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Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while
maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is
computationally intensive but also may cause high false discovery rate (FDR). We propose to use the FDR as a screening method
to reduce the high dimension to a lower dimension as well as controlling the FDR with three popular variable selection methods:
LASSO, SCAD, and MCP. Method. The three methods with the proposed screenings were applied to prostate cancer data with
presence of metastasis as the outcome. Results. Simulations showed that the three variable selection methods with the proposed
screenings controlled the predefined FDR and produced high area under the receiver operating characteristic curve (AUROC)
scores. In applying these methods to the prostate cancer example, LASSO andMCP selected 12 and 8 genes and produced AUROC
scores of 0.746 and 0.764, respectively. Conclusions. We demonstrated that the variable selection methods with the sequential use
of FDR and ISIS not only controlled the predefined FDR in the final models but also had relatively high AUROC scores.

1. Introduction

Prognosis will continue to play a critical role in patient
management and decision making in 21st century medicine.
Advanced technologies for genomic profiling are now avail-
able and they include millions of sets of molecular data in
these assays. A critical element of personalized medicine is
utilizing and implementing validated diagnostic signatures
(or classifiers) for diagnosing or treating cancer patients.
These signatures are built and validated utilizing common
statistical methods and machine learning tools. For example,
the Decipher signature has been developed as a prognostic
model to predict metastasis after radical prostatectomy in
patients with prostate cancer [1]. The Decipher score is a
22-feature genomic classifier that has been used to predict
metastasis and has been independently validated for pre-
diction of prostate metastasis [2–5]. Another example is
oncotypeDx that has been used to stratify randomization and
guide treatment in women with breast cancer [6].

A vital step in model building is data reduction. It is
assumed that there are several variables that are associ-
ated with the clinical outcome in the large dimensional
data. The main purpose of the variable selection is to
detect only those variables related to the response. Variable

selection is composed of two steps: screening and model
building. The screening step is to reduce the large num-
ber of variables into moderate size while maintaining
most of the informative variables relevant to the clinical
response. In contrast, in themodel building step, investigators
develop a single best model utilizing a proper evaluation
criterion.

Penalized variable selection methods have played a key
role in identifying important prognostic models in several
areas in oncology [7–9]. Many articles focused on the devel-
opment of methodologies related to “small N and large P”
with the advent of high throughput technology in cancer.The
sure independence screening (SIS) was introduced to reduce
the high dimension to below the sample size to efficiently
select the best subset of variables to predict clinical responses
[10]. Although this approach is popular, it does not perform
well under some situations. First, unimportant variables that
are heavily correlated with important variables are more
highly likely to be selected than important variables that
are weakly associated with the response. Second, important
variables that are not marginally significantly related to the
response are screened out. Finally, there may be collinearity
between variables that may impact the calculations of the
individual predictors.
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The iterative sure independence screening (ISIS) was
proposed to overcome the above issues. The procedure
is to apply iteratively high dimensional variable screening
followed by the proper scale of variable selection until the best
subset of variables with high predictive accuracy is obtained.
ISIS screening, however, is also computationally intensive
and leads to high false discovery rate (FDR) in ultra-high
dimensional setting (𝑃 ≫ 1mils).

The oncology literature is rich in articles related to
the use of validated signatures. Despite their abundance,
comparisons and the performance of these various methods
have not been studied. We propose to use the false discovery
rate (FDR) of the multiple testing correction methods as a
screening method to reduce the high dimension to lower
dimension as well as controlling the false discovery rate in
the finalmodel.We investigate the feasibility of the sequential
use of FDR screening method with the ISIS and utilize
three popular variable selection methods: LASSO [11], SCAD
[12, 13], and MCP [14], through the extensive simulation
studies. To the best of our knowledge, this is the first paper
that thoroughly analyzes and compares the performance of
the variable selection methods with the sequential use of
FDR and ISIS screening methods. We use a prostate cancer
signature as an example [1] where the number of probes
is around 1.4 million and the clinical outcome is binary in
nature: presence of metastasis (presence of metastasis = 1,
no metastasis = 0) by fitting models based on the simulation
results.

