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Summary
Background Anthropomorphic phantoms are used in surgical planning and intervention. Ideal accuracy and high
efficiency are prerequisites for its clinical application. We aimed to develop a fully automated artificial intelligence-
based three-dimensional (3D) reconstruction system (AI system) to assist thoracic surgery and to determine its
accuracy, efficiency, and safety for clinical use.

Methods This AI system was developed based on a 3D convolutional neural network (CNN) and optimized by
gradient descent after training with 500 cases, achieving a Dice coefficient of 89.2%. Accuracy was verified by
comparing virtual structures predicted by the AI system with anatomical structures of patients in retrospective
(n = 113) and prospective cohorts (n = 139) who underwent lobectomy or segmentectomy at the Peking University
Cancer Hospital. Operation time and blood loss were compared between the retrospective cohort (without AI
assistance) and prospective cohort (with AI assistance) for safety evaluation. The time consumption for reconstruction
and the quality score were compared between the AI system and manual reconstruction software (Mimics®) for
efficiency validation. This study was registered at https://www.chictr.org.cn as ChiCTR2100050985.

Findings The AI system reconstructed 13,608 pulmonary segmental branches from retrospective and prospective
cohorts, and 1573 branches of interest corresponding to phantoms were detectable during the operation for verifi-
cation, achieving 100% and 97% accuracy for segmental bronchi, 97.2% and 99.1% for segmental arteries, and 93.2%
and 98.8% for segmental veins, respectively. With the assistance of the AI system, the operation time was shortened
by 24.5 min for lobectomy (p < 0.001) and 20 min for segmentectomy (p = 0.007). Compared to Mimics®, the AI
system reduced the model reconstruction time by 14.2 min (p < 0.001), and it also outperformed Mimics® in model
quality scores (p < 0.001).

Interpretation The AI system can accurately predict thoracic anatomical structures with higher efficiency than manual
reconstruction software. Constant optimization and larger population validation are required.
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Research in context

Evidence before this study
A literature search of all published studies was performed
using PubMed and EMBASE from inception to November
2021 to identify studies using “artificial intelligence (AI)”,
“deep-learning”, “three-dimensional reconstruction”, “surgical
anatomy” and “accuracy or efficiency”. No restrictions on
study type or language were applied. Anthropomorphic
phantoms are swiftly used in surgery, and ideal accuracy and
high efficiency are prerequisites for their clinical application.
The AI system has been postulated to be highly efficient in
reconstruction due to its fully automated properties to reduce
the workload of surgeons. New phantom systems based on AI
technique disclose distinguished potency in supporting
surgical planning and navigation. Previous studies
predominantly investigated the Dice coefficient, evaluating
the segmentation performance of medical images by
calculating the statistical validation of manual annotation in
CT images, but validation in real surgical scenarios is lacking.
To our knowledge, no other studies have verified the accuracy
of automated 3D reconstruction models using anatomical
structures as the standard in a prospective cohort with strict
statistical design.

Added value of this study
This study aimed to propose an AI-based 3D reconstruction
system for supporting thoracic surgery, which was optimized
by multitask learning, attention mechanisms, and deep
supervision. This AI system has high modularity, in which the
modules are designed using specific segmentation algorithms
for different pulmonary tissues, and each module can run and
be optimized independently. A reasonably stable level of the
Dice similarity coefficient reached 89.2% after 500 training

cases. To further validate the accuracy of the 3D model in
clinical utilization, we compared the virtual 3D broncho-
vascular structure phantoms with anatomical structures in a
retrospective cohort and a prospective cohort, achieving
100% and 97% accuracy for segmental bronchi, 97.2% and
99.1% for segmental arteries, and 93.2% and 98.8% for
segmental veins, respectively. Meanwhile, operation time and
intraoperative blood loss were compared between the
retrospective cohort (without AI assistance) and prospective
cohort (with AI assistance) for safety verification. With the
assistance of the AI system, a 3D model prior to surgery could
help to reduce operation time while causing imperceptible
differences in intraoperative blood loss. Its efficiency was also
verified by comparison with a manual reconstruction system,
and the AI system required significantly less time for 3D
model reconstruction procedures and had higher visual
quality scores for 3D model assessment.

Implications of all the available evidence
With the development of computer technology and AI,
anthropomorphic phantoms, such as 3D reconstruction, may
help to enhance surgeons’ steric perception, simplify the
training process and lower surgical morbidity by
preoperatively predicting anatomical structures. This study
demonstrates that phantom 3D models supporting thoracic
procedures developed either by AI or other manual labeling
systems can achieve high accuracy in anatomical structure
prediction, but the AI system shows higher efficiency in terms
of reconstruction time and visual performance. The operation
time may also be shortened with the assistance of 3D
reconstruction model.
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Introduction
An anthropomorphic 3D model is a fundamental tool
for preoperative planning and intraoperative navigation
in clinical practice. Interactive 3D models have been
proven to significantly enhance surgeons’ steric
perception and lower surgical morbidity by preopera-
tively predicting anatomical structures.1,2 Previously, 3D
models accurately predicted the liver resection volume
and margin in hepatic surgery3 and overwhelmingly
reduced the abnormal rate of femoral anteversion
restoration in hip arthroplasty.4

