
Oncology

MEDICINE AND PHARMACY REPORTS Vol. 97 / No. 2 / 2024: 132 - 142132 

Exploring the contrasts: in-depth analysis of 
human and canine mammary tumors - discoveries 
at the frontier

Luciana Madalina Gherman1,2, Diana Tomuleasa3, Andrei Cismaru2, 
Andreea Nutu2, Ioana Berindan-Neagoe2,4

1) Experimental Centre of Iuliu 
Hatieganu University of Medicine 
and Pharmacy, Cluj-Napoca, 
Romania

2) Research Center for Functional 
Genomics, Biomedicine and 
Translational Medicine, Iuliu 
Hatieganu University of Medicine 
and Pharmacy, Cluj-Napoca, 
Romania

3) MEDFUTURE - The Research 
Center for Advanced Medicine, Iuliu 
Hatieganu University of Medicine 
and Pharmacy, Cluj-Napoca, 
Romania

4) Doctoral School, Iuliu Hatieganu 
University of Medicine and 
Pharmacy, Cluj-Napoca, Romania

Abstract
We have examined genomic and transcriptomic abnormalities in human and 
canine samples to evaluate the canine model’s validity for breast cancer research, 
emphasizing similarities and differences. Both species commonly utilize 
serum tumor markers and noncoding microRNAs. Immunohistochemistry and 
immunocytochemistry were employed to illustrate and compare results based on 
histological diagnoses. In addition to these factors, similarities exist in spontaneous 
tumor occurrence, age of onset, hormonal influences, and disease progression, 
including tumor size, clinical stage, and lymph node involvement. Molecular traits 
such as hormone receptor status, Epidermal Growth Factor Receptor (EGFR), and 
proliferation markers (Ki67) further endorse the canine model’s utility in breast 
cancer studies. The advancement of technologies facilitates the identification of 
new cancer-associated molecules, both coding and non-coding genes, underscoring 
their potential as prognostic/diagnostic biomarkers and therapeutic targets.
Keywords: human breast cancer (HBC), canine breast cancer (CBC), immune 
system, immunotherapy, comparative oncology, translational research

Introduction
Cancer has become the leading 

cause of death worldwide, under the 
pressure of an accelerated harmful 
environment, aged population, and 
socioeconomic risk factors [1]. According 
to GLOBOCAN 2020, breast cancer is 
classified as the leading pathology in 
terms of incidence and mortality in the 
female segment and the second cause 
of death within the overall oncological 
sector: approximately 9.2 million new 
cases in 2020, representing 11.7% of all 
malignant sites combined, and 684,996 
further deaths in the same year, summing 
6.9% of overall cancer-related death 
statistic [2].

In the last decades, animal 
models, especially the canine model 
has become an important translational 
model for human breast cancer [3,4]. The 
canine model represents an important 
translational factor, as dogs have become 

members of human families, sharing 
the same environment, exposure to the 
same risk factors and pathological stimuli 
(infectious agents, carcinogenic conditions 
and others) as their owners. The canine 
model is considered an exemplary model 
for the study of human breast cancer, due 
to the multiple similarities such as tumor 
spontaneity, intact immune environment, 
age of onset, influence of the hormonal 
profile on tumor development, disease 
evolution, clinical parameters (tumor size, 
clinical staging and invasion lymph node), 
tumor metastasis, as well as numerous 
molecular markers and genetic risk factors 
[4–7]. Another aspect that supports the use 
of the canine model as translational model is 
the fact that it spontaneously develops many 
types of tumors (lymphoma, leukemia, 
osteosarcoma, mammary tumors) [3,5,8]. 
Due to the common characteristics of the 
two models, the canine model represents 
an important model for the study of human 
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breast cancer as well as for comparative studies that provide 
information about the prognosis and treatment of breast 
cancer [4,9]. 