In addition, we provide a broad review of the existing
penalized variable selection methods with screening meth-
ods. The remainder of this paper is organized as follows.
In Section 2, we provide general details of the screening
methods of FDR [15] and ISIS [10] and the variable selection
methods with the penalized logistic regression. In Section 3,
we describe the simulation studies and in Section 4, we
summarize the results of the simulations. We then apply the
best screening methods from the simulation studies to the
real data in Section 5. Finally in Section 6, we discuss our
findings.

2. Methods

We divide this section into several subsections describing
the methods used in our paper. The screening section
briefly discusses commonly used methods that reduce high
dimensionality: false discovery rate (FDR) and iterative
sure independence screening (ISIS). We then describe the
methods needed to assess variable selection models. The
final section considers three existing popular variable selec-
tion methods with the logistic regression. All simulations
and calculations were carried out using glmnet and ISIS
packages in the R library, and the code is available at
https://www.duke.edu/halab001/FDR.

2.1. Benjamini andHochberg False Discovery Rate (FDR). The
false discovery rate is defined as the expected proportion of
incorrectly rejected null hypotheses. That is,

𝐸(
𝑉

𝑅
| 𝑅 > 0) , (1)

where 𝑉 is the number of falsely rejected hypotheses and 𝑅

is the total number of rejected hypotheses. We focus on the
Benjamini and Hochberg FDR [15] method as a screening
method in the simulation studies and application. Briefly, the
procedure works as follows. Let 𝑞 denote the FDR, where
𝑞 ∈ (0, 1).

(1) Let𝑝
1
, . . . , 𝑝

𝑚
be the𝑝 values of the𝑚hypothesis tests

and sort them from smallest to largest. Denote these
ordered 𝑝 values by 𝑝

(1)
, . . . , 𝑝

(𝑚)
.

(2) Let 𝑘̂ = max{𝑘 : 𝑝
(𝑘)

≤ (𝑘 × 𝑞)/𝑚}, 𝑘 = 1, 2, . . . , 𝑚.

If 𝑘̂ > 1, then reject 𝑝
(1)

, . . . , 𝑝
(𝑘)

and if 𝑘̂ = 0, then
there is no rejection of the𝑚 hypothesis.

2.2. Iterative Sure Independence Screening (ISIS). The ISIS
method was proposed to overcome the difficulties caused by
the sure independence screening [16]. Briefly, the algorithm
works in the following way:

(1) The likelihood ofmarginal logistic regression (LMLR)
is computed for every 𝑗 ∈ 𝑆 = {1, 2, . . . , 𝑝}. Then 𝑑

which is𝑁/4 log(𝑁) of the top ranked variables of the
descending order list of the LMLR is selected to obtain
the index set 𝐼̂

1
.

(2) Apply those variables in 𝐼̂
1
to the penalized logistic

models to obtain a subset of indices 𝑀̂
1
.

(3) For every variable 𝑗 ∈ {𝑆 − 𝑀̂
1
}, the likelihood of

themarginal logistic regression condition on the vari-
ables in 𝑀̂

1
is solved. Then the likelihood estimators

are sorted in descending order and then the 𝑑 top
ranked variables are selected to get the index set 𝐼̂

2
.

(4) Apply those variables in 𝐼̂
2
∪ 𝑀̂
1
to the penalized

logistic models to obtain a new index set 𝑀̂
2
.

(5) Steps (3) and (4) are repeated until 𝑀̂
𝑙
= 𝑑 or 𝑀̂

𝑙
=

𝑀̂
𝑙−1

.

2.3. Regularizing Methods with Penalized Logistic Regression.
The logistic regression is one of the most commonly used
methods for assessing the relationship between a binary
outcome and a set of covariates and building prognostic
models of clinical outcomes. In addition, it is widely used
in the classification of two classes such as the development
of metastasis in prostate cancer [1]. The purpose of variable
selection with the logistic regression model in high dimen-
sional setting is to select the optimal subset of variables that
will improve the prediction accuracy [17]. Variable selection
in high dimensional setting is composed of two components:
a likelihood function and a penalty function in order to
obtain better estimates for prediction.