In the field of thoracic service, anatomic lung
resection is an oncological curative procedure for early-
stage lung cancers.5 Pulmonary vessel variation
occurred in 20–30% of patients,6 and 78.5% of thoracic
surgeries with intraoperative vascular injuries are con-
verted to open procedures in the era where VATS is
readily accessible.7 Knowledge of the branching pattern
of pulmonary vessels was proved essential for
preoperative planning of complete VATS.8 Previously,
senior surgeons would always mentally reconstruct what
they watched on 2D pictures into a 3D architecture
where all details are likely to be represented as they
would appear intraoperatively.9 With the development of
AI technology, 3D models can simplify reconstruction
procedures and assist surgeons in a less technical-
requesting fashion. Clinical study has demonstrated
that preoperative anatomical 3D reconstruction models
could offer comprehensive anatomy to facilitate com-
plete VATS surgery safely.10

Pulmonary 3D reconstruction models can be
completed using semi-automation tools (such as
Mimics®, OsiriX, and 3D slicer), which can simulate
anatomic structures, clarify the division of pulmonary
segments, and determine the location of the lesion.11

However, professional skill requirements, manual
annotation, and high time consumption potentially curb
the enthusiasm for widespread application of these
www.thelancet.com Vol 87 January, 2023
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systems in clinical practice.12 AI techniques may auto-
matically learn from raw data and rapidly complete the
3D model to improve clinical efficiency.13 Since preop-
erative 3D reconstruction is increasingly applied in
different surgical fields, validation of its accuracy and
safety in a large cohort of patients is urgently needed to
support its clinical application.

We established a fully automated reconstruction sys-
tem based on deep learning using a 3D convolutional
neural network (CNN) and improved its performance by
multi-task learning, attention mechanism, and deep su-
pervision. A reasonably stable level of the Dice similarity
coefficient reached 89.2% after 500 training cases. Sec-
ond, we compared the virtual broncho-vascular structure
phantom of the AI system (AI-based 3D reconstruction
system) with anatomical structures to demonstrate its
accuracy in a retrospective cohort and a prospective
cohort. Meanwhile, operation time and intraoperative
blood loss were compared between the retrospective
cohort (without AI assistance) and prospective cohort
(with AI assistance) for safety verification. Third, we
compared the AI system with a manual reconstruction
system in terms of accuracy, quality score, and total
reconstruction time for efficiency verification.
Methods
Introduction of AI system
System principle and composition
The AI-based 3D reconstruction system was designed to
assist preoperative thoracic surgery design based on
Fig. 1: Overview of AI system. AI system consisted of three main parts: p
of reconstruction, we used lung segmentation, data augmentation and ra
patch size of 64 × 196 × 196 was selected for pulmonary bronchus, arter
nodules was completed by V-Net and Faster-RCNN. Segmentation mode

www.thelancet.com Vol 87 January, 2023
deep learning, using an “end-to-end” learning process to
extract features automatically from training data for
various tasks, such as segmentation, classification, and
detection. A CNN (referring to 3D V-Net) was used for
the segmentation of lobes, bronchi, and blood vessels
through an attention mechanism, and then 3D recon-
struction models were completed and smoothed using
the marching cube algorithm.

The architecture of the AI system consisted of
common pre-processing, segmentation, and post-
processing modules (Fig. 1), and normalized CT scans
(window level, −300 HU; window width, 1800 HU) were
used in lung segmentation to reduce extrapulmonary
noise. During the training process, a 3D patch size of
64 × 196 × 196 was selected for pulmonary bronchi,
arteries, and vein segmentation owing to the GPU
memory bottleneck. The V-Net was designed for seg-
mentation using 3D contour variance information, and
the corresponding loss function was designed for a
clearer contour. The attention module named ‘Project &
Excite’ and the distance map as prior knowledge were
embedded into V-Net to optimize the network perfor-
mance for bronchi and blood vessel segmentation.
Nodules were detected using a 3D faster region-based
CNN (Faster R-CNN) network of the deep learning
model, and their regions were segmented using a 2D U-
Net network based on the detected bounding boxes. In
the post-processing module, the segmentation results
are processed before being rendered by traditional
techniques, such as noise reduction, while maintaining
the largest connected component.
re-processing, model training and postprocessing. To improve the performance and robustness
ndom cropping in pre-processing before the training phase. During the training process, a 3D
y, and vein segmentation due to the GPU memory bottleneck, and segmentation of lobes and
ls were processed by computer graphical operations before surface rendering.

3
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Optimization of AI systems
According to the basic theory of deep learning, neural
networks would achieve better performance with more
high-quality data, which would lead to stable conver-
gence of the neural network in the training phase based
on gradient descent. To elucidate the optimization of the
AI system, we chose one patient with a nodule in the left
upper lobe, whose CT scan was reconstructed for a 3D
model by the AI system in different training stages with
10, 30, 60, 100, 200, 300, 400, and 500 cases. The Dice
similarity coefficient, which refers to the average
concordance rate for pixel identification between AI
systems and humans, was treated as a metric in image
segmentation. The Dice coefficient index of our AI
system showed a logarithmic growth with an increasing
number of training data improved from 62.8% to 89.2%,
and the manual modification time decreased from
68 min to 0 min correspondingly (Fig. 2). The manual
modification was completed by senior surgeons and
senior AI algorithm engineers who have been well-
trained in annotating CT imaging with extensive expe-
rience. They worked together to modify the 3D models
for the clear exhibition of the anatomical segmental
branches to meet the clinical demands using high-
resolution CT scanning reviewed by experienced sur-
geons as the standard. Then the corrected 3D models
were learned by the AI system as feedback information,
by which the AI system can gradually complete the 3D
models accurately. When enough cases were included in
the training dataset, AI-based 3D models could be well
improved to meet the clinical demands, and no modi-
fication was needed. As the AI system was trained with
10 cases, misidentification of the 3D reconstruction
model occurred at the vascular trunk and arteriovenous
boundaries (Fig. 3a). When trained with 60 cases,
vascular trunks of the 3D model were identified,
whereas arteriovenous boundaries were misidentified
(Fig. 3b). Only small blood vessels were misidentified
when the AI system was trained with 100 cases
compared to the standard reference (Fig. 3c). The 3D
reconstruction model of the AI system trained with 500
cases was regarded as the standard reference due to
reaching a plateau of the Dice coefficients index
(Fig. 3d). When we increased training cases from 10 to
Fig. 2: Optimization of AI system. Dice similarity coefficient of AI
system was improved from 62.8% to 89.2% and manual modifica-
tion time decreased from 68 min to 0 min.
50, 50 to 100, 100 to 300, 300 to 400, and 400 to 500, the
increase of Dice was 15%, 6.88%, 3.5%, 0.7%, and 0.3%,
respectively. Thus, when the sample size is larger than
500, the increase of the Dice coefficient index would be
not significant.

