al. (2017). AG-221, a First-in-Class Therapy Targeting Acute Myeloid 
Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discov 7, 478–493. 10.1158/2159-
8290.CD-16-1034. 

8. Kim, J., Hu, Z., Cai, L., Li, K., Choi, E., Faubert, B., Bezwada, D., Rodriguez-Canales, J., 
Villalobos, P., Lin, Y.-F., et al. (2017). CPS1 maintains pyrimidine pools and DNA synthesis in 
KRAS/LKB1-mutant lung cancer cells. Nature 546, 168–172. 10.1038/nature22359. 

9. Nwosu, Z.C., Ward, M.H., Sajjakulnukit, P., Poudel, P., Ragulan, C., Kasperek, S., Radyk, M., 
Sutton, D., Menjivar, R.E., Andren, A., et al. (2023). Uridine-derived ribose fuels glucose-restricted 
pancreatic cancer. Nature 618, 151–158. 10.1038/s41586-023-06073-w. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37

10. Gwynne, W.D., Suk, Y., Custers, S., Mikolajewicz, N., Chan, J.K., Zador, Z., Chafe, S.C., Zhai, K., 
Escudero, L., Zhang, C., et al. (2022). Cancer-selective metabolic vulnerabilities in MYC-amplified 
medulloblastoma. Cancer Cell 40, 1488-1502.e7. 10.1016/j.ccell.2022.10.009. 

11. Li, H., Ning, S., Ghandi, M., Kryukov, G.V., Gopal, S., Deik, A., Souza, A., Pierce, K., Keskula, P., 
Hernandez, D., et al. (2019). The landscape of cancer cell line metabolism. Nat Med 25, 850–860. 
10.1038/s41591-019-0404-8. 

12. Ghandi, M., Huang, F.W., Jané-Valbuena, J., Kryukov, G.V., Lo, C.C., McDonald, E.R., Barretina, 
J., Gelfand, E.T., Bielski, C.M., Li, H., et al. (2019). Next-generation characterization of the Cancer 
Cell Line Encyclopedia. Nature 569, 503–508. 10.1038/s41586-019-1186-3. 

13. Joly, J.H., Chew, B.T.L., and Graham, N.A. (2021). The landscape of metabolic pathway 
dependencies in cancer cell lines. PLoS Comput Biol 17, e1008942. 10.1371/journal.pcbi.1008942. 

14. Lagziel, S., Lee, W.D., and Shlomi, T. (2019). Inferring cancer dependencies on metabolic genes 
from large-scale genetic screens. BMC Biol 17, 37. 10.1186/s12915-019-0654-4. 

15. Cherkaoui, S., Durot, S., Bradley, J., Critchlow, S., Dubuis, S., Masiero, M.M., Wegmann, R., 
Snijder, B., Othman, A., Bendtsen, C., et al. (2022). A functional analysis of 180 cancer cell lines 
reveals conserved intrinsic metabolic programs. Molecular Systems Biology 18, e11033. 
10.15252/msb.202211033. 

16. Shorthouse, D., Bradley, J., Critchlow, S.E., Bendtsen, C., and Hall, B.A. (2022). Heterogeneity of 
the cancer cell line metabolic landscape. Molecular Systems Biology 18, e11006. 
10.15252/msb.202211006. 

17. Pemovska, T., Bigenzahn, J.W., Srndic, I., Lercher, A., Bergthaler, A., César-Razquin, A., Kartnig, 
F., Kornauth, C., Valent, P., Staber, P.B., et al. (2021). Metabolic drug survey highlights cancer cell 
dependencies and vulnerabilities. Nat Commun 12, 7190. 10.1038/s41467-021-27329-x. 

18. Yang, J., Griffin, A., Qiang, Z., and Ren, J. (2022). Organelle-targeted therapies: a comprehensive 
review on system design for enabling precision oncology. Signal Transduct Target Ther 7, 379. 
10.1038/s41392-022-01243-0. 

19. Benedetti, E., Liu, E.M., Tang, C., Kuo, F., Buyukozkan, M., Park, T., Park, J., Correa, F., Hakimi, 
A.A., Intlekofer, A.M., et al. (2023). A multimodal atlas of tumour metabolism reveals the 
architecture of gene-metabolite covariation. Nat Metab 5, 1029–1044. 10.1038/s42255-023-00817-
8. 

20. Campit, S.E., Bhowmick, R., Lu, T., Saoji, A.V., Jin, R., Robida, A.M., and Chandrasekaran, S. 
(2023). Data-Driven Screening to Infer Metabolic Modulators of the Cancer Epigenome (Systems 
Biology) 10.1101/2023.02.27.530260. 

21. Sessions, D.T., Kim, K.-B., Kashatus, J.A., Churchill, N., Park, K.-S., Mayo, M.W., Sesaki, H., and 
Kashatus, D.F. (2022). Opa1 and Drp1 reciprocally regulate cristae morphology, ETC function, and 
NAD+ regeneration in KRas-mutant lung adenocarcinoma. Cell Rep 41, 111818. 
10.1016/j.celrep.2022.111818. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

22. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., 
Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables 
predictive modelling of anticancer drug sensitivity. Nature 483, 603–607. 10.1038/nature11003. 

23. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and 
Newell, E.W. (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nat 
Biotechnol 37, 38–44. 10.1038/nbt.4314. 

24. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a 
reference resource for gene and protein annotation. Nucleic Acids Research 44, D457–D462. 
10.1093/nar/gkv1070. 

25. Xiao, Z., Dai, Z., and Locasale, J.W. (2019). Metabolic landscape of the tumor microenvironment at 
single cell resolution. Nat Commun 10, 3763. 10.1038/s41467-019-11738-0. 

26. Ackermann, T., and Tardito, S. (2019). Cell Culture Medium Formulation and Its Implications in 
Cancer Metabolism. Trends Cancer 5, 329–332. 10.1016/j.trecan.2019.05.004. 

27. Dempster, J.M., Boyle, I., Vazquez, F., Root, D.E., Boehm, J.S., Hahn, W.C., Tsherniak, A., and 
McFarland, J.M. (2021). Chronos: a cell population dynamics model of CRISPR experiments that 
improves inference of gene fitness effects. Genome Biology 22, 343. 10.1186/s13059-021-02540-7. 