Let the covariates of 𝑖th individual be denoted as 𝑥
𝑖
=

(𝑥
𝑖1
, . . . , 𝑥

𝑖𝑝
)
𝑇 for 𝑖 = 1, . . . , 𝑁 and 𝑝 is the total number of

covariates. The penalized logistic regression is as follows:

−
1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
log (𝑝

𝑖
) + (1 − 𝑦

𝑖
) log (1 − 𝑝

𝑖
)) + 𝑝 (𝛽) ,

𝑖 = 1, 2, . . . , 𝑁,

(2)
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where 𝑝(𝛽), a penalty, is function and 𝑦
𝑖
is 1 for cases and 0

for controls.The probability that 𝑖th individual is a case based
on covariates’ information is expressed as

𝑝
𝑖
=

exp (𝑥
󸀠

𝑖
𝛽)

1 + exp (𝑥
󸀠

𝑖
𝛽)

, 𝑖 = 1, 2, . . . , 𝑁. (3)

The regression coefficients are obtained by minimizing the
objective function (2).

One of the most popular penalty functions is the least
absolute shrinkage and selection operator (LASSO) [11]. It
forces the coefficients of unimportant variables to be set to
0 and then the LASSO has sparsity property. The LASSO
estimates are obtained by minimizing the above penalized
logistic regression form (2). It has a satisfactory performance
in identifying a small number of representative variables.
Though LASSO is widely used in most applications [18–21],
its robustness is open to question as it has the tendency to
randomly select one of the variables with high correlation and
exclude the rest of the predictors [22]. Another disadvantage
of LASSO is that it always chooses at most 𝑁 (sample size)
number of predictors even though there are more than 𝑁

variables with true nonzero coefficients [23]. The coefficients
estimates are obtained by minimizing the following objective
function based on the likelihood function of logistic regres-
sion:

𝛽̂
lasso

= argmin
𝛽

{

{
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}

}

}

.

(4)

Another method commonly employed is the smoothly
clipped absolute deviation (SCAD) with a concave penalty
function that overcomes someof the limitations of the LASSO
[12]. The coefficients from SCAD are solved by minimizing
the following objective function:
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scad

= argmin
𝛽
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(5)

The SCAD penalty function, 𝑓
𝜆,𝛾

(𝛽
𝑗
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(6)

with 𝜆 ≥ 0 and 𝛾 > 2.
The minimum concave penalty (MCP) is also a recog-

nized method with SCAD, where the coefficients are esti-
mated via minimization of the following objective function:

𝛽̂
mcp

= argmin
𝛽
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The MCP penalty function, 𝑓
𝜆,𝛾

(𝛽), is defined by
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,

(8)

for 𝜆 ≥ 0 and 𝛾 > 1.

3. Simulation Studies

3.1. Simulation Setup. We performed extensive simulation
studies to explore the performance of three popular vari-
able selection methods: LASSO, SCAD, and MCP in high
dimensional setting. We employed 10-fold cross validation to
tune the regularization parameter for the methods. Figure 1
describes the schema of the simulation procedures.

Based on the logistic regression model, we generated the
binary outcome and covariates for each simulation as follows.
First, we generated 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑝
independently from𝑁(0, 1),

and each of 𝑧
𝑖
is an 𝑁 × 1 vector. We defined 𝑥

1
= 𝑧
1
,

𝑥
𝑖

= 𝜌𝑥
𝑖−1

+ √(1 − 𝜌2)𝑧
𝑖
, where 𝑖 = 2, . . . , 𝑝, so that

correlation of 𝑥
𝑘
and 𝑥

𝑙
was 𝜌|𝑘−𝑙| for some 𝜌 ∈ [0, 1). That

is, the covariates were generated with serialized correlation
structure (AR (1)). Next, we specified the true regression
coefficients 𝛽. We fixed all of 𝛽’s except the first 25 𝛽’s to be
0. The true nonzero 𝛽’s were sampled independently from
uniform distribution [−1.5, 2]. We considered 25 true effects
of the regression coefficients since several classifiers including
the Decipher score had selected 20–25 genes [1, 2] and
because that number predicted reasonably well the outcome.
The number of variables was fixed at 𝑃 = 100,000, and the
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Data