The training dataset (500 cases) and validation
dataset (40 cases) of the segmentation model in this
study were all from patients who used the “Lung
3D reconstruction service” of Linkdoc Information
Technology (Beijing) Co., Ltd. All patients read the
User Service Agreement and Privacy Policy and
signed the informed consent. The data was volun-
tarily uploaded by the patients, and Linkdoc was
explicitly authorized to use the data for research and
optimization of the service.
Study design and participants
A prospective comparison study was performed
based on a pilot retrospective study at Peking Uni-
versity Cancer Hospital to verify the potential utili-
zation of the AI system. In this retrospective study,
we consecutively recruited 113 patients with lung
cancer who underwent contrast-enhanced CT scans
before surgery and lobectomy or segmentectomy
from August 2018 to November 2021. Qualified
video data of these surgeries are available for re-
view. The exclusion criteria were pulmonary wedge
resection, lack of complete surgical videos, and
absence of contrast-enhanced CT scans. Accuracy
was verified by reviewing the anatomical structures
in the surgical videos. Based on this, we prospec-
tively recruited 139 consecutive patients following
the sample size calculation formula. The patients
were included if they have completed contrast-
enhanced CT scans and they were scheduled to
undergo lobectomy or segmentectomy from
November 2021 to June 2022. Patients included in
the retrospective and prospective cohorts underwent
video-assisted thoracic surgery at Peking University
Cancer Hospital, and surgical videos were recorded
using IMAGE1 S™ 4U (KARL STORZ-ENDOSKOPE
(Shanghai) China).
Ethics
The prospective study was registered in the Chinese
Clinical Trial Registry (ChiCTR2100050985) and de-
tails of the study protocol are available in the
Supplementary Material. Informed consent was ob-
tained from all participants in prospective cohort.
The whole study was approved by the Peking Uni-
versity Cancer Hospital Institution Ethics Board
(2021KT101) and followed the Consolidation Stan-
dards of Reporting Trials-Artificial Intelligence
(CONSORT-AI).14 Due to the retrospective nature of
the data acquisition and the use of deidentified
www.thelancet.com Vol 87 January, 2023
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Fig. 3: AI-based 3D reconstruction modes during optimization phase (a) Vascular trunk and arteriovenous boundaries are misidentified; (b)
Vascular trunks and some arteriovenous boundaries are identified; (c) Vascular trunks and arteriovenous boundaries are identified, small vessels
were misidentified. (d) Standard model reference, segmental pulmonary arteries and veins are well identified.
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surgical videos, the informed consent was exempted
in retrospective cohort.
Procedures
Accuracy verification in retrospective and prospective studies
In a retrospective cohort study, investigators reviewed
anatomical structures from surgical videos and identi-
fied detectable lobar/segmental bronchi, segmental ar-
teries, and pulmonary/segmental veins. The accuracy of
the broncho-vascular structures was calculated by
comparing the anatomical structures from surgical
videos with 3D reconstruction models developed by the
AI system.

In the prospective cohort, the accuracy was
verified by comparing AI-based reconstruction models
with intraoperative anatomical structures. Segmental
bronchi, arteries, and veins were individually identified
for segmentectomies. During lobectomy, investigators
dissected the segmental structures to verify the target
structures. It is a binary way to judge the anatomical
structures in 3D models. To ensure the quality of the
reconstructed structure identification, senior surgeons
(Wu N, Yan S and Zhang SY) identified segmental
bronchi, arteries, and veins during surgery, and checked
with the model, another surgeon (Li X) recorded the
existence of each structure or not. In segmentectomy,
segmental anatomical structures (consisting of
segmental bronchi, segmental pulmonary arteries, and
veins) were identified directly by surgeons. The same
www.thelancet.com Vol 87 January, 2023
procedure was done in lobectomy for lobar structure.
After surgery, senior surgeons would dissect the pa-
renchyma of excised lobes along segmental bronchi and
pulmonary vessels to expose segmental or sub-
segmental structures for verification. A comparison
was made between findings from the surgical anatomy
and related structures simulated by the model and
recorded in the checklist (Supplementary Material).
Anatomical images from the surgical videos or hilum
anatomy were retained for confirmation. Meanwhile, we
compared the operation time and intraoperative blood
loss between the retrospective cohort (without AI
assistance) and prospective cohort (with AI assistance)
for safety validation.

Comparison between AI system and manual semi-automatic
reconstruction system
A classical manual reconstruction software, Mimics®,
was chosen for comparison with AI system in terms of
efficiency, quality score, and time consumption for 3D
reconstruction procedures. The Mimics® system re-
quires users to indicate labels for each of the structures
of interest and to indicate thresholds for the grey-value
range to be considered. License of Mimics® MIS 24.0
(Leuven, Belgium, Materialize) was obtained from
November 4, 2021.