Comparative oncology allows the therapeutic 
investigations of naturally occurring malignancies in terms of 
pathogenesis and therapy. Although several animal species, 
including the cat, horse and ferret, acquire malignancies that 
are of comparative interest with the human pathology, the 
dog has received the bulk of scientific and clinical attention 
thus far [10]. This is owing to the anatomic and physiologic 
similarities between dogs and human patients, their lengthy 
usage as a toxicological model in drug research, and, most 
significantly, the large number of dogs diagnosed and treated 
for cancer each year [11].

The present article summarizes the data found on 
PubMed on the use of canine animal models for breast 
cancer research, focusing on the immune molecular profile 
of breast tumors and its role in designing new immune-
related therapeutic approaches. 

Comparative oncology for human and canine 
breast cancer research

The canine animal model is an excellent example 
of comparative oncology because this species develops 
numerous tumors that have similar clinical and pathological 
features or incidence rates to specific human cancer [12,13]. 
In the case of both species, carcinogenesis is based on similar 
risk factors, represented by environmental toxins, obesity 
and advancing age. Canine mammary tumors are the most 
common cancers diagnosed in canine patients, representing 
50% of all diagnosed neoplasias [14]. Annually, about 198 
cases out of a total of 100,000 animals are reported [15]. It 
was observed that an essential aspect is that females sterilized 
after the second season did not have a protective effect on the 
risk of developing malignant breast tumors [14]. 

The canine model uniquely exhibits spontaneous 
breast gland neoplasms, with an incidence three times higher 
than humans [16]. Studies indicate breed influences on the 
occurrence of canine mammary tumors (CMT), with pure 

breeds showing an 80% frequency compared to 20% in 
mixed breeds. CMT is more prevalent in miniature or “toy” 
breeds, followed by medium and large breeds like German 
Shepherds and Labradors. Age also plays a vital role, with 
the highest prevalence in adult females aged 8-12 years [17]. 
Similar to humans, canine breast tumors show significant 
formations and metastases in adjacent lymph nodes or distant 
organs, correlating with unfavorable prognoses [18].

Hormonal dependence is crucial in both human and 
canine breast carcinomas, highlighting the significance 
of studying canine breast cancer under the one health-one 
medicine principle. Hormone and growth factor receptors, 
including PR, ERα, and HER2, play pivotal roles in breast 
cancer development and progression in both species. ER 
expression closely correlates with pathological aspects and 
tumor differentiation in canine mammary tumors (CMT) and 
human breast cancer (HBC), while PR expression is a key 
indicator of breast cancer recurrence. Additionally, PRLR, 
IGF1, and GH receptors contribute to breast carcinogenesis 
in both humans and dogs. These parallels underscore the 
relevance of comparative oncology in understanding and 
treating breast cancer across species [19,20]. The most 
important similarities between canine mammary tumors and 
human breast cancer are presented in table I.

In clinical practice, molecular classification plays a 
significant role, providing helpful information regarding 
prognosis, relapse risk, and the possibility of complete 
biological response. Thus, molecularly, breast cancers are 
classified as follows: luminal A (ER+, PR+, HER2-, KI67-
), luminal B (ER+, PR+, HER2+/-, KI67+), HER2 over-
expression (ER-, PR-, HER2+), basal-like (ER-, PR-, HER2-
, CK5/6+) and normal-like tumors (ER+, PR+, HER2-, KI67, 
imitating the normal breast epithelium) [26,27]. 

Abadie et al. (2018), based on a canine breast cancer 
cohort, classified canine breast cancers from a molecular 
point of view as follows: luminal A, luminal B, no HER2-
overexpressing and triple-negative either of the basal-like 
type (ER- and PR-, HER-2 and CK5/6+) or the non-basal-
like type (ER- and PR-, EGFR, and CK5/6-) [28]. 

Table I. Similarities between canine mammary tumor and human breast cancer:
Similarity features Humans Dogs References

Appearance Spontaneous
Age Median age (62 years) Median age (~10 years) equivalent to a 65.5 year old woman [13,18]

Cycle of the disease Identical

[13]Dimensions of tumor Similar
Clinical stages Identical

Metastasis to lymph nodes Identical

Estrogen dependency Long exposure to estrogen
Non-spayed females have a higher risk of developing breast 
tumors compared to females who were sterilized before age 
of 2 years

[21]

Molecular markers
In the carcinogenesis of breast 
tumors, a critical role is played by 
the multitude of identified genes.