Response Y: binary outcome (0 or 1)
900 samples with 100,000 covariates

Training set:
600 samples with 

100,000 covariates

Validation set:
300 samples with 

100,000 covariates

Marginal logistic 
regression of X on Y

Filter 
data

FDR at 
0.05

FDR at 
0.2

Random 
filtering

ISIS-LASSO, SCAD, MCP Apply 9 models to validation set and 
then calculate and save AUROC, TP, 
and FP

Repeat 500 
times

Covariate X∼N(0, Σp×p): AR (1)

Figure 1: Diagram showing simulation procedures.

sample size was set at 𝑁 = 900. Finally, the corresponding
binary response 𝑦

𝑖
was simulated based on the Bernoulli

distribution with the following:

𝑦
𝑖
∼ Bern (𝑝 (𝑥

𝑖
)) , 𝑝 (𝑥

𝑖
) =

𝑒
𝑥𝑖𝛽

1 + 𝑒𝑥𝑖𝛽
, (9)

where 𝑥
𝑖

= (𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑝
) and 𝛽 = (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑝
)
󸀠.

Covariates were generated until the target number of 450
cases and 450 controls was reached.

We considered different simulation scenarios for the
correlation matrix Σ

𝑃×𝑃
, 𝜌 = {0, 0.1, 0.4} among variables.

Each simulation scenario was composed of the nine different
models with the combination of the FDR, the ISIS, and the
random filtering (RF

1000
). The RF

1000
selected 1,000 variables

with the smallest unadjusted 𝑝 values obtained from the
marginal logistic regression with the three variable selection
methods (LASSO, SCAD, and MCP). The reason we used
RF
1000

from the 100,000 potential variables was that the
number of false discovery rates is low relative to the other
random filtering (such as 2,000 or higher). Therefore, we
considered the top 1,000 variables to be a reasonable number

of variables screened as reference to be compared with our
proposed methods.

We then simulated the data 500 times because of compu-
tational intensity. In each simulation, we randomly divided
the data into two parts: the training set (𝑁 = 600) for model
selection and the testing set (𝑁 = 300) for validation.

3.2. Metrics of Performance. We calculated the true positive
rate (TP), the false positive rate (FP), the false discovery
rate (FDR), the average number of false positives in the final
model, the average model size, the average of the area under
receiver operating characteristic (AUROC), and the number
of screened true important variables through the FDRand the
RF
1000

to assess the impact of the FDR-ISIS screeningmethod
with the three variable selection methods.

The true positive rate (TP), also called sensitivity, is the
proportion of positives that are identified correctly given true
positives:

True Positive rate (TP) = TP
(TP + FN)

, (10)

where TP is the number of the true positives and FN is
the number of false negatives. The false positive rate is the
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Table 1: The true positive rate (TP), the false positive rate (FP), and the false discovery rate (FDR), the average number of false positives
(ANFP) in the final models, the final model size (size), the area under the curve (AUROC), and the number of filtered truly important
variables from FDR and RF (# filter) under the low correlation coefficients, 𝜌 = 0.1 among variables.

Screening Method TP FP FDR ANFP Size AUROC # filter

FDR
.05
-ISIS

LASSO 0.22336
(0.00203)

2.2𝑒 − 06

(0)
0.03086
(0.00303)

0.216
(0.02199)

5.8
(0.05816)

0.80285
(0.00157)

5.826
(0.05985)

SCAD 0.22336
(0.00203)

2.1𝑒 − 06

(0)
0.03071
(0.003)

0.214
(0.02157)

5.798
(0.05791)

0.80286
(0.00157)

MCP 0.22336
(0.00203)

2.1𝑒 − 06

(0)
0.03071
(0.003)

0.214
(0.02157)

5.798
(0.05791)

0.80286
(0.00157)

FDR
.20
-ISIS

LASSO 0.2676
(0.00229)