In the prospective cohort, preoperative 3D recon-
struction models of the AI system and Mimics® were
created using the same CT scans. The AI system
finished the work automatically, and the Mimics-based
5
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3D reconstruction was manually completed by a pro-
fessional trained surgeon (XL). The accuracy of the
broncho-vascular structures was calculated by
comparing the anatomical structures, and a comparison
of accuracy was made between the AI system and
Mimics® using anatomical structures as a standard. The
time required for the two 3D reconstruction procedures
was recorded. In Mimics®, timing commenced from
the airway reconstruction and ceased when 3D recon-
struction was completed; pairwise comparison was
performed to investigate the differences between the
two systems. Quality scores based on the visual
perception from the AI-based or from Mimics-based
models were evaluated by two experienced surgeons
according to the quality scoring criteria, and a third
researcher adjudicated discrepancies (N.W., S.Z., and
S.Y.) (Fig. 4). In quality scoring criteria (Table 1), a score
of 1 represents “complete failure of the reconstruction”,
2 represents “misidentification in vascular trunk”, 3
represents “misidentification in vascular branches”, 4
represents “little misidentification in branches”, and 5
represents “no misidentification”. A comparison of
scores was made between 3D reconstruction models
from the AI system and from Mimics® to evaluate the
difference in visual perception.

Statistics
The aim of this study was to verify the accuracy and
efficiency of the AI system. We pre-analysed 113 pa-
tients to estimate the sample size. The accuracy of the
AI system was set at 90% (πT), and the anatomical
structures were regarded as the gold reference at 100%
(πC). A difference of 2% (Δ) between the AI-based 3D
Fig. 4: Flow chart of the retrospective
models and the anatomical structures was tolerable.
Z(1 − α) and Z(1 − β) refer to the quantiles of the standard
normal distribution (type I error: α = 0.025; type II error:
β < 0.2). For the study to have 80% power with a sig-
nificance level of 5%, the minimum number of patients
recruited into the AI system group was 110. To account
for a 20% dropout rate, we planned to recruit more than
132 patients into the study following the sample size
calculation formula:

nT = nC = (Z1−α+Z1−β)[πC(1−πC)+πT (1−πT )/r]
[(πT−πC)−Δ]2

nT = rnC

Pulmonary 3D models were completed by AI system
and Mimics independently, and accuracy was verified
using anatomical structures as a gold standard. The
accuracy of 3D models was calculated as the following
formula:

Accuracyt = TPt+TNt

TPt+FPt+TNt+FNt
= TPt

TPt+FPt+FNt

=
∑
N

i=1
TPt(i)

∑
N

i=1
TPt(i)+FPt(i)+FNt(i)

in which, t refers to bronchi, pulmonary arteries, and
pulmonary veins; N refers to the number of patients; TP
refers to the number of segmental structures (bronchi,
pulmonary arteries, and pulmonary veins) that were
and prospective validation study.

www.thelancet.com Vol 87 January, 2023
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Scoring Criteria Atlas

1 3D reconstruction model cannot be finished.

2 Bronchi or vessels trunks were reconstructed wrongly, causing confusion in clinical practice.

3 Bronchi or vessels trunks were reconstructed correctly, branches were wrongly reconstructed.

4 Bronchi or vessels trunks were reconstructed correctly, few branches were wrongly reconstructed.

5 3D reconstruction model is finished with clear boundary between arteries and veins.

Table 1: Quality scoring criteria.

Articles
correctly reconstructed in 3D models. TN refers to the
absent segmental structures in anatomical structures,
thus TN = 0; FP refers to the number of structures in
models while absent in anatomical structures. FN refers
to the number of anatomical structures that models
failed to display.

Continuous variables with non-normal distributions
are presented as medians (interquartile ranges), and
continuous variables with normal distributions are
presented as means and standard deviations. Pearson’s
chi-square test was used to assess categorical variables.
An analysis without parametric assumptions was carried
out for non-normally distributed data sets (Mann–
Whitney U test), paired t-tests were applied to compare
paired data obeying normal distribution and homoge-
neity of variance between two groups, and unpaired
t-tests were used for comparisons of unpaired data
between two groups. The accuracy (proportion) of
AI-based and Mimics-based 3D models were compared
by using Fisher’s exact test. We used R (version 3.6.1;
http://www.R-project.org, The R Foundation for
www.thelancet.com Vol 87 January, 2023
Statistical Computing) via RStudio software version
1.2.5033, Python (Python 3.7, Python Software Foun-
dation, Wilmington, DE), and GraphPad Prism software
(version 9.0; GraphPad Software Inc.) to analyse and
draw diagrams.
Role of the funders
The funder of the study had no role in the study design,
data collection, data analysis, data interpretation, or
writing of the manuscript.
Results
Characteristics of patients
This retrospective study included 113 patients. The
main baseline characteristics of the patients are sum-
marized in Table 2. The median age was 62 years (IQR
56–67 years), and the female-to-male ratio was 1.4:1.
Seventy (61.9%) patients underwent lobectomy and 43
(38.1%) underwent segmentectomy. Furthermore, the
7
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Characteristic Retrospective study Prospective study p-value

n (%) n (%)

Age, median (IQR) 63 (56–67) 61 (54–66) 0.253

BMI, median (IQR) 24.2 (21.8–26.8) 24.1 (22.4–26.9) 0.655

Gender 0.302

Male 47 (41.6) 48 (34.5)

Female 66 (58.4) 91 (65.5)

Tumor location 0.107

Right upper lobe 23 (20.4) 43 (31.0)

Right meddle lobe 12 (10.7) 11 (7.9)