The same genes play an identical role in canine tumor 
carcinogenesis. [22–24]

Mammographic anomaly Human and dogs’ mammary neoplasm have similar microcalcifications and macrocalcifications [23,25]
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Therefore, the canine animal model represents 
the model that spontaneously develops different forms 
of cancer, being an exemplary model for triple-negative 
breast cancer found in humans, as illustrated in figure 1.

Genetic makeup of human and canine 
breast cancer

DNA damage and genetic mutations are primary 
drivers of breast cancer development. However, replicating 
these characteristics in rodent models or cancer cell lines 
proves challenging due to their complexity. Factors such 
as prolonged hormone exposure or inherited defects in 
DNA, including those in tumor suppressor genes like 
BRCA1 and BRCA2, contribute to DNA damage and 
subsequent cancer development [29]. 

In addition to BRCA genes, several other genetic 
mutations contribute to breast cancer development, albeit 
in fewer cases and with a reduced risk compared to BRCA 
genes. Genes such as ATM, TP53, CHEK2, PTEN, CDH1, 
STK11 and PALB2 are implicated in familial breast cancer. 
Approximately 30 genes are known to play a role in breast 
cancer development, with about 5-10% of cases having 
a hereditary component. In animal models, particularly 
in the canine model, the risk of developing breast tumors 
mirrors that of humans, with hereditary factors playing a 
crucial role in tumor initiation and progression [30,31].

In canine mammary tumors (CMT), gene sequences 
for BRCA1 and BRCA2 proteins have been identified, 
with mutations associated with a four-fold increase in 
tumor risk. Additionally, protein interactions between 

BRCA2 and RAD51, involved in DNA repair, influence 
tumor development. Decreased BRCA1 expression 
correlates with malignancy, coinciding with increased Ki-
67 and ERα negative markers [32,33].  

KRAS mutations are more prevalent in CMT, while 
NF1 and SF3B1 mutations are observed in both CMT and 
HBC. MKI67 mutations hold oncological potential in 
CMT. However, certain genes like TP53, EGFR, ERBB2, 
ATM and CHEK2 show lower mutation frequencies 
in CMT compared to HBC. These findings underscore 
genetic parallels and differences between canine and 
human breast tumors, providing valuable insights into 
tumor biology and potential therapeutic targets [34].

Biomarkers of TNBC and CMTs: current 
biomarkers and potential future biomarkers 

1. Current biomarkers (Biomarkers 
of cancer cell proliferation and apoptosis, 
Biomarkers of metastatic potential of the tumor, 
Biomarkers of angiogenesis, Biomarkers of 
inflammation)

1.1. Biomarkers of cancer cell proliferation 
and apoptosis (Ki-67, PCNA, p53)

Ki-67 and PCNA are primary proliferation 
biomarkers, while p53 signifies neoplastic transformation 
and apoptosis. Ki-67, a nuclear non-histone protein, 
peaks during mitosis, aiding in CMT diagnosis via IHC 
and cytology. High Ki-67 levels in human tumors indicate 
poor prognosis, yet predict chemotherapy response. Ki-67 

Figure 1. Therapeutic similarities for HBC and CMT: molecular subtype, histological grade, and prognosis.
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evaluation, along with ER, PR, and HER-2, defines breast 
tumor subtypes [35]. 

Ki-67’s serum biomarker potential, largely 
unexplored, correlates with tumor grade in dogs. In benign 
tumors, Ki-67 expression is low, contrasting malignant 
tumors linked to metastasis and poorer prognosis. 
Additionally, lymph node Ki-67 expression aligns with 
tumor tissue, suggesting its utility in prognosis assessment 
[36,37].