28. Gunn, B.M., Yu, W.-H., Karim, M.M., Brannan, J.M., Herbert, A.S., Wec, A.Z., Halfmann, P.J., 
Fusco, M.L., Schendel, S.L., Gangavarapu, K., et al. (2018). A Role for Fc Function in Therapeutic 
Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host & Microbe 24, 221-
233.e5. 10.1016/j.chom.2018.07.009. 

29. Selva, K.J., van de Sandt, C.E., Lemke, M.M., Lee, C.Y., Shoffner, S.K., Chua, B.Y., Davis, S.K., 
Nguyen, T.H.O., Rowntree, L.C., Hensen, L., et al. (2021). Systems serology detects functionally 
distinct coronavirus antibody features in children and elderly. Nat Commun 12, 2037. 
10.1038/s41467-021-22236-7. 

30. Zhang, L., Cao, J., Dong, L., and Lin, H. (2020). TiPARP forms nuclear condensates to degrade 
HIF-1α and suppress tumorigenesis. Proc Natl Acad Sci U S A 117, 13447–13456. 
10.1073/pnas.1921815117. 

31. Mendiratta, G., Ke, E., Aziz, M., Liarakos, D., Tong, M., and Stites, E.C. (2021). Cancer gene 
mutation frequencies for the U.S. population. Nat Commun 12, 5961. 10.1038/s41467-021-26213-y. 

32. Rees, M.G., Seashore-Ludlow, B., Cheah, J.H., Adams, D.J., Price, E.V., Gill, S., Javaid, S., Coletti, 
M.E., Jones, V.L., Bodycombe, N.E., et al. (2016). Correlating chemical sensitivity and basal gene 
expression reveals mechanism of action. Nat Chem Biol 12, 109–116. 10.1038/nchembio.1986. 

33. Linnett, P.E., and Beechey, R.B. (1979). Inhibitors of the ATP synthetase systems. In Methods in 
Enzymology (Elsevier), pp. 472–518. 10.1016/0076-6879(79)55061-7. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39

34. Ulanovskaya, O.A., Janjic, J., Suzuki, M., Sabharwal, S.S., Schumacker, P.T., Kron, S.J., and 
Kozmin, S.A. (2008). Synthesis enables identification of the cellular target of leucascandrolide A 
and neopeltolide. Nat Chem Biol 4, 418–424. 10.1038/nchembio.94. 

35. Jonsson, P., Lin, A.L., Young, R.J., DiStefano, N.M., Hyman, D.M., Li, B.T., Berger, M.F., Zehir, 
A., Ladanyi, M., Solit, D.B., et al. (2019). Genomic Correlates of Disease Progression and 
Treatment Response in Prospectively Characterized Gliomas. Clin Cancer Res 25, 5537–5547. 
10.1158/1078-0432.CCR-19-0032. 

36. Shi, Y., Lim, S.K., Liang, Q., Iyer, S.V., Wang, H.-Y., Wang, Z., Xie, X., Sun, D., Chen, Y.-J., 
Tabar, V., et al. (2019). Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. 
Nature 567, 341–346. 10.1038/s41586-019-0993-x. 

37. Molina, J.R., Sun, Y., Protopopova, M., Gera, S., Bandi, M., Bristow, C., McAfoos, T., Morlacchi, 
P., Ackroyd, J., Agip, A.-N.A., et al. (2018). An inhibitor of oxidative phosphorylation exploits 
cancer vulnerability. Nat Med 24, 1036–1046. 10.1038/s41591-018-0052-4. 

38. Sesen, J., Dahan, P., Scotland, S.J., Saland, E., Dang, V.-T., Lemarié, A., Tyler, B.M., Brem, H., 
Toulas, C., Cohen-Jonathan Moyal, E., et al. (2015). Metformin inhibits growth of human 
glioblastoma cells and enhances therapeutic response. PLoS One 10, e0123721. 
10.1371/journal.pone.0123721. 

39. Barthel, F.P., Johnson, K.C., Varn, F.S., Moskalik, A.D., Tanner, G., Kocakavuk, E., Anderson, 
K.J., Abiola, O., Aldape, K., Alfaro, K.D., et al. (2019). Longitudinal molecular trajectories of 
diffuse glioma in adults. Nature 576, 112–120. 10.1038/s41586-019-1775-1. 

40. Ruiz-Moreno, C., Salas, S.M., Samuelsson, E., Brandner, S., Kranendonk, M.E.G., Nilsson, M., and 
Stunnenberg, H.G. (2022). Harmonized single-cell landscape, intercellular crosstalk and tumor 
architecture of glioblastoma (Cancer Biology) 10.1101/2022.08.27.505439. 

41. Mahendralingam, M.J., Kim, H., McCloskey, C.W., Aliar, K., Casey, A.E., Tharmapalan, P., 
Pellacani, D., Ignatchenko, V., Garcia-Valero, M., Palomero, L., et al. (2021). Mammary epithelial 
cells have lineage-rooted metabolic identities. Nat Metab 3, 665–681. 10.1038/s42255-021-00388-6. 

42. Han, M., Bushong, E.A., Segawa, M., Tiard, A., Wong, A., Brady, M.R., Momcilovic, M., Wolf, 
D.M., Zhang, R., Petcherski, A., et al. (2023). Spatial mapping of mitochondrial networks and 
bioenergetics in lung cancer. Nature 615, 712–719. 10.1038/s41586-023-05793-3. 

43. Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., 
Costa, V., Casarin, A., Gomes, L.C., et al. (2013). Mitochondrial cristae shape determines 
respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171. 
10.1016/j.cell.2013.08.032. 

44. Anderson, G.R., Wardell, S.E., Cakir, M., Yip, C., Ahn, Y.-R., Ali, M., Yllanes, A.P., Chao, C.A., 
McDonnell, D.P., and Wood, K.C. (2018). Dysregulation of mitochondrial dynamics proteins are a 
targetable feature of human tumors. Nat Commun 9, 1677. 10.1038/s41467-018-04033-x. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40

45. Naguib, A., Mathew, G., Reczek, C.R., Watrud, K., Ambrico, A., Herzka, T., Salas, I.C., Lee, M.F., 
El-Amine, N., Zheng, W., et al. (2018). Mitochondrial Complex I Inhibitors Expose a Vulnerability 
for Selective Killing of Pten-Null Cells. Cell Rep 23, 58–67. 10.1016/j.celrep.2018.03.032. 