Right lower lobe 23 (24.4) 27 (19.4)

Left upper lobe 40 (35.4) 38 (27.3)

Left lower lobe 15 (13.3) 20 (14.4)

Surgery type 0.087

No surgery 0 (0) 0 (0)

Wedge 0 (0) 19 (13.7)

Segmentectomy 43 (38.1) 33 (23.7)

Lobectomy 70 (61.9) 87 (62.6)

Tumor size, median (IQR), mm 19.0 (15.0–28.0) 18.0 (13.0–23.0) 0.110

Blood loss, median (IQR), mL 30.0 (30.0–50.0) 50.0 (30.0–50.0) <0.001

Operation time, median (IQR), min 145.0 (127.0–165.0) 120.0 (102.0–150.0) 0.132

Table 2: Characteristics of the included patients.
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median length of the nodule was 19 mm (IQR
15–28 mm), and nodules were located in all lobes, with
23 (20.4%) in the right upper lobe, 12 (10.7%) in the
right middle lobe, 23 (24.4%) in the right lower lobe, 40
(35.4%) in the left upper lobe, and 15 (13.3%) in the left
lower lobe. The median operation time was 145 min
(IQR 127–165 min), and the median intraoperative
blood loss was 30 mL (IQR 30–50 mL).

In this prospective study, 139 patients (November 4,
2021–June 1, 2022) were included according to the in-
clusion criteria. Themedian age of the 139patientswas 61
years (IQR 54–66 years), with a female-to-male ratio of
1.9:1. Eighty-seven patients (62.5%) underwent lobec-
tomy, 33 (23.7%) underwent segmentectomy, and 9
(6.5%) required conversion to pulmonary wedge resec-
tion. Surgical videos of seven (5%) lobectomies and three
(2.3%) segmentectomies were missing from the images.
The median diameter of the nodule was 18 mm (IQR
13–23 mm), with 43 (31.0%) in the right upper lobe, 11
(7.9%) in the right middle lobe, 27 (19.4%) in the right
lower lobe, 38 (27.3%) in the left upper lobe, and 20
(14.4%) in the left lower lobe. Themedian operation time
was 120 min (IQR 102–150 min), and the median intra-
operative blood loss was 50 mL (IQR 30–50 mL).
Accuracy verification of AI system
Accuracy verification in retrospective cohort
The anatomical structures from 113 surgical videos
were retrospectively reviewed to verify the accuracy of
the AI system (Table 3). In total, 82 segmental and 46
lobar bronchi were identified from 113 surgical videos,
and the accuracy of the AI system was 100%. Of the 283
segmental pulmonary arteries, 275 segmented arteries
were predicted using the AI system with an accuracy of
97.2%, and five missing arteries occurred in the left
upper lobes. The accuracy rate of segmental pulmonary
veins was 93.2%, and 175 of the 190 detectable
segmental veins were predicted (Fig. 5a). Sixteen lobar
veins were identified, and the accuracy of the lobar
pulmonary veins was 100%.

The accuracy of the AI system in surgical segmental
branch identification was ranked by different lobes; the
right middle lobe showed the lowest accuracy in
segmental artery verification (92.3%), and the right
lower lobe showed the lowest accuracy in segmental
vein verification (Fig. 5b).

Accuracy verification in prospective cohort
The intraoperative anatomical structures of the 120 pa-
tients were used to verify the accuracy of the AI system
in clinical practice (Table 4). A total of 336 segmental
bronchi from 120 patients were detected, and the AI
system predicted 326 segmental bronchi with an accu-
racy of up to 97.0%. Ten segmental bronchi were
missed in the AI-based 3D reconstruction models. Of
the 342 segmental pulmonary arteries, 339 were pre-
dicted in the AI system with an accuracy of up to 99.1%,
and three missing arteries occurred in RA1 and LA6.
Furthermore, the accuracy of segmental pulmonary
www.thelancet.com Vol 87 January, 2023
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Lobes Bronchi (n) Pulmonary arteries (n) Pulmonary veins (n)

AI SA AI SA AI SA

Right upper (23) B1 6 6 A1 18 19 V1 20 20

B2 1 1 A2 17 17 V2 16 16

B3 3 3 A3 21 21 V3 18 19

Segment 10 10 56 57 54 55

Lobe B 12 12 A 0 0 V 1 1

Right middle (12) B4 6 6 A4 12 13 V4 9 10

B5 6 6 A5 12 13 V5 9 10

Segment 12 12 24 26 18 20

Lobe B 4 4 A 0 0 V 1 1

Right lower (23) B6 9 9 A6 18 18 V6 6 7

B7 3 3 A7 12 12 V7 6 7

B8 4 4 A8 11 11 V8 5 6

B9 2 2 A9 9 9 V9 2 3

B10 1 1 A10 10 10 V10 2 3

Segment 19 19 60 60 21 26

Lobe B 9 9 A 0 0 V 9 9

Left upper (39) B1 + 2 12 12 A1 + 2 37 38 V1 + 2 23 24

B3 8 8 A3 29 31 V3 23 25

B4 5 5 A4 17 18 V4 17 18

B5 2 2 A5 12 13 V5 13 14

Segment 27 27 95 100 76 81

Lobe B 15 15 A 0 0 V 4 4

Left lower (16) B6 4 4 A6 14 14 V6 3 3

B7 + 8 5 5 A7 + 8 11 11 V7 + 8 3 3

B9 4 4 A9 8 8 V9 1 1

B10 1 1 A10 7 7 V10 1 1

Segment 14 14 40 40 8 8

Lobe B 6 6 A 0 0 V 1 1

Accuracy* 100% 82 82 97.2% 275 283 93.2% 177 190

Accuracy# 100% 46 46 0 0 100% 16 16

Note: Accuracy* refers to the accuracy of segmental branches of the bronchi, arteries, and veins, and Accuracy# refers to the accuracy of the lobar bronchi, arteries, and veins.
SA refers to surgical anatomy. Bold values refer to the summary of each lobe and all lobes.