PCNA, a DNA polymerase protein, signifies the 
proliferation index (PI), peaking in late G1 phase and 
remaining elevated through G2 and M phases [38]. In 
human medicine, PCNA serves as a primary proliferation 
biomarker, often evaluated alongside other HBC markers 
[35]. In veterinary medicine, PCNA detection via IHC 
correlates with tumor characteristics like differentiation 
degree, mitotic index, and lymph node metastasis. Similar 
to Ki-67, PCNA expression is higher in malignant tumors, 
indicating poor prognosis and lower survival rates [39]. 
Combining PCNA with other biomarkers, particularly Ki-
67, enhances prognostic accuracy due to its cell cycle-
specific expression [38].

The p53 protein serves as a crucial biomarker in 
neoplastic transformation, cell division, and apoptosis 
regulation, acting as a tumor suppressor [40]. Mutated p53 
leads to increased expression of p21, a cyclin-dependent 
kinase family member. In HBC, elevated p53 levels are 
associated with aggressive cancer types like TNBC and 
signify a poor prognosis and reduced survival time [41]. 
Overexpression of p53, predominantly evaluated via IHC, 
is linked to unfavorable outcomes in both human and 
veterinary contexts.

1.2. Biomarkers of metastatic potential of the 
tumor (E-cadherin, CEA, CA 15-3)

Cadherins are calcium-dependent transmembrane 
glycoproteins crucial for cell adhesion, maintaining 
tissue structure. E-cadherin, predominant in epithelial 
cells, plays a vital role in adhesion. Reduced E-cadherin 
expression correlates with tumor grade, lymph node 
involvement, tumor progression, aggressive metastasis, 
and poor prognosis in both human and veterinary 
contexts. Evaluation of E-cadherin alongside biomarkers 
like Ki-67 aids in assessing breast tissue characteristics. 
Additionally, other cadherin types like P-cadherin and 
N-cadherin contribute to cell adhesion processes [42].

Carcinoembryonic Antigen (CEA) is a protein 
expressed in small quantities by the gastrointestinal 
mucosa, found on epithelial cell membranes. Its 
overexpression is common in colon, breast, and lung 
cancer. In breast cancer (HBC), CEA serves as the primary 
serum biomarker, detected using various methods like 
radioimmunology (RIA) or electrochemical immunoassay 
with luminescence (ECL) [43]. Changes in CEA levels 
correlate with the therapeutic response in metastatic 
breast cancer, aiding in early detection of recurrence and 

metastasis [44,45]. Combining CEA with Cancer Antigen 
15-3 (CA 15-3) enhances sensitivity and specificity in 
breast cancer diagnosis. Veterinary medicine observes 
elevated CEA levels in dogs with mammary gland 
tumors compared to healthy dogs [46]. However, CEA’s 
diagnostic value in mammary tumors is optimized when 
evaluated alongside CA 15-3 due to its higher sensitivity. 
Despite CA 15-3’s common usage, it lacks sensitivity in 
primary breast cancer diagnosis, primarily utilized for 
subsequent monitoring [43].

1.3. Biomarkers of angiogenesis
Neoplastic processes trigger the formation of 

new blood vessels, crucial for tumor nutrition and tissue 
homeostasis [47]. Malignant canine mammary tumors 
(CMTs) exhibit a higher density of neovessels compared 
to benign tumors [48]. Key biomarkers of angiogenesis 
include vascular endothelial growth factor (VEGF), its 
receptor (VEGFR), and von Willebrand factor VIII or 
CD31 [49]. 

VEGF, widely used in human medicine, stimulates 
angiogenesis and lymphangiogenesis at the tumor site. 
In both human breast cancer (HBC) and CMTs, elevated 
serum VEGF levels correlate with poor prognosis and 
low survival rates, particularly in aggressive, infiltrative 
tumors. VEGF serves as a biomarker for early tumor 
diagnosis, with increased sensitivity when correlated with 
CA 15-3 values [50,51].