46. Yap, T.A., Daver, N., Mahendra, M., Zhang, J., Kamiya-Matsuoka, C., Meric-Bernstam, F., 
Kantarjian, H.M., Ravandi, F., Collins, M.E., Francesco, M.E.D., et al. (2023). Complex I inhibitor 
of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. 
Nat Med 29, 115–126. 10.1038/s41591-022-02103-8. 

47. Machado, N.D., Heather, L.C., Harris, A.L., and Higgins, G.S. (2023). Targeting mitochondrial 
oxidative phosphorylation: lessons, advantages, and opportunities. Br J Cancer 129, 897–899. 
10.1038/s41416-023-02394-9. 

48. Garofano, L., Migliozzi, S., Oh, Y.T., D’Angelo, F., Najac, R.D., Ko, A., Frangaj, B., Caruso, F.P., 
Yu, K., Yuan, J., et al. (2021). Pathway-based classification of glioblastoma uncovers a 
mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer 2, 141–156. 10.1038/s43018-
020-00159-4. 

49. Sighel, D., Notarangelo, M., Aibara, S., Re, A., Ricci, G., Guida, M., Soldano, A., Adami, V., 
Ambrosini, C., Broso, F., et al. (2021). Inhibition of mitochondrial translation suppresses 
glioblastoma stem cell growth. Cell Rep 35, 109024. 10.1016/j.celrep.2021.109024. 

50. Bi, J., Chowdhry, S., Wu, S., Zhang, W., Masui, K., and Mischel, P.S. (2020). Altered cellular 
metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev 
Cancer 20, 57–70. 10.1038/s41568-019-0226-5. 

51. Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., 
Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set 
enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–W97. 
10.1093/nar/gkw377. 

52. Wold, S. (1994). Exponentially weighted moving principal components analysis and projections to 
latent structures. Chemometrics and Intelligent Laboratory Systems 23, 149–161. 10.1016/0169-
7439(93)E0075-F. 

53. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., 
Heuer, M.L., Larsson, E., et al. (2012). The cBio Cancer Genomics Portal: An Open Platform for 
Exploring Multidimensional Cancer Genomics Data. Cancer Discovery 2, 401–404. 10.1158/2159-
8290.CD-12-0095. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B C

−5

0

5

10

−3 0 3

Cancer typesTotal 1341 CCLE cell lines
41 cancer types

UMAP based on 1620 metabolic genes

Cancers of 
hematopoietic
lineage

Ovarian Epithelial TumorNon−Small Cell Lung Cancer

Small Cell Lung Cancer
(Lung Neuroendocrine)Neuroblastoma Cutaneous Melanoma Ocular Melanoma

Acute Myeloid Leukemia (n = 43)
Anaplastic Thyroid Cancer (n = 8)
B−Lymphoblastic Leukemia/Lymphoma (n = 24)
Bladder Urothelial Carcinoma (n = 33)
Breast Ductal Carcinoma In Situ (n = 5)
Cervical Adenocarcinoma (n = 5)
Cervical Squamous Cell Carcinoma (n = 13)
Colorectal Adenocarcinoma (n = 75)
Cutaneous Squamous Cell Carcinoma (n = 5)
Diffuse Glioma (n = 70)
Embryonal Tumor (n = 22)
Endometrial Carcinoma (n = 33)
Esophageal Squamous Cell Carcinoma (n = 25)
Esophagogastric Adenocarcinoma (n = 59)

Ewing Sarcoma (n = 21)
Head and Neck Squamous Cell Carcinoma (n = 60)
Hepatocellular Carcinoma (n = 23)
Hodgkin Lymphoma (n = 7)
Intracholecystic Papillary Neoplasm (n = 6)
Intraductal Papillary Neoplasm of the Bile Duct (n = 32)
Invasive Breast Carcinoma (n = 61)
Liposarcoma (n = 10)
Lung Neuroendocrine Tumor (n = 53)
Cutaneous Melanoma (n = 81)
Myeloproliferative Neoplasms (n = 18)
Nerve Sheath Tumor (n = 6)
Neuroblastoma (n = 33)
Non−Hodgkin Lymphoma (n = 112)

Non−Small Cell Lung Cancer (n = 137)
Ocular Melanoma (n = 10)
Osteosarcoma (n = 16)
Ovarian Epithelial Tumor (n = 63)
Pancreatic Adenocarcinoma (n = 55)
Pleural Mesothelioma (n = 21)
Prostate Adenocarcinoma (n = 9)
Renal Cell Carcinoma (n = 35)
Rhabdoid Cancer (n = 6)
Rhabdomyosarcoma (n = 20)
Synovial Sarcoma (n = 6)
T−Lymphoblastic Leukemia/Lymphoma (n = 14)
Well−Differentiated Thyroid Cancer (n = 6)

Ewing
Sarcoma Diffuse Glioma

Melanomas

Renal Cell 
Carcinoma

Neuroblastoma

Neuroendocrine lineage Melanoma lineage
Examples of metabolic similarities across solid tumor lineages

Examples of metabolic heterogeneities within a cancer type

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

0.6 1 1.4

Relative pathway activity
High activityLow activity

Lung Neuroendocrine Tumor
Hepatocellular Carcinoma
Esophageal Squamous Cell Carcinoma
Non−Small Cell Lung Cancer
Colorectal Adenocarcinoma
Prostate Adenocarcinoma
Hodgkin Lymphoma
T−Lymphoblastic Leukemia/Lymphoma
B−Lymphoblastic Leukemia/Lymphoma
Non−Hodgkin Lymphoma
Neuroblastoma
Cervical Adenocarcinoma
Embryonal Tumor
Rhabdoid Cancer
Rhabdomyosarcoma
Acute Myeloid Leukemia
Myeloproliferative Neoplasms
Ewing Sarcoma
Synovial Sarcoma
Diffuse Glioma
Melanoma
Osteosarcoma
Well−Differentiated Thyroid Cancer
Endometrial Carcinoma
Ovarian Epithelial Tumor
Pleural Mesothelioma
Anaplastic Thyroid Cancer
Cervical Squamous Cell Carcinoma
Renal Cell Carcinoma
Bladder Urothelial Carcinoma
Breast Ductal Carcinoma In Situ
Invasive Breast Carcinoma
Nerve Sheath Tumor
Intracholecystic Papillary Neoplasm
Esophagogastric Adenocarcinoma
Intraductal Papillary Neoplasm of the Bile Duct
Pancreatic Adenocarcinoma
Cutaneous Squamous Cell Carcinoma
Ocular Melanoma
Head and Neck Squamous Cell Carcinoma
Liposarcoma