Table 3: Accuracy of AI system (AI system vs. surgical anatomy) in retrospective group.

Articles
veins was 98.8%, 336 segmental veins were correctly
predicted from 340 anatomic segmental veins, and
four segmental vein misidentifications occurred in
the right lobes (Fig. 5c). Misidentification of the 3D
reconstruction models occurred in nine cases, account-
ing for 7.5% of all cases. No significant difference was
observed between cases with and without misidentifi-
cation in operation time (median, 120 min [IQR,
95.0–156.5] vs. 120 min [IQR, 102.8–150.0]; p = 0.824)
and intraoperative blood loss (median, 50 mL [IQR,
30.0–75.0] vs. 50 mL [IQR, 30.0–50.0]; p = 0.617).

The accuracy of the AI system was also ranked by
lobe, and the right upper lobe showed the lowest accu-
racy in segmental bronchi (95.4%), segmental arteries
(97.8%), and segmental veins (97.6%). The right middle
lobe showed the highest accuracy in the segmental
bronchi (100.0%), segmental arteries (100.0%), and
segmental veins (100.0%) (Fig. 5d).
www.thelancet.com Vol 87 January, 2023
Safety verification of AI system
Operation time and intraoperative blood loss
Operation time refers to the time of surgery. Surgery in
the retrospective cohort was not assisted by 3D recon-
struction, which was regarded as the “without AI system
supporting” group, and the prospective cohort was
regarded as the “with AI system assistant” group. In the
retrospective cohort, the median operation time of 113
patients in the retrospective cohort was 145 min (IQR
127–165 min), and the median intraoperative blood loss
was 30 mL (IQR 30–50 mL). In the prospective cohort,
the median operation time of the 120 patients was
124 min (IQR 106–150 min), and the median intra-
operative blood loss was 50 mL (IQR 30–50 mL).
Considering the different demands for 3D reconstruc-
tion in lobectomy and segmentectomy, we analysed the
operative time and intraoperative blood loss using
different surgical procedures. For lobectomy, the
9
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Fig. 5: Accuracy verification and accuracy ranking. (a) Accuracy of AI-based 3D reconstruction with the standard of anatomical structures in
retrospective study. (b) Ranking for accuracy of AI-based 3D reconstruction in different pulmonary lobes in retrospective study. (c) Accuracy of
AI-based 3D reconstruction with the standard of anatomical structures in prospective study. (d) Ranking for accuracy of AI-based 3D recon-
struction in different pulmonary lobes in prospective study.

Articles

10
operation time of 87 patients with preoperative
AI system assistance (median 125.0 min, IQR
107.0–150.0 min) was decreased compared with that of
70 patients without AI assistance (median 149.5 min,
IQR 127.0–181.8 min) (p < 0.001) (Fig. 6a), while the
intraoperative blood loss of lobectomy showed no sig-
nificant difference (p = 0.201) (Fig. 6b). For segmen-
tectomy, the operation time of 33 patients with the
preoperative AI system assistance (median 120.0 min,
IQR 101.5–147.5 min) was decreased compared with
that of 43 patients without the assistance (median
140.0 min, IQR 126.3–161.3 min) (p = 0.007) (Fig. 6c),
while the intraoperative blood loss showed no signifi-
cant difference (p = 0.834) (Fig. 6d).

Efficiency verification of AI system
Accuracy comparison between AI system and Mimics®
In the prospective cohort, the AI-based 3D reconstruc-
tion model was compared with the Mimics® model
before surgery using CT scans as a standard, which
indicated a higher accuracy in pulmonary blood vessel
simulation from the AI model over the Mimics® model
(Supplementary Material). Furthermore, the accuracy of
AI-based and Mimics-based 3D reconstruction models
was compared using anatomical structures as a stan-
dard. The AI system showed an accuracy similar to that
of Mimics® in segmental bronchi (97.1% vs. 96.1%,
p = 0.336) and outperformed Mimics® in segmental
artery prediction (99.1% vs. 91.0%, p < 0.0001) and
segmental vein prediction (98.8% vs. 92.1%, p < 0.001)
(Fig. 7a).

Quality scoring of AI system and Mimics®
The surgeons graded the quality score based on the
visual perception of the reconstructed image according
to the quality scoring criteria (Table 1). Owing to the
optimization of the AI system and Mimics®, none of
the cases were scored as 1 or 2. Ninety-eight AI-based
3D models scored 5 (70.5%), compared with 63
Mimics-based 3D models scored 5 (45.3%). In the
field of reconstruction models scored as 3 or 4,
Mimics-based 3D models occupied more cases than
AI-based 3D models (3:12.2% vs. 1.4%; 4:42.5% vs.
28.1%). A significant difference was observed in the
www.thelancet.com Vol 87 January, 2023
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Lobes Bronchi (n) Arteries (n) Veins (n)