1.4. Biomarkers of inflammation (COX, cancer 
associated stroma)

The cyclooxygenase enzyme (COX) plays a 
pivotal role in prostaglandin biosynthesis and tumor 
development. Cyclooxygenase 1 (COX-1) is expressed 
in normal tissues, while cyclooxygenase 2 (COX-2) is 
upregulated in inflammatory reactions and advanced 
tumors [52]. In both human breast cancer (HBC) and 
canine mammary tumors (CMT), high COX-2 levels are 
associated with malignancy, suggesting COX-2 inhibitors 
like meloxicam or piroxicam as potential treatments 
[52]. COX-2 inhibitors have shown promising results, 
particularly in inflammatory mammary carcinoma. COX-
2 expression assessment is crucial for effective treatment 
with COX-2 inhibitors in both HBC and CMT [53]. 

Additionally, COX-2 expression promotes breast 
tumorigenesis and survival through various mechanisms, 
including the production of prostaglandin E2 (PGE2), 
which influences immune responses and tumor progression 
in HBC [54,55]. In CMT, COX-2 expression correlates 
with tumor aggressiveness, unfavorable prognosis, and 
metastasis, similar to HBC [56]. 

Cancer-associated stroma (CAS) markers like 
alpha-smooth muscle actin (αSMA) in both human and 
canine models indicate the role of cancer-associated 
fibroblasts (CAFs) in tumor development and progression. 
Common biomarkers between canine and human breast 
carcinoma, such as COL1A1, ACTA2, FAP, Caveolin-1, 
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FGF2, COL11A1, COL8A2, and ADAM12, highlight 
shared pathways in breast cancer pathogenesis [57]. These 
findings underscore the value of comparative oncology 
in understanding breast cancer biology and developing 
novel therapeutic strategies.

2. Potential future biomarkers – miRNAs 
(ncRNAs) and exosomes

2.1. Non-exosomal miRNAs 
MicroRNAs (miRNAs) serve as promising non-

invasive biomarkers for breast cancer (BC) and canine 
mammary tumors (CMT), influencing key tumoral 
processes like proliferation, invasion, and metastasis 
[58,59]. 

In CMT, 502 precursors and 453 mature miRNAs 
were identified, resembling patterns observed in HBC. 
Studies revealed altered expression levels of representative 
miRNAs between HBC and CMT, with miR-145 showing 
a unique pattern in humans. While miRNAs like miR-21 
and miR-29b are upregulated in CMT, miR-15a and miR-
16 exhibit a decrease [60]. 

Certain miRNAs, including miR-141 and miR-
143, play roles in regulating tumor suppressor genes [61]. 
Although miRNAs mainly influence tumor metastasis, they 
aren’t specific markers for metastasis. Validation studies 
identified several miRNAs associated with non-metastatic 
CMT, shedding light on their role in tumorigenesis [62].

2.2. miRNA-21
Overexpression of miR-21 is a common indicator 

of pathological growth or cellular stress and is among 
the most abundant miRNAs expressed in mammals. 
Physiologically, miR-21 regulates cell growth, migration, 
and invasion, while in carcinogenesis, it acts as an 
oncomiR by inhibiting tumor cell apoptosis [63,64]. 

Elevated miR-21 expression distinguishes clinically 
healthy bitches from those with mammary tumors, playing 
a role in metastasis and serving as a proposed biomarker 
[65,66]. In breast cancer, increased miR-21 expression 
correlates with enhanced cell proliferation, migration, 
invasion, metastasis, angiogenesis, and advanced tumor 
stage, with a poorer prognosis [67,68]. 

Inhibition of miR-21 expression suppresses tumor 
growth and metastasis, making it a sensitive non-invasive 
biomarker for cancer screening, progression, and detection 
in both human breast cancer and canine mammary tumors 
[69].

2.3. miR-29b
Another non-invasive biomarker with diagnostic 

and prognostic potential in breast cancer and canine 
mammary tumors is miR-29b, part of the miR-29 family. 
Alongside miR-29a and miR-29c, it regulates tumor 
cell processes like proliferation, apoptosis, metastasis, 
fibrosis, and angiogenesis, acting as both an oncomiR and 
tumor suppressor [70,71]. 