1.17𝑒 − 05

(0)
0.12618
(0.0055)

1.17
(0.05914)

7.86
(0.09344)

0.81965
(0.00154)

7.904
(0.09499)

SCAD 0.2676
(0.00229)

1.16𝑒 − 05

(0)
0.12522
(0.00547)

1.158
(0.05866)

7.848
(0.09288)

0.81964
(0.00154)

MCP 0.2676
(0.00229)

1.13𝑒 − 05

(0)
0.12355
(0.00541)

1.134
(0.05698)

7.824
(0.09096)

0.81967
(0.00154)

RF
1000

-ISIS

LASSO 0.42112
(0.00236)

0.0001237
(0)

0.53987
(0.00265)

12.364
(0.06298)

22.892
(0.01389)

0.83244
(0.00149)

13.286
(0.06807)

SCAD 0.42336
(0.00243)

0.0001226
(0)

0.53635
(0.00276)

12.26
(0.06622)

22.844
(0.01624)

0.83196
(0.00147)

MCP 0.42656
(0.00249)

0.0001217
(0)

0.53261
(0.00283)

12.17
(0.06797)

22.834
(0.01666)

0.83191
(0.00147)

( ): standard deviation.

proportion of incorrect identification as a true positive given
true negatives. That is,

False Positive rate (FP) = FP
(TN + FP)

, (11)

where the FP is the number of false positives and the TN is
the number of true negatives. In addition, the average number
of false positives (ANFP) was computed as the number of
false positives that were selected in the final model out of
500 simulations. Furthermore, the average model size was
computed as the number of variables selected in the final
model out of 500 simulations.

Finally, the AUROC was utilized as a measure of the
performance of the logistic regression and is the proportion of
the time which a model predicts correctly given observations
of a random positive and negative. A perfect model produces
an AUROC = 1 whereas a random model has an AUROC =
0.5.

4. Simulation Results

We summarized the simulation results for 𝜌 = 0.1, one of
three correlation structures in Table 1, where all 25 impor-
tant covariates were assumed to have linear effects. Table 1
presents the performance of the nine different models with
the FDR, ISIS, and randomfiltering based on 500 simulations.
The average true positive rates (TP) were 0.223 and 0.268
for the three variable selection methods using FDR

.05
− ISIS

and FDR
.20

− ISIS. The average true positive rates (TP)
of the LASSO, SCAD, and MCP with RF

1000
− ISIS were

0.46013, 0.46365, and 0.46739, respectively.These values were
much higher than the two FDR screening methods which
were below 0.30. On the other hand, the three variable

selection methods with RF
1000

− ISIS selected several of the
false positive variables that consequently increased the false
positive rate (FP). LASSO, SCAD, and MCP with RF

1000
−

ISIS included a higher average number of the false positives
of 12.364, 12.260, and 12.170, respectively. Although the FDR
filtering method did not select a higher number of true
important variables, this screening method reduced the false
positive rates below the predefined target 𝛼.

The average numbers of the false positives in the final
models with the FDR − ISIS methods were much smaller
than that of using RF

1000
− ISIS (Table 1). Specifically, the

average numbers of the false positives in the finalmodels with
the LASSO, SCAD, and MCP with FDR

.05
− ISIS were 0.216,

0.214, and 0.214 with the corresponding standard deviations
0.0219, 0.0215, and 0.0215. As expected, the three variable
selection methods with RF

1000
− ISIS had selected a higher

average model size of 22.8 than the FDR methods. Similar
results were observed for FDR

.20
− ISIS. We also calculated

the false discovery rate. The variable selection models with
the FDR at the target 𝛼 = 0.05 and 𝛼 = 0.20 controlled
the false discovery rate below 𝛼 whereas over 40% of the
finally selected variables were incorrectly selected using the
random filtering methods. The average AUROC scores with
RF
1000

− ISIS were relatively higher than the FDR
.05

− ISIS
and FDR

.20
− ISIS. Similar results were noted for independent

and moderate correlation 𝜌 = {0, 0.4} as presented in Tables
S1 and S2 in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/8209453.