AI Mimics® SA AI Mimics® SA AI Mimics® SA

Right upper (37) B1 30 28 31 A1 32 25 34 V1 30 26 30

B2 25 27 27 A2 26 25 26 V2 26 27 27

B3 28 28 29 A3 29 28 29 V3 27 27 28

Subtotal Right upper 83 83 87 Right upper 87 78 89 Right upper 83 80 85

Right middle (10) B4 10 10 10 A4 10 10 10 V4 10 10 10

B5 10 10 10 A5 10 10 10 V5 10 10 10

subtotal Right middle 20 20 20 Right middle 20 20 20 Right middle 20 20 20

Right lower (26) B6 22 23 24 A6 24 23 24 V6 24 22 24

B7 19 19 20 A7 21 18 21 V7 18 16 19

B8 20 20 21 A8 23 23 23 V8 19 20 20

B9 20 20 20 A9 20 20 20 V9 20 17 20

B10 16 16 16 A10 19 19 19 V10 23 22 23

Subtotal Right lower 97 98 101 Right lower 107 103 107 Right lower 104 97 106

Left upper (32) B1 + 2 28 26 28 A1 + 2 29 28 29 V1 + 2 25 24 25

B3 24 24 25 A3 23 20 23 V3 24 22 24

B4 18 17 18 A4 17 15 17 V4 17 17 17

B5 15 15 15 A5 14 12 14 V5 16 15 16

Subtotal Left upper 85 82 86 Left upper 83 75 83 Left upper 82 78 82

Left lower (14) B6 11 11 12 A6 9 8 10 V6 11 10 11

B7 + 8 11 10 11 A7 + 8 12 10 12 V7 + 8 12 10 12

B9 10 10 11 A9 11 8 11 V9 12 8 12

B10 9 9 9 A10 10 9 10 V10 12 10 12

Subtotal Left lower 41 40 42 Left lower 42 35 43 Left lower 47 38 47

Total 326 323 336 339 311 342 336 313 340

Accuracy 97.1% 96.1% 100% 99.1% 91.0% 100% 98.8% 92.1% 100%

Note: Accuracy refers to the accuracy of segmental branches of the bronchi, arteries, and veins. SA refers to surgical anatomy. Bold values refer to the summary of each lobe
and all lobes.

Table 4: Accuracy of AI system (AI system vs. surgical anatomy) in prospective group.

Articles
quality scores between the two types of 3D recon-
struction vision demos (p < 0.001) (Fig. 7b). The AI-
based model and Mimics-based model of one patient
who underwent left upper lobectomy are displayed
here (Fig. 7c).

Time consumption of AI system and Mimics®
The median total reconstruction time of AI system was
6.8 min (IQR 5.5–8.1 min), less than 21 min (IQR
17–28 min) of the manual reconstruction time in
Mimics® with a significant difference (p < 0.001)
(Fig. 7d).
Discussion
With the development of computer technology, inter-
active 3D reconstruction has proven useful in enhancing
surgeons’ experience with specific anatomic structures,
especially in patients with anatomic variations.1,2 In
recent hepatic surgery, 3D reconstruction has gradually
been used to visualize and intuitively display variations
in intrahepatic blood vessels. It can also provide a
www.thelancet.com Vol 87 January, 2023
convenient and accurate method for liver volume
calculation, virtual simulation surgery, and surgical
navigation.3 Several manual software programs have
been developed for the application of 3D reconstruction
systems in thoracic surgery. In the context of an
increasing number of thoracic surgeries for lung
resection, manipulation skills and the time consump-
tion of manual software would curb surgeons’ enthu-
siasm for completing 3D reconstructions. As AI
technology has evolved in disease diagnosis and treat-
ment since it was proposed in the 1960s,15 it has been
applied in various medical fields to replace part of the
manual work. Therefore, we propose the fully auto-
mated AI-based 3D reconstruction system and validate
its accuracy and efficiency by comparison with a clas-
sical manual system for future clinical use.

Semi-automatic reconstruction tools, represented by
Mimics®, are based on threshold-based segmentation
methods16 from stacks of contrast-enhanced 2D CT
scans, achieving an actionable but laborious procedure
in completing the 3D reconstruction models. In this
study, we constructed the AI system based on deep
11
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Fig. 6: Comparison of operation time and intraoperative blood loss. (a) Operation time of lobectomy. (b) Intraoperative blood loss in
lobectomy. (c) Operation time of segmentectomy. (d) Intraoperative blood loss in segmentectomy.
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learning, which is a fully automated algorithm that can
efficiently complete 3D reconstruction with non-
contrast or contrast-enhanced CT scans. This AI sys-
tem has high modularity, in which the modules are
designed using specific segmentation algorithms for
different pulmonary tissues, and each module can run
and be optimized independently. Relying on data-driven
optimization for deep learning17 and the feedback error
learning concept in clinical practice, this AI system
could run smoothly with little human intervention. It
also had excellent generalization ability by using a fully
automated algorithm in both contrast-enhanced and
non-contrast-enhanced CT. Although high modularity
requires considerable data collection and annotation by
experienced doctors for multi-task learning during the
training process, it can greatly enhance the efficiency
after optimization. The AI system can also automatically
smoothen the 3D reconstruction model in the post-
processing module. However, ensuring safety in clin-
ical practice is vital for the AI system, and accuracy
verification is still lacking, especially when compared
with human anatomical structures.