In canine mammary tumors, miR-29b expression 

was observed, with the canine SNP cell line showing 
significantly higher expression compared to serum 
samples from dogs with mammary tumors [60,65]. 
Similarly, in breast cancer, miR-29b is overexpressed 
in tumor cells, influencing proliferation, apoptosis, 
migration, and invasion, contrasting with low expression 
levels in normal breast tissue [72].

2.4. miR-141
Lutful et al. using a quantitative polymerase 

chain reaction strategy in cell lines from female dogs 
diagnosed with spontaneous mammary carcinomas 
or adenocarcinomas, demonstrated that miR-141 is a 
strong oncomiR, belonging to the miR-200 family [61]. 
Significant levels of miR-141 expression are strongly 
associated with highly aggressive breast carcinomas 
(grade III) compared to grade II breast cancer [73].

2.5. miR-429 and miR-200c
In both breast cancer and canine mammary tumors, 

specific miRNA groups have been identified with both 
overexpression and underexpression patterns. Notable 
miRNAs include miR-9, miR-155, miR-200a/b, and 
miR-429, which are overexpressed, while miR-1, miR-
133a/b/c, and miR-214 are underexpressed in canine cell 
lines such as CMT12, CMT27, and CMT228. MiR-429 
and miR-200c exhibit strong expression levels, targeting 
the ERRFI1 mRNA and acting as oncomiRs in canine 
mammary tumors, with fold increases over 1000 and 100-
150 respectively [61]. 

In human breast cancer, miR-429 exhibits both 
overexpression and underexpression patterns, serving as an 
oncomiR particularly in cases with HER2+ amplification, 
driving tumor cell proliferation and migration. Conversely, 
miR-200c acts as a tumor suppressor, inhibiting cell 
proliferation and metastasis, particularly in triple-
negative breast cancer. These miRNAs play significant 
roles in tumorigenesis and tumor progression, making 
them robust biomarkers in both human breast cancer and 
canine mammary tumors [74].

2.6. miR-497
At the level of canine animal cell lines, members 

of the miR-497 family (miR-497, miR-195, miR-15 and 
miR-16) are down-regulated, this regulation being also 
found at the level of CMT1211 and CMT7364 cell lines 
compared to the primary lines from canine mammary 
gland cells. The overexpression of miR-497 causes 
inhibition of cell proliferation and migration and the 
increase of apoptosis in the CMT1211 and CMT7364 cell 
lines [75]. 

Thus, miR-497 has been suggested as a diagnostic 
biomarker and therapeutic target in CMT. These aspects 
are consistent with those encountered in the case of 
HBC, where miR-497 is found among the least expressed 
oncomiR [76]. 

Overexpression of miR-497 resulted in inhibition 
of cancer cell proliferation, migration, invasion, 
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metastasis and cellular angiogenesis or cell cycle causing 
apoptosis by targeting Bcl-2-like protein 2 (Bcl-w), B-cell 
lymphoma 2 protein (Bcl-2), yes-associated protein 1 
(YAP1), HIF-1α or cyclin E1 mRNAs [77,78].

2.7. miR-10b, miR-101, miR-125a/b, miR-136, 
miR-145, let-7f and miR-203

Some miRNAs play an important role in the 
metastasis process compared to the process of malignant 
transformation, being represented by miR-10b, miR-101, 
miR-125a/b, miR-136, miR-145, let-7f and miR-203. High 
levels of expression were identified in a metastatic group 
compared to non-metastatic or benign CMT [79,80]. 

The expression levels of miR-10b, miR-125b, 
miR-136 and let-7f gradually increase from normal breast 
tissue to benign tumor tissue and non-metastatic malignant 
tumor tissue to metastatic tumors [79]. The expression of 
miR-143 from non-metastatic CMT [66] from the canine 
SNP cell line identified by Osaki [81] was 1547.9 times 
higher compared to normal mammary gland tissue. MiR-
203 expression was also downregulated in benign tumors 
compared to a healthy control group [79].