Li
no

le
ic 

ac
id

 m
et

ab
ol

ism

Ph
en

yla
la

ni
ne

 m
et

ab
ol

ism

al
ph

a−
Li

no
le

ni
c 

ac
id

 m
et

ab
ol

ism

G
lyc

in
e,

 s
er

in
e 

an
d 

th
re

on
in

e 
m

et
ab

ol
ism

be
ta

−A
la

ni
ne

 m
et

ab
ol

ism

G
lyc

er
ol

ip
id

 m
et

ab
ol

ism

Et
he

r l
ip

id
 m

et
ab

ol
ism

Fa
tty

 a
cid

 b
io

sy
nt

he
sis

Fr
uc

to
se

 a
nd

 m
an

no
se

 m
et

ab
ol

ism

Bu
ta

no
at

e 
m

et
ab

ol
ism

Ly
sin

e 
de

gr
ad

at
io

n

Se
le

no
co

m
po

un
d 

m
et

ab
ol

ism

O
ne

 c
ar

bo
n 

po
ol

 b
y 

fo
la

te

G
lyc

os
am

in
og

lyc
an

 b
io

sy
nt

he
sis

 −
 c

ho
nd

ro
itin

 s
ul

fa
te

 / 
de

rm
at

an
 s

ul
fa

te

O
th

er
 ty

pe
s 

of
 O

−g
lyc

an
 b

io
sy

nt
he

sis

G
lyc

os
am

in
og

lyc
an

 b
io

sy
nt

he
sis

 −
 h

ep
ar

an
 s

ul
fa

te
 / 

he
pa

rin

Bi
os

yn
th

es
is 

of
 u

ns
at

ur
at

ed
 fa

tty
 a

cid
s

M
an

no
se

 ty
pe

 O
−g

lyc
an

 b
io

sy
nt

he
sis

Th
ia

m
in

e 
m

et
ab

ol
ism

Al
an

in
e,

 a
sp

ar
ta

te
 a

nd
 g

lu
ta

m
at

e 
m

et
ab

ol
ism

Tr
yp

to
ph

an
 m

et
ab

ol
ism

Po
rp

hy
rin

 a
nd

 c
hl

or
op

hy
ll m

et
ab

ol
ism

Dr
ug

 m
et

ab
ol

ism
 −

 o
th

er
 e

nz
ym

es

Ci
tra

te
 c

yc
le

 (T
CA

 c
yc

le
)