Figure 2 presents the selection frequency for the 25
important variables under the three different screeningmeth-
ods. The 𝑥-axis denotes the variable name and the 𝑦-axis
represents the frequency of selection out of 500 simulations.
The variables not depicted on the 𝑥-axis in Figure 2 did not
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Figure 2: Selection frequencies of each of the 25 variables across the LASSO, the SCAD, and the MCP during 500 simulations with 𝜌 = 0.1.
The 𝑥-axis depicts the names of the variables, and the 𝑦-axis is the frequency of variables selected out of 500 simulations. The variables not
depicted on the 𝑥-axis in Figure 2 did not have any counts. Each of the three methods is identified by color in legend.

have any counts and thus were not selected in the simulation.
The variables with the highest selection frequencies had true
regression coefficients that were strongly associated with the
clinical response. These variables were g07, g03, g19, g23,
g01, g24, g12, and g06 and were selected over 100 times out

of 500 simulations with average corresponding regression
coefficients of 1.65, −1.45, 1.57, −1.17, 1.12, 0.968, 0.963, and
−1.01 (see Table S3 in Supplementary File). The coefficients
of the eight variables were ranked the highest among the 25
absolute values of the true regression coefficients which had
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Figure 3: (a, c, e) The AUROC scores under 𝜌 = 0.1. The 𝑥-axis is the name of methods and 𝑦-axis is AUROC scores. (b, d, f) The
corresponding mean proportion of falsely selected variables in the model. The 𝑥-axis is the name of methods and the 𝑦-axis is the false
discovery rate.

strong effects on the response. There were no differences in
selecting the important variables by the variable selection
methods (LASSO, SCAD, and MCP). In addition, similar
patterns of the selection frequencies were observed for both
FDR
.05

− ISIS and FDR
.20

− ISIS as shown in Figures 2(a) and
2(b) while Figure 2(c) showed a little variation with RF

1000
−

ISIS. The results were similar for independent and moderate
correlation 𝜌 = {0, 0.4} (Figures S1 and S2 in Supplementary
File).

To gain more insights into the comparisons of the
methods, we present the plots of the AUROC scores and
the corresponding false discovery rate under 𝜌 = 0.1 in
Figure 3. (a), (c), and (e) in Figure 3 represent the AUROC
scores whereas (b), (d), and (f) represent the false discovery
rates using three different screening methods. The variable
selection methods with random filtering screening had rela-
tively higher AUROC scores compared to the FDR methods.
However, there were a number of false positive in the final
models as seen in Figure 3(f). It is noteworthy that the
variable selectionmethods using the FDR not only controlled
the FDR below the target 𝛼 = 0.05 and 𝛼 = 0.20 but also
had AUROC scores that were relatively high (Figures 3(d)
and 3(e)). Similar patterns were observed for independent

and moderate correlation 𝜌 = {0, 0.4} (Figures S3 and S4 in
Supplementary File).

Therefore, the FDR − ISIS screening method is preferred
to RF
1000

−ISIS since it allowed the variable selectionmethods
to obtain the proper AUROC scores while controlling the
false discovery rate at the nominal level of 𝛼. As a result
of the simulation studies, we applied the three variable
selection methods with the FDR and ISIS screening to the
high dimensional data of the prostate cancer in the following
section.

5. Real Data Analysis

We analyzed the prostate cancer data from the public domain
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE46691: GSE46691). The dataset has 1.4 million probes
and the primary outcome is presence of metastasis (yes or
no) by fitting the LASSO, SCAD, and MCP methods using
the FDR and ISIS screenings suggested from the simulation
studies with the sequential filtering of both FDR and ISIS.
In the prostate cancer application, we considered the false
discovery rate (FDR) at 𝛼 = 0.01 as the screening method.
Figure 4 describes the schema of the prognostic model
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Figure 4: The schema of prognostic model building for the prostate cancer.

building for the prostate cancer. We utilized the training set
that was obtained from the random split and was composed
of 359 individuals (140 cases and 219 controls) with 1.4
million probes to build each of the three models. We then
estimated the AUROC scores with the validation set with
186 individuals (72 cases and 114 controls). We used 10-fold
cross validation for each of the variable selection models
to tune the parameters after the screening. We obtained 39
variables with FDR at 𝛼 = 0.01. We repeated each of the
three models 100 times to improve the AUROC with those
screened variables.