2.8.  miR-210
MiR-210, increases in expression during the 

progression of malignancy resulting from hypoxia and 
has an important role in the metastasis process, through 
intensified angiogenesis [82]. 

Overexpression of miR-210 was observed in canine 
neoplasms compared to a control group [83]. In the case of 
HBC, miR-210 correlates with lymphonodal metastasis, 
clinical staging, differentiation, and unfavorable prognosis 
in patients diagnosed with breast cancer. Thus, miR-210 
represents a potential prognostic biomarker of HBC and 
CMT [84,85].

2.9.  miR-138a
MiR-138a represents the tumor suppressor gene, 

which shows significantly low values in the canine 
SNP cell line (0.007 times). This miRNA represses the 
epithelial-mesenchymal transition (EMT) determining the 
aggressiveness of cancer and its metastasis, representing a 
potential biomarkers in CMT [81].

2.10. miR-8832, miR-96 and miR-149
With the help of the genome-wide methylation 

process in CMT, a new miRNA, cfa-miR-8832, was 
identified, which is associated with both CMT and HBC 
[86]. 

Jeong et al. has also identified two genes: cfa-
miR-96 and cfa-miR-149, which are over- and under-
expressed, being associated with HBC, where they 
determine the proliferation, migration and invasion of 
cancer cells by reducing the target gene PTPN9 (the gene 
for non-receptor tyrosine-protein phosphatase type 9) 
[86,87]. 

MiR-149 is the tumor suppressor gene, which 
contributes to tumor progression, by supporting the 

aberrant activation of Rac [88] and the recruitment 
of macrophages to the tumor [89]. Both genes were 
conserved both in HBC and CMT, representing potential 
biomarkers [86].

2.11. Circulating miR-18a
RNA sequencing showed increased serum level 

of miR-18a (1.24 times), in the case of CMT, its values 
significantly differed between dogs with benign CMT and 
dogs with malignant CMT [90]. High levels were identified 
in a group of canine patients in which tumor metastasis 
was present at the lymphnodal level, compared to a group 
in which lymph node metastasis was absent, with miR-18a 
being proposed as a representative biomarker for HBC. 

MiR-18a was also identified in the case of cell 
lines derived from breast cancer MCF-7 and MDA-
MB-23, in which ER expression, decreased sensitivity to 
tamoxifen and endocrine resistance correlated with high 
miR-18a expression [91]. This was also overexpressed in 
breast cancer cell lines, such as MCF7 and ZR-75-1 [92]. 
Regulation of miR-18a in the case of healthy contralateral 
breast tissue and benign biopsy samples before the 
development of breast cancer, classifies the gene`s 
overexpression as an early tumorigenesis factor [93]. 

2.12. Circulating miR-19b
In both cases of humans and the canine animal 

model, the miR-19b biomarker plays an important role in 
diagnosing patients with different tumor types, including 
breast tumors. Currently, studies on invasive mammary 
cell lines attest to the fact that miR-19b favors tumor 
progression [94,95]. 

2.13. Circulating miR-21 and miR-29b
MiR-21 expression was upregulated in malignant 

and benign tumors compared to control samples, while 
serum miR-29b was significantly reduced, in malignant 
and benign groups compared to the control group [65]. 

Thus, miR-21 is a potential non-invasive prognostic 
biomarker for the early detection of CMT, and miR-29b 
is representative for the accuracy and sensitivity of a 
diagnosis, being evaluated together with miR-21 [65,96].

2.14. Exosomal non-coding RNAs (ncRNAs)
Exosomal non-coding RNAs, measuring 20-

22 nucleotides, show potential as cancer prognosis 
biomarkers in carcinogenesis. They play a role in breast 
tumor diagnosis by regulating gene expression [62,97].