O
xid

at
ive

 p
ho

sp
ho

ry
la

tio
n

G
al

ac
to

se
 m

et
ab

ol
ism

St
ar

ch
 a

nd
 s

uc
ro

se
 m

et
ab

ol
ism

G
lyc

os
ylp

ho
sp

ha
tid

yli
no

sit
ol

 (G
PI

)−
an

ch
or

 b
io

sy
nt

he
sis

In
os

ito
l p

ho
sp

ha
te

 m
et

ab
ol

ism

N−
G

lyc
an

 b
io

sy
nt

he
sis

G
lyc

ol
ys

is 
/ G

lu
co

ne
og

en
es

is

Fa
tty

 a
cid

 d
eg

ra
da

tio
n

Va
lin

e,
 le

uc
in

e 
an

d 
iso

le
uc

in
e 

de
gr

ad
at

io
n

Pr
op

an
oa

te
 m

et
ab

ol
ism

Cy
st

ei
ne

 a
nd

 m
et

hi
on

in
e 

m
et

ab
ol

ism

G
lyo

xy
la

te
 a

nd
 d

ica
rb

ox
yla

te
 m

et
ab

ol
ism

Pu
rin

e 
m

et
ab

ol
ism

Py
rim

id
in

e 
m

et
ab

ol
ism

G
lyc

er
op

ho
sp

ho
lip

id
 m

et
ab

ol
ism

Py
ru

va
te

 m
et

ab
ol

ism

Pa
nt

ot
he

na
te

 a
nd

 C
oA

 b
io

sy
nt

he
sis

Te
rp

en
oi

d 
ba

ck
bo

ne
 b

io
sy

nt
he

sis

Ty
ro

sin
e 

m
et

ab
ol

ism

O
th

er
 g

lyc
an

 d
eg

ra
da

tio
n

Pe
nt

os
e 

ph
os

ph
at

e 
pa

th
wa

y

Ni
co

tin
at

e 
an

d 
ni

co
tin

am
id

e 
m

et
ab

ol
ism

G
lyc

os
am

in
og

lyc
an

 b
io

sy
nt

he
sis

 −
 ke

ra
ta

n 
su

lfa
te

G
lyc

os
ph

in
go

lip
id

 b
io

sy
nt

he
sis

 −
 g

an
gl

io
 s

er
ie

s

Sy
nt

he
sis

 a
nd

 d
eg

ra
da

tio
n 

of
 ke

to
ne

 b
od

ie
s

G
lyc

os
ph

in
go

lip
id

 b
io

sy
nt

he
sis

 −
 g

lo
bo

 a
nd

 is
og

lo
bo

 s
er

ie
s

Ar
ac

hi
do

ni
c 

ac
id

 m
et

ab
ol

ism

Ta
ur

in
e 

an
d 

hy
po

ta
ur

in
e 

m
et

ab
ol

ism

M
uc

in
 ty

pe
 O

−g
lyc

an
 b

io
sy

nt
he

sis

Fa
tty

 a
cid

 e
lo

ng
at

io
n

G
lyc

os
am

in
og

lyc
an

 d
eg

ra
da

tio
n

Ar
gi

ni
ne

 a
nd

 p
ro

lin
e 

m
et

ab
ol

ism

Am
in

o 
su

ga
r a

nd
 n

uc
le

ot
id

e 
su

ga
r m

et
ab

ol
ism

Sp
hi

ng
ol

ip
id

 m
et

ab
ol

ism

Ub
iq

ui
no

ne
 a

nd
 o

th
er

 te
rp

en
oi

d−
qu

in
on

e 
bi

os
yn

th
es

is

Ar
gi

ni
ne

 b
io

sy
nt

he
sis

Fo
la

te
 b

io
sy

nt
he

sis

St
er

oi
d 

bi
os

yn
th

es
is

G
lu

ta
th

io
ne

 m
et

ab
ol

ism

Pe
nt

os
e 

an
d 

gl
uc

ur
on

at
e 

in
te

rc
on

ve
rs

io
ns

Pr
im

ar
y 

bi
le

 a
cid

 b
io

sy
nt

he
sis

Re
tin

ol
 m

et
ab

ol
ism

As
co

rb
at

e 
an

d 
al

da
ra

te
 m

et
ab

ol
ism

M
et

ab
ol

ism
 o

f x
en

ob
io

tic
s 

by
 c

yt
oc

hr
om

e 
P4

50

St
er

oi
d 

ho
rm

on
e 

bi
os

yn
th

es
is

Hi
st

id
in

e 
m

et
ab

ol
ism

G
lyc

os
ph

in
go

lip
id

 b
io

sy
nt

he
sis

 −
 la

ct
o 

an
d 

ne
ol

ac
to

 s
er

ie
s

Ni
tro

ge
n 

m
et

ab
ol

ism

Dr
ug

 m
et

ab
ol

ism
 −

 c
yt

oc
hr

om
e 

P4
50

Relative metabolic pathway activity across cancer types

B

0 1 2
Summed |PC1−PC8| 

loadings

Oxidative phosphorylation
N−Glycan biosynthesis

Porphyrin and chlorophyll metabolism
Pentose phosphate pathway

Citrate cycle (TCA cycle)
Glycosphingolipid biosynthesis
Steroid hormone biosynthesis

Nitrogen metabolism
Phenylalanine metabolism

Linoleic acid metabolism

Metabolic pathway heterogeneity
 associated with cancer type

Top 5 variable 
pathways

Bottom 5 variable 
pathways

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

Cell line-to-cell line metabolic variability within each cancer type (*FDR ≤ 0.05)

-log10(FDR)

% cancer types showing significant 
cell line-to-cell line variability

IQR = 

16.2

M
ea

n 
pa

th
w

ay
 T

P
M

 a
cr

os
s 

ce
ll 

lin
es

Ascorbate and aldarate metabolism

0

200

400

Oxidative phosphorylation

Pancreatic Adenocarcinoma (55 cell lines)

Cancer types

 Colorectal Adenocarcinoma  (75 cell lines)

 Melanoma (81 cell lines)

 Acute Myeloid Leukemia (43 cell lines)

C

10 20 30 40

0

1.5

2.5

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*
*
*

*

*

*

*
*
*
*

*

*

*

*

*

*

*
*

*

*
*
*

*
*
*

*

*
*
*

*
*

*
*

*
*

*

*
*
*
*
*
*
*

*
*
*

*

*
*
*
*
*
*

*
*
*
*

*

*
*
*
*
*
*

*
*
*

*
*

*
*
*
*
*
*

*

*
*
*
*
*
*
*
*

*

*

*
*
*
*
*
*
*
*
*

Porphyrin and chlorophyll metabolism

Drug metabolism − other enzymes
Steroid hormone biosynthesis

Pentose and glucuronate interconversions
Ascorbate and aldarate metabolism
Retinol metabolism

Metabolism of xenobiotics by cytochrome P450
Drug metabolism − cytochrome P450
Oxidative phosphorylation

Ether lipid metabolism
alpha−Linolenic acid metabolism

Arachidonic acid metabolism
Linoleic acid metabolism
Pyrimidine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Glycolysis / Gluconeogenesis

Pentose phosphate pathway

Galactose metabolism
Mucin type O−glycan biosynthesis

Synthesis and degradation of ketone bodies
Arginine biosynthesis
Steroid biosynthesis

Glycine, serine and threonine metabolism
Tyrosine metabolism

Glycolysis / Gluconeogenesis
Pentose phosphate pathway

Galactose metabolism
Starch and sucrose metabolism

Synthesis and degradation of ketone bodies
Ether lipid metabolism
Pyrimidine metabolism

Arginine biosynthesis
Glutathione metabolism

Mucin type O−glycan biosynthesis
alpha−Linolenic acid metabolism

Glycine, serine and threonine metabolism
Tyrosine metabolism

Drug metabolism − other enzymes
Steroid biosynthesis

Linoleic acid metabolism
Ascorbate and aldarate metabolism

Arachidonic acid metabolism
Porphyrin and chlorophyll metabolism

Pentose and glucuronate interconversions
Steroid hormone biosynthesis

Oxidative phosphorylation
Drug metabolism − cytochrome P450

Metabolism of xenobiotics by cytochrome P450
Retinol metabolism

0

0

25

50

 Myeloproliferative Neoplasms (18 cell lines)