Figure 5 shows the AUROC plots of the three models.
Based on FDR at 𝛼 = 0.01, the LASSO, SCAD, and MCP
identified 12 genes (CAMK2N1, AN07, RPL7A, MALAT1,
MYBPC1, TMP0, UBE2C, DID01, RAB25, LOC728875,
FTH1, and MKI67), 11 genes (CAMK2N1, AN07, RPL7A,
MALAT1, MYBPC1, TMP0, UBE2C, DID01, RAB25,
LOC728875, and FTH1), and 8 genes (CAMK2N1, AN07,
RPL7A, MALAT1, MYBPC1, TMP0, UBE2C, and DID01)
gene models out of 39 potential variables with AUROC
scores of 0.746 (95% CI = 0.675–0.818), 0.746 (95% CI =
0.674–0.817), and 0.764 (95% CI = 0.695–0.834), respectively
(refer to Table S4 for more details in Supplementary File).
It is noteworthy to note that MCP selected the same set of
genes as SCAD and LASSO and the 95% confidence intervals

were overlapping. On the other hand, using the FDR at
𝛼 = 0.05, LASSO, SCAD, and MCP selected 15, 13, and 15
gene models out of 565 potential genes with corresponding
AUROC scores of 0.697 (95% CI = 0.619–0.775), 0.714
(95% CI = 0.637–0.791), and 0.683 (95% CI = 0.603–0.763),
respectively. It is worthwhile to note that MCP had the
highest AUROC score (FDR-ISIS at 𝛼 = 0.01 and AUROC
= 0.764) followed by LASSO (FDR-ISIS at 𝛼 = 0.01 and
AUROC = 0.746) although the results were not consistent
with the FDR at 𝛼 = 0.05. This could be due to the larger
number of potential variables (565 variables) when using
FDR at a higher level. Nevertheless because our interest was
to use FDR at 𝛼 = 0.01, MCP and LASSOmethods were used
for the variable selection in our real example.

Table 2 presents the selected probes and their corre-
sponding genes from the two models that had two high-
est AUROC scores among the six models. LASSO and
MCP identified each of the 12 and 8 genes that were
associated with developing prostate cancer metastasis. The
four genes (ANO7, UBE2C, MYBPC1, and CAM2KN1)
associated with developing prostate cancer metastasis were
detected in both models. These four genes were a subset
of the 22 biomarkers for the Decipher PCa classifier [1].
MYBPC1 (Myosin-Binding Protein C) on chromosome 12
and ANO7 (Anoctamin 7) on chromosome 2 were only
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Figure 5: AUROC plots of using the LASSO, SCAD, and MCP with the screenings of both FDR at 0.01 and ISIS. (a), (b), and (c) are for the
LASSO, the SCAD, and the MCP variable selection methods, respectively.

Table 2: Probes and corresponding genes identified by the LASSO andMCPmethods with FDR at 𝛼 = 0.01 for association with the prostate
cancer metastases. The Adj. 𝑝 is based on the marginally adjusted 𝑝 values by the BH-FDR method.

Gene Probe ID Ch Start Stop Adj. 𝑝 LASSO MCP
RAB25 2361272 chr1 156041891 156042035 0.003122859 ∗

CAMK2N1 2400181 chr1 20810150 20810212 0.003122859 ∗ ∗

LOC728875 2432120 chr1 143692898 143692956 0.007211879 ∗

AN07 2536262 chr2 242163962 242164581 0.003122859 ∗ ∗

FTH1 2590344 chr2 181551038 181551091 0.009379258 ∗

RPL7A 3284321 chr10 33483529 33483624 0.007451575 ∗ ∗

MKI67 3312502 chr10 129899547 129899701 0.003122859 ∗

MALAT1 3377635 chr11 65206468 65206658 0.009379258 ∗ ∗

MYBPC1 3428626 chr12 102030464 102030494 0.009379258 ∗ ∗

TMP0 3467302 chr12 98943231 98943926 0.008090076 ∗ ∗

UBE2C 3887068 chr20 44445472 44445507 0.001041641 ∗ ∗

DID01 3913561 chr20 156041891 156042035 0.003122859 ∗ ∗

∗Each gene is identified by the variable selection method.