The Dice similarity coefficient was used to evaluate
the segmentation performance of the medical images by
calculating the similarity of the models and CT images
with a value between 0 and 1. In a previous study, the
accuracy of the 3D reconstruction model was verified by
comparison with CT, in which the fully automated al-
gorithm reached a stable Dice similarity of 85%.18 To
accurately support clinical practice, a prospective com-
parison study between AI-based 3D models and
anatomical structures is urgently needed. As the AI
system reached a reasonably stable Dice similarity co-
efficient of 89.2%, we verified its accuracy of AI system
by comparing the AI-based 3D reconstruction model
with intraoperative anatomical structures. In retrospec-
tive studies, limited data on segmental branches from
surgical videos can be used for accuracy verification,
especially in lobectomy. Segmental pulmonary veins
were relatively poorly predicted in a retrospective study,
with an accuracy of 93.2%, and misidentification always
occurred in the left upper lobe owing to its complex
anatomical structures with small branch and blood
vessel variations.19 Thus, this prospective study was
designed with intraoperative accuracy verification to
reach a highly reliable conclusion. Ranking accuracy
showed that misidentification always occurred in the
right upper lobes because unrecognized arteriovenous
crossover and different anatomic subtypes existed in the
right upper lobes for different positions of the central
www.thelancet.com Vol 87 January, 2023
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Fig. 7: Efficiency comparison of AI system and Mimics. (a) Accuracy verification of AI system and Mimics by anatomical structures standard.
(b) Quality scores of AI-based and mimics-based 3D reconstruction vision demos. (c) One patient received left upper lobectomy. Of which
segmental bronchi, segmental arteries, and segmental veins were labelled, the quality scores of AI system and Mimics were 5 and 4, respectively.
The Mimics-based reconstruction model lose some small branches of bronchi and vessels. (d) Time consumption of AI system and Mimics.

Articles
veins,20 which should be noted to avoid major bleeding
due to blood vessel injury. In this study, we also found
that segmental structure misidentification in a 3D
model for preoperative planning had little impact on
operation time and intraoperative blood loss, suggesting
a potential safety profile for clinical application.
Considering the limited sample size in this regard, a
large sample size study is needed for future safety
validation.

The AI system may significantly reduce the recon-
struction time compared with the classical manual
reconstruction system. The time consumption of the AI
system consisted of the automated reconstruction time
and clinical manipulation time. In clinical practice,
automatic reconstruction is initiated when patients fin-
ish their CT examination, and no extra manipulation is
needed as surgeons review the AI-based 3D recon-
struction models. Thus, the AI system has an over-
whelming advantage in saving surgeons’ manipulation
time because even skilled surgeons need to annotate the
anatomical structures in CT layer-by-layer in the
www.thelancet.com Vol 87 January, 2023
classical manual system. Quality score evaluation by
surgeons according to the criteria suggested that the AI
system can also provide 3D reconstruction vision
demonstration with better visual perception, which is
mostly related to the identification of blood vessel
boundaries. The merit of the AI system is that it pro-
vides a landscape reconstruction view of pulmonary
structures, which may localize to any interesting area
and scrutinize detailed structures for surgical planning.
However, for manual systems, regional structure
reconstruction is a common procedure in most practice
because whole-scale reconstruction with manual label-
ling is very time-consuming.

To our knowledge, there are very few prospective
studies that have been designed to verify the accuracy of
an AI system. Here, we compared AI-based 3D phan-
tom structures with intraoperative surgical anatomical
structures in both retrospective and prospective cohorts.
Combined with the surgeon’s experience, this AI system
can effectively avoid misidentification in intraoperative
decision-making. Thus, the operation time in both
13
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lobectomy and segmentectomy can be reduced because
the preoperative 3D model would help surgeons indi-
vidually recognize vascular variations and their position,
orientation, and relationship with other blood vessels for
safer surgery.6 Previous studies have shown that careful
preoperative planning in thoracic surgery is essential to
reduce intraoperative complications.21–23 Especially in
anatomical lung resection, it is vital to avoid injury to
hilar structures with complex vascular structures.6

AI-based 3D models can also simplify the procedures
of training less experienced thoracic surgeons. The
traditional training process is a combination of the self-
learning process and the mentoring process by seniors.
In an era of computer science, steric knowledge of
anatomic structures can be mastered with the aid of
semi-automatic and fully-automatic systems. The junior
surgeon may use the AI system to establish a landscape
picture of any lobar or segmental anatomy quickly, like
the guide from a mentor, and then use the semi-
automatic system to label vascular and bronchi from
CT images and recognize or identify the individual
vascular-bronchi structures or variants. During this
process, a quick perception of the targeted pulmonary
structure would be enhanced and then this perception is
validated or guided by senior surgeons during the
operation. Recent articles showed that AI technology
was superior in skill transfer compared with remote
expert instruction.24 In our department, young fellows
gain knowledge of anatomic structures quickly by
annotating these complicated anatomical structures
during their initial stage of practice. When they fluently
master the technique, they will transfer to the fully-
automatic AI system to save time on reconstruction.
We believe this combination will help their training
process.

The present study has several limitations. Although
the AI system has reached a stable level with consider-
able data collection, CT artifacts still hinder its identifi-
cation ability and reconstruction performance. Then,
3D-VNet was used to enhance the identification ability,
and the attention mechanism was adopted to improve
its ability to extract global semantic information to
reduce disturbance information. Additionally, there was
a paucity of previous direct comparative studies with
anatomical structures, and the sample size (n = 139) was
calculated according to the results of a retrospective
study (n = 113); thus, the confounding effects of
anatomical structure variation of limited sample size
cannot be ruled out. Finally, this was a single-centre
study consisting of retrospective and prospective
studies, and the results were subjective to the inherent
shortcomings of the single-centre study. Patients in
preparation for lung cancer surgery were enrolled,
which may introduce a selection bias. Thus, data from
larger patient populations from multiple centres are
required to confirm the accuracy, efficiency, and safety
of the AI system.
In conclusion, this comprehensive study of the AI
system provided evidence of its high accuracy in
predicting pulmonary anatomic structures with high
efficiency. With the assistance of the AI system, the
operation time was significantly reduced, with no sig-
nificant influence on intraoperative blood loss.
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