IQR = 

13

IQR = 

2.5
IQR = 

2.1 IQR = 

0.8

IQR = 

53.5

IQR = 

43.4

IQR = 

56.3

IQR = 

52.4

IQR = 

48.8

Hod
gk

in 
Ly

mph
om

a

Lu
ng

 N
eu

roe
nd

oc
rin

e T
um

or

Non
−S

mall
 C

ell
 Lu

ng
 C

an
ce

r

Inv
as

ive
 B

rea
st 

Carc
ino

ma

Non
−H

od
gk

in 
Ly

mph
om

a

Diffu
se

 G
lio

ma

Hea
d a

nd
 N

ec
k S

qu
am

ou
s C

ell
 C

arc
ino

ma

Acu
te 

Mye
loi

d L
eu

ke
mia

Mye
lop

rol
ife

rat
ive

 N
eo

pla
sm

s

Ewing
 S

arc
om

a

Mela
no

ma

Cerv
ica

l A
de

no
ca

rci
no

ma

Ova
ria

n E
pit

he
lia

l T
um

or

Pleu
ral

 M
es

oth
eli

om
a

Rha
bd

om
yo

sa
rco

ma

Cerv
ica

l S
qu

am
ou

s C
ell

 C
arc

ino
ma

Rha
bd

oid
 C

an
ce

r

Nerv
e S

he
ath

 Tu
mor

B−L
ym

ph
ob

las
tic

 Le
uk

em
ia/

Ly
mph

om
a

Ana
pla

sti
c T

hy
roi

d C
an

ce
r

Oste
os

arc
om

a

Lip
os

arc
om

a

Neu
rob

las
tom

a

Ocu
lar

 M
ela

no
ma

Embry
on

al 
Tu

mor

Well
−D

iffe
ren

tia
ted

 Thy
roi

d C
an

ce
r

Syn
ov

ial
 S

arc
om

a

T−L
ym

ph
ob

las
tic

 Le
uk

em
ia/

Ly
mph

om
a

Eso
ph

ag
ea

l S
qu

am
ou

s C
ell

 C
arc

ino
ma

Pan
cre

ati
c A

de
no

ca
rci

no
ma

Cuta
ne

ou
s S

qu
am

ou
s C

ell
 C

arc
ino

ma

Brea
st 

Duc
tal

 C
arc

ino
ma I

n S
itu

End
om

etr
ial

 C
arc

ino
ma

Eso
ph

ag
og

as
tric

 A
de

no
ca

rci
no

ma

Blad
de

r U
rot

he
lia

l C
arc

ino
ma

Colo
rec

tal
 A

de
no

ca
rci

no
ma

Pros
tat

e A
de

no
ca

rci
no

ma

Hep
ato

ce
llu

lar
 C

arc
ino

ma

Int
rac

ho
lec

ys
tic

 Pap
illa

ry 
Neo

pla
sm

Int
rad

uc
tal

 Pap
illa

ry 
Neo

pla
sm

 of
 th

e B
ile

 D
uc

t

Ren
al 

Cell
 C

arc
ino

ma

Distinct patterns of cell line-to-cell line variability in metabolic 
pathways across cancer types

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
R

el
at

iv
e 

pa
th

w
ay

 a
ct

iv
ity

High activity

Low activity

21: OPAC:Ad+++ (1:1)

20: DMEM:F12 + 5% FBS + 2mM Glutamine + 5µg/ml Insulin +10µg/ml Transferrin + 30nM Selenium + 10nM Hydrocortisone + 10nM Beta estradiol

19: RPMI + 10% FBS + 2mM Glutamine + 25mM HEPES + 25mM Sodium bicarbonate18: McCoy's 5A + 10% FBS

17: RPMI + 5% FBS16: DMEM + 10% FBS + 2mM Glutamine15: RPMI + 10% FBS14: RPMI + 10% FBS + 2mM Glutamine

13: F12 + 10% FBS12: DMEM:F12 + 10% FBS11: DMEM + 10% FBS10: MEM + 10% FBS9: IMDM + 10% FBS + 2mM Glutamine

8: EMEM + 10% FBS + 2mM Glutamine + 100µM NEAA7: L−15 + 10% FBS6: EMEM + 10% FBS5: F12 + 15% FBS + 2mM Glutamine

4: IMDM + 20% FBS + 4mM Glutamine + 1x Insulin−Transferrin−Selenium3: IMDM + 10% FBS2: RPMI + 15% FBS1: RPMI + 20% FBS

Ascorbate and aldarate metabolism
Glycosaminoglycan biosynthesis − keratan sulfate

Glycosaminoglycan biosynthesis − chondroitin sulfate
Glycosaminoglycan biosynthesis − heparan sulfate / heparin

Galactose metabolism
Taurine and hypotaurine metabolism

Tryptophan metabolism
Fatty acid degradation

Fructose and mannose metabolism
Fatty acid biosynthesis

Synthesis and degradation of ketone bodies
Steroid biosynthesis

Propanoate metabolism
Valine, leucine and isoleucine degradation

Nicotinate and nicotinamide metabolism
Thiamine metabolism

Pentose phosphate pathway
Oxidative phosphorylation
One carbon pool by folate

Alanine, aspartate and glutamate metabolism
Pantothenate and CoA biosynthesis

alpha−Linolenic acid metabolism
N−Glycan biosynthesis

Glyoxylate and dicarboxylate metabolism
Inositol phosphate metabolism

Pyrimidine metabolism
Cysteine and methionine metabolism

Lysine degradation
Selenocompound metabolism

Porphyrin and chlorophyll metabolism
Amino sugar and nucleotide sugar metabolism

Glycosylphosphatidylinositol (GPI)−anchor biosynthesis
Citrate cycle (TCA cycle)

Terpenoid backbone biosynthesis
Glycolysis / Gluconeogenesis

Purine metabolism
Glycine, serine and threonine metabolism

Glycosphingolipid biosynthesis − ganglio series
Starch and sucrose metabolism

Biosynthesis of unsaturated fatty acids
Mannose type O−glycan biosynthesis
Other types of O−glycan biosynthesis

Linoleic acid metabolism
Metabolism of xenobiotics by cytochrome P450

Retinol metabolism
Drug metabolism − cytochrome P450

Steroid hormone biosynthesis
Glycosphingolipid biosynthesis − lacto and neolacto series

Glycosphingolipid biosynthesis − globo and isoglobo series
Arginine biosynthesis

Mucin type O−glycan biosynthesis
Glycosaminoglycan degradation

Ether lipid metabolism
Pentose and glucuronate interconversions

Pyruvate metabolism
Tyrosine metabolism

Other glycan degradation
Arginine and proline metabolism

Folate biosynthesis
Ubiquinone and other terpenoid−quinone biosynthesis

Drug metabolism − other enzymes
Primary bile acid biosynthesis

Glutathione metabolism
Fatty acid elongation

Sphingolipid metabolism
beta−Alanine metabolism

Glycerolipid metabolism
Glycerophospholipid metabolism

Butanoate metabolism
Histidine metabolism

Phenylalanine metabolism
Nitrogen metabolism

Arachidonic acid metabolism

BRelative metabolic pathway activity across growth media

Growth media compositions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0.6

1

1.4

1.8

Metabolic pathway heterogeneity
 associated with growth media

Top 10 
variable pathways

Bottom 10 variable 
pathways

Thiamine metabolism

Pentose phosphate pathway

Citra
te cycle (TCA cycle)