downregulated genes whereas the other 10 genes including
UBE2C (Ubiquitin-Conjugating Enzyme E2C) on chromo-
some 20 and CAMK2N1 (Calcium/Calmodulin-Dependent
Protein Kinase II Inhibitor 1) on chromosome 1 were the top
upregulated genes as presented in Figure S5.

6. Discussion

This paper explored the feasibility of using the false discovery
rate (FDR) followed by ISIS as screeningmethods in conjunc-
tion with three popular variable selection methods in ultra-
high dimensional data for the purpose of controlling FDRand
improving AUROC scores.

Our simulation studies demonstrated that the variable
selection methods with FDR − ISIS not only controlled the
false discovery rate below the target 𝛼, but also produced
high AUROC scores. Furthermore, the results showed that
the false discovery rate was controlled conservatively even
with the increased correlation structures. As demonstrated
in the simulation studies, if the truly prominent variables

have not passed through the screening, they would lose the
opportunity to be selected to the final model. Thus, the
prediction accuracy may be relatively reduced. Currently,
mostmultiple testing correctionmethods underscore the pri-
ority of identifying prominent variables. Therefore, effective
filtering techniques are ultimately needed for the situation
when there are weak effects among the important variables.

Although RF
1000

− ISIS produced the highest AUROC
through the simulation studies, it also had the highest false
discovery rate. It is reasonable to expect that if one variable
is not selected during the screening step, then the other
variables that were correlated with the unselected variable
have a tendency not to be chosen in the final model. As
expected, the true positive rates of RF

1000
− ISIS were

relatively higher than those of using FDR − ISIS. This is
because random filtering had more opportunity to select the
true important variables. Due to the relatively high number of
true important variables selected, the number of unimportant
variables highly correlated with the true important variables
was also high. This may explain why the average AUROC



10 BioMed Research International

scores were highest in our simulation studies for RF
1000

−

ISIS.
There are some caveats to the sequential use of FDR with

ISIS. First, the total number of true important variables was
restricted to 25 variables in the simulation studies. This may
explain why the three variable selection methods, LASSO,
SCAD, and MCP, performed similarly in the simulations.
Second, the computational time for 500 simulations with ISIS
alone was 52,500minutes (around 36.45 days). Although ISIS
is computationally intensive, FDR with ISIS performed very
well and it took 9,625minutes to perform the 500 simulations
(7 days).

Turning back to our motivation example of prostate
cancer, LASSO and MCP under the FDR

0.01
− ISIS screening

methods produced the best AUROC scores. We also present
the results for other LASSO and MCP methods selected 12
and 8 genes out of 39 screened probes using the FDR at the
target 𝛼 = 0.01 and had the AUROC scores of 0.7462 and
0.7644, respectively.TheAUROC score of theMCPwas 0.144
points higher than what was reported by Erho et al. ([1]; AUC
=0.75). Although the authors did not report a 95% confidence
interval for the AUROC scores, it is most likely that the 95%
confidence intervals for the AUROC scores of Erho et al. and
the MCP were overlapping.

In summary, based on our extensive simulations, FDR
with ISIS seems to be superior to random filtering in terms of
error control and is less computationally intensive compared
with ISIS only. We also showed that the classifier based on 8
genes detected by the MCP had similar performance to the
prognosis for early clinical metastasis prostate cancer model.
To our knowledge, this is the first paper that systematically
compared the performance of high dimensional methods
with screening methods. Based on the extensive simulation
studies, effective screening procedures with penalized logistic
regression methods would not only lead to controlling the
FDR but also produce high area under receiver operating
characteristic curve.
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