Specific miRNAs like miR-143 and miR-138a 
vary between canine mammary tumor cell lines and 
normal tissue. In malignant tissues, miR-210 and others 
are upregulated, including in metastatic biopsies [66]. 
Minimally invasive diagnostics reveal elevated miR-214 
and miR-126 levels in serum from dogs with mammary 
carcinoma and other cancers [98]. 

Exosomal miRNA profiles differ between CMT 
cell lines and normal cells, linked to oncogenic pathways. 
These findings shed light on canine breast cancer 
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pathology and offer new diagnostic avenues for veterinary 
cancers. Comparative analysis with human models may 
validate shared biomarkers and pathways.

2.15. ExomiR in canine mammary tumor 
(CMT)

In canine mammary tumor-derived exosomes, 
miR-126 and miR-214 serve as biomarkers, influencing 
cancer pathogenesis by regulating processes such as 
angiogenesis, proliferation, migration, and cell death 
[99]. Changes in their expression significantly impact 
tumor progression, making them representative markers 
for CMT. Several miRNAs are upregulated both in canine 
mammary tumor cells and their exosomes, including miR-
18a, miR-19a, miR-29b/c, miR-181a/b, miR-215, miR-
345, miR-371, and miR-1841 [61,90].

Fish et al. identified exosomal miRNAs present in 
both CMT and HBC, such as cfa-miR-18a, cfa-miR-20b, 
cfa-miR-21, miR-29b, miR-93, cfa-miR-101, cfa-miR-
105a, cfa-miR-130a, cfa-miR-200c, cfa-miR-340, and 
cfa-miR-486 [100]. 

These findings suggest their potential utility as non- 
or minimally invasive biomarkers for profiling CMT and 
HBC, offering significant implications for translational 
research.

Treatment of canine mammary cancer
In both human patients and canine counterparts, 

staging of breast cancer is crucial prior to initiating any 
treatment. This typically involves blood sample collection, 
chest and/or abdominal radiographs, and cytological 
evaluation of biopsy samples. Surgical methods, such as 
lumpectomy or total mastectomy, are the most common 
treatment options for canine breast cancer. Additionally, 
ovario-hysterectomy, performed concurrently with 
mastectomy, has been shown to improve survival rates, 
particularly for ER+ tumors and patients with high serum 
estrogen levels.

Chemotherapy, utilizing various chemotherapeutic 
agents, is another treatment modality for canine mammary 
tumors, akin to its use in other cancers. Multimodal 
therapy, which may include neoadjuvant chemotherapy 
and/or radiation therapy before mastectomy, aims to 
improve overall and disease-free survival rates.

While hormone therapy is a prevalent treatment 
option for ER+ breast cancer in humans, its application in 
canines has yielded mixed results. Anti-estrogen therapy 
can induce significant side effects in dogs, including 
vulvar swelling, vaginal discharge, and pyometra.

In canine models, surgery remains the primary 
approach for controlling mammary tumors, with the 
primary goal being the removal of tumors with clean 
resection margins to prevent recurrence. The type of 
mastectomy performed depends on factors such as 
tumor size and location. Adjuvant therapies, including 

chemotherapy, radiation therapy, and targeted therapy, 
may also be administered post-surgery to reduce the risk 
of recurrence and metastasis. Advanced metastatic cancer 
(stage IV) or inflammatory cancer (IMC) may not be 
amenable to surgical excision, in which case alternative 
treatment options are considered.

Conclusions
Breast cancer poses a significant global challenge, 

driving ongoing research in prevention, diagnosis, 
treatment, and prognosis. Real-world data aid in 
discovering new biomarkers for therapeutic targeting 
and patient stratification based on molecular subtypes. 
Comparative research between human and canine breast 
cancer models reveals shared epidemiological, clinical, 
and biological traits, essential for studying molecular 
signaling and immunomodulation. 

Canine models, with spontaneous tumor occurrence 
and intact immune systems, offer advantages over rodent 
models. Similarities in tumor biology, prognosis, and 
response to therapy make canine models valuable for 
translational research, particularly in genomic approaches 
to identify new variants associated with breast tumors.
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