Oxidative
 phosphorylation

Terpenoid backbone biosynthesis

N−Glycan biosynthesis

Other glycan degradation

Nicotinate and nicotinamide metabolism

Glycosylphosphatidylinositol (G
PI)−anchor biosynthesis

Glutathione metabolism

alpha−Linolenic acid metabolism

Tryptophan metabolism

Amino sugar and nucleotide sugar m
etabolism

Propanoate metabolism

Valine, le
ucine and isoleucine degradation

Glyoxylate and dicarboxylate metabolism

Glycolysis / G
luconeogenesis

Porphyrin and chlorophyll m
etabolism

Pyrim
idine metabolism

Pantothenate and CoA biosynthesis

Steroid biosynthesis

Cysteine and methionine metabolism

Alanine, aspartate and glutamate metabolism

Drug metabolism − other enzymes

Synthesis and degradation of ke
tone bodies

Selenocompound metabolism

Purine metabolism

Pyruvate metabolism

Inositol phosphate metabolism

Prim
ary bile acid biosynthesis

Lysine degradation

Ubiquinone and other te
rpenoid−quinone biosynthesis

Fatty acid biosynthesis

Glycerophospholipid metabolism

Starch and sucrose metabolism

Arginine biosynthesis

beta−Alanine metabolism

Pentose and glucuronate interconversions

One carbon pool by folate

Glycerolipid metabolism

Folate biosynthesis

Tyrosine metabolism

Sphingolipid metabolism

Arginine and proline metabolism

Fatty acid elongation

Biosynthesis of unsaturated fatty acids

Mannose type O−glycan biosynthesis

Drug metabolism − cytochrome P450

Fatty acid degradation

Mucin type O−glycan biosynthesis

Ether lip
id metabolism

Other ty
pes of O

−glycan biosynthesis

Glycosaminoglycan degradation

Glycosphingolipid biosynthesis − ganglio series

Fructose and mannose metabolism

Nitro
gen metabolism

Glycine, serine and threonine metabolism

Arachidonic acid metabolism

Butanoate metabolism

Metabolism of xe
nobiotics by cytochrome P450

Glycosphingolipid biosynthesis − globo and isoglobo series

Taurine and hypotaurine metabolism

Steroid hormone biosynthesis

Retinol m
etabolism

Glycosphingolipid biosynthesis − lacto and neolacto series

Galactose metabolism

Phenylalanine metabolism

Glycosaminoglycan biosynthesis − heparan sulfate / h
eparin

Histidine metabolism

Glycosaminoglycan biosynthesis − chondroitin sulfate

Glycosaminoglycan biosynthesis − keratan sulfate

Ascorbate and aldarate metabolism

Linoleic acid metabolism

0 0.5 1 1.5
Summed loadings |PC1−PC4|

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


PLSR performance
B

C

D −log10(FDR)

OXPHOSLow terms
OXPHOSHigh terms

Pathway enrichment of OXPHOS state-specific vulnerabilities
(FDR ≤ 0.05)

A

Significant OXPHOS state-specific gene vulnerabilites 

PLS component

P
er

ce
nt

 v
ar

ia
nc

e

1 3 5 7 9 11 13 15 17 19

20

40

60

80

100

Goodness of fit (R2)
Prediction (Q2)

-4 -2 0
-4

-3

-2

-1

0

1

Measured OXPHOS score

P
re

di
ct

ed
 O

X
P

H
O

S
 s

co
re r = 0.90

P = 4.8 x 10-111 
r = 0.49
P = 0.0043

-2 -1 0 1
-2

-1

0

1

-1

0

1
-0.2

0

0.2

P
LS

2 
sc

or
e

-0.2 0 0.2
PLS1 score 

-0.2

0

0.2

P
LS

3 
sc

or
e

Separation of OXPHOSLow and 
OXPHOSHigh cell lines by PLS scores

O
X

P
H

O
S

 s
ta

te
 s

co
re

High

Low

-0.2

0

0.2

P
LS

4 
sc

or
e

FOXO−mediated Transcription Of Cell Death Genes
Cellular Responses To Stimuli

Nucleotide Biosynthesis
Complex I Biogenesis

G−protein Mediated Events
Mitotic Prophase

Cellular Responses To Stress
PLC Beta Mediated Events

Mitochondrial Biogenesis
Chromatin Modifying Enzymes

Signaling By TGF−beta Receptor Complex
Purine Ribonucleoside Monophosphate Biosynthesis

CaMK IV−mediated Phosphorylation Of CREB
Ca−dependent Events

CREB1 Phosphorylation Thru Activation Of CaMKII/CaMKK/CaMKIV Cascasde
Cristae Formation

Cell Cycle
Chromosome Maintenance

Signaling By TGFB Family Members
Telomere Extension By Telomerase

HATs Acetylate Histones
Signal Transduction By L1

Respiratory Electron Transport
Telomere Maintenance

Extension Of Telomeres
Citric Acid (TCA) Cycle And Respiratory Electron Transport

Respiratory Electron Transport, ATP Synthesis By Chemiosmotic Coupling,
Heat Production By Uncoupling Proteins

Regulation Of Necroptotic Cell Death
RIPK1−mediated Regulated Necrosis

Transferrin Endocytosis And Recycling
Signaling By Receptor Tyrosine Kinases

Insulin Receptor Recycling
Signaling By Rho GTPases

Signaling By Rho GTPases, Miro GTPases And RHOBTB3
RHO GTPase Effectors

Signal Transduction

0 1 2

EFR3A

RAB6A
MYH9

SNAP23

CFLA
R

CDK6
ENO1

ARHGEF7

RRAGC

TIPA
RP

NCKAP1

TRAF2

ZFP36
L1

STA
MBP

SPTSSA

TA
FA

ZZIN
EP30

0

NDUFC2

MRPL5
8

NDUFS1

COASY

NDUFB8

DNM1L
COQ4

MIC
OS10

ITGAV

FERMT2

−0
.50

−0
.25

0.0
0

0.2
5

OXPHOSLow 
vulnerability

OXPHOSHigh 
vulnerability

E

Δ
 g

en
e 

de
pe

nd
en

cy
(O

X
P

H
O

S
H

ig
h  -

 O
X

P
H

O
S

Lo
w
)

Cross-validation
(296 cell lines)

Independent validation
(32 cell lines)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

APC

PTEN
Pancancer

1

2

3

4

0.5 0 0.5

−l
og

10
 (P

 v
al

ue
)

COQ4 knockout effect

KRAS

PTEN

IBC

HNSCC

1

2

3

4

MRPL58 knockout effect

1

2

3

4

NDUFB8 knockout effect

1

2

3

4

NDUFC2 knockout effect

PIK3CA

TP53

1

2

3

4

NDUFS1 knockout effect

FAT1

KRAS
PAC

HNSCC

Pancancer

1

2

3

4

ARHGEF7 knockout effect

1

2

3

4

ENO1 knockout effect

1

2

3

4

NCKAP1 knockout effect

ARID
1A

CREBBP

KRAS

PIK
3C

A

1

2

3

4

RAB6A knockout effect

1

2

3

4

ZFP36L1 knockout effect

Pancancer
Pancancer

PTEN

PTEN

Pancancer
PTEN

Pancancer

The impact of driver mutations or cancer type on OXPHOSHigh state-specific dependencies

0.5 0 0.50.5 0 0.5 0.5 0 0.5 0.5 0 0.5

D

Pancancer

FAT1
PAC

Pancancer
TP53

Pancancer

PAC
HNSCC

Pancancer
FAT1 TP53

ARID1A

−l
og

10
 (P

 v
al

ue
)

0.5 0 0.5 0.5 0 0.50.5 0 0.50.5 0 0.5 0.5 0 0.5

Δ gene dependency
(OXPHOSHigh – OXPHOSLow)

P = 7.5 x 10−4

N = 164

N = 8
N = 15

0

0.25

0.5

0.75

1

1.25

Pancancer

PTENMut

G
en

e 
de

pe
nd

en
cy

COQ4 knockout effect MRPL58 knockout effect

OXPHOSLow

NDUFB8 knockout effectNDUFC2 knockout effect NDUFS1 knockout effect

N = 164

P = 2.5 x 10−4

P = 1.3 x 10−4 P = 2.5 x 10−4P = 1.3 x 10−4
P = 2.5 x 10−4P = 7.5 x 10−4

P = 3.8 x 10−4

P = 1.5 x 10−3
P = 1.3 x 10−4

Pancancer

PTENMut

Pancancer

PTENMut

Pancancer

PTENMut

Pancancer

PTENMut

OXPHOSHigh

B

Cell lines

Significant association 
with cancer type

Significant association
with driver mutation

The impact of PTEN mutation on mitochondrial gene dependencies in OXPHOSHigh and OXPHOSLow cell lines

C

Pancancer

ARID1AMut

KMT2DMut

Ovarian Epithelial

Tumor (O
ET)

Melanoma

EP300 knockout effect

0

0.25

0.5

0.75

1

1.25

G
en

e 
de

pe
nd

en
cy

N = 164
N = 164

P = 1.3 x 10−4

N = 18N = 15

P = 7.5 x 10−3

N = 9

N = 7

P = 1 x 10−2

N = 19

N = 17
P = 6.1 x 10−3

N = 10

N = 31
P = 1.9 x 10−3

OXPHOSLow

OXPHOSHigh

Cell linesARID1A

BRAF

KMT2D

PTEN
OET

Melanoma

1

2

3

4

EP300 knockout effect

Pancancer

0.5 0 0.5

−l
og

10
 (P

 v
al

ue
)

Δ gene dependency
(OXPHOSHigh – OXPHOSLow)

The impact of driver mutations or cancer type on EP300 dependencies

The impact of driver mutations or cancer type on OXPHOSLow state-specific dependencies

Significant
association with
cancer type

Significant
association with
driver mutation

Δ gene dependency
(OXPHOSLow – OXPHOSHigh)

Significant association 
with cancer type

Significant association
with driver mutation

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/


Months
0 40 80 120 160 200 240

%
 O

ve
ra

ll 
su

rv
iv

al

0

20

40

60

80

100

PTENWT (n = 150)

PTENMut (n = 57)

Log-rank P = 5.6 x 10-8

Survival analysis of patients with
PTENMut vs. PTENWT glioma 

-2 -1
Δ drug AUC

(OXPHOSLow – OXPHOSHigh)

-3

-2

-1

0

1

2

3

Oligomycin A
Austocystin D

BRD-K97651142

Neopeltolide

0 1 2

Drug sensitivity analysis (CTRP)A

B

Mitochondrial Electron Transport, NADH To Ubiquinone
Mitochondrion Organization

Aerobic Respiration
Translation

Oxidative Phosphorylation
Aerobic Electron Transport Chain

Mitochondrial Gene Expression
Mitochondrial Respiratory Chain Complex I Assembly

NADH Dehydrogenase Complex Assembly
Proton Motive Force−Driven Mitochondrial ATP Synthesis

Cellular Respiration
Mitochondrial ATP Synthesis Coupled Electron Transport

Mitochondrial Translation
Mitochondrial Respiratory Chain Complex Assembly

Proton Motive Force−Driven ATP Synthesis

0 1 2 3 4 5
−log10(FDR)

Enrichment of genes negatively correlated with PTEN expression
(GO Biological Processes)

C

IQR = 
0.25

IQR = 
0.36

0

0.5

1

1.5

IQR = 
0.19 IQR = 

0.33

0

0.5

1

1.5

ATP Synthase 
(19 genes)

Complex IV
(28 genes)

PTENMut PTENWT

P = 2 x 10-4

P = 2 x 10-4

D

IQR = 
0.21

IQR = 
0.24

IQR =
 0.22

IQR = 
0.36

0

0.5

1

1.5

0

0.5

1

1.5

Complex I
(15 genes)

Complex III
(14 genes)

P = 2 x 10-4
P = 2 x 10-4

Complex II
(4 genes)

0

0.5

1

1.5

IQR =
 0.25 IQR = 

0.27

P = 1

Δ 
dr

ug
 A

UC
(O

XP
HO

SHi
gh

/P
TE

NW
T  –

 O
XP

HO
SHi

gh
/P

TE
NM

ut
)

Δ drug AUC P value
> 0.5
> 0.5
≤ 0.5

< 0.05
≥ 0.05
≥ 0.05

m
ea

n 
lo

g-
no

rm
al

ize
d 

ex
pr

es
sio

n

Single-cell analysis of PTENMut vs. PTENWT glioma tumors 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569098
http://creativecommons.org/licenses/by-nc-nd/4.0/

