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The aging process is driven by multiple mechanisms that lead to changes in energy
production, oxidative stress, homeostatic dysregulation and eventually to loss of
functionality and increased disease susceptibility. Most aged individuals develop
chronic low-grade inflammation, which is an important risk factor for morbidity, physical
and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are
major causes of morbimortality, affecting up to 5–8% of the population of industrialized
countries. Several environmental factors can play an important role for modifying the
inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory
diseases, whereas environmental factors appear to participate, either with a causative or a
promotional role in 50% to 75% of patients. Several of those changes depend on
epigenetic changes that will further modify the individual response to additional stimuli.
The interaction between inflammation and the environment offers important insights on
aging and health. These conditions, often depending on the individual’s sex, appear to
lead to decreased longevity and physical and cognitive decline. In addition to biological
factors, the environment is also involved in the generation of psychological and social
context leading to stress. Poor psychological environments and other sources of stress
also result in increased inflammation. However, the mechanisms underlying the role of
environmental and psychosocial factors and nutrition on the regulation of inflammation,
and how the response elicited for those factors interact among them, are poorly
understood. Whereas certain deleterious environmental factors result in the generation
of oxidative stress driven by an increased production of reactive oxygen and nitrogen
species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition
(polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against
inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their
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deleterious effect. Here, we discuss processes and mechanisms of inflammation
associated with environmental factors and behavior, their links to sex and gender, and
their overall impact on aging.
Keywords: pollution, oxidative stress, nutrition, immune system, gender, exercise, epigenetic changes, drug abuse
GENERAL VIEW

The systemic chronic low-grade inflammation observed in
aged individuals has been coined as “inflammaging” (1), and
leads to metabolic dysfunction, physical limitations, and frailty in
older adults [reviewed in (2)]. Inflammaging leads to an
increased secretion of interleukin 1beta (IL1b), interferons
(IFNs), and tumor necrosis factor a (TNFa) (3). This
inflammatory response appears to depend on biological factors
like sex, being higher in older women, and is influenced by many
environmental factors. The environment affects multiple
biological mechanisms, epigenetics, mitochondrial function,
cellular senescence, proteostasis, intercellular communication,
metabolism, and inflammation (4). Several environmental links
to chronic inflammation and age-related diseases have been
shown including cardiovascular disease, type-2 diabetes,
hypertension, and neurodegenerative disease (5). Their
influence on chronic inflammation impacts aging across the
individual’s lifespan [reviewed in (6)] and can have both
beneficial and deleterious effects. For example, nutritional
factors like western diet, associate with DNA damage and the
impairment of its repair [discussed in (7)]. By the contrary, the
Mediterranean diet shows beneficial effects, such as reduced
inflammation, cardiovascular disease, and mortality (8). Several
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cytokines linked to inflammation, some of which target the
nuclear factor kappa-light-chain-enhancer of activated B cells
(NFkB) pathway [reviewed in (9)] are also associated with
metabolic changes [discussed in (10)]. Metabolic interventions
like caloric restriction extends health- and lifespan in C. elegans,
Drosophila, and mice.

Aging has also been linked to epigenetic changes affecting
the regulation of expression of many genes. Several of the
epigenetic mechanisms, including DNA methylation, histone
modifications and miRNAs, are sensitive to the environment,
change with age (11) and depend on the sex of the individual.
Gene-environment interactions have been found in genes coding
for proinflammatory cytokines such as IL1b and air pollution,
being correlated to inflammation and increased risk of
Parkinson’s disease (12).

Human aging and age-related chronic diseases have been
linked to mitochondrial impairment (13), with decreased
energy production and increased generation of radical oxygen
species (ROS), and inflammation (14). Because inflammation
appears to be involved in the molecular, phenotypic,
and functional consequences of aging, a potential strategy
to tackle pathological aging could be to intervene the
inflammatory state of aging. Reducing chronic inflammation
could prevent pathological aging phenotypes and their
functional consequences. One readily accessible place for
intervention is the modification of deleterious lifestyle factors.
Obesity, for example, has a strong correlation with systemic
inflammation, and together with insulin resistance are
frequently observed in aging. Unhealthy diet, stress, use of
drugs, exposure to pollution and sedentarism can lead to
obesity, defective immunoregulation, and inflammatory
cytokines production (15–17). Pollutants, especially those that
are stored in adipose tissue, affect both inflammatory and
metabolic pathway genes (18). In addition to health behavior
(sleep, diet, physical activity), and exposure to environmental
toxins [reviewed in (19)], an important, although lesser studied,
part of the environmental context are social interactions.
Exposure to psychosocial stress (20) and poor sleep (21) can
contribute to elevated inflammation. Many sources of stress, not
just traumatic events, may have pathophysiological implications,
contributing to dysregulate the immune response, and have long
lasting effects on aging.

The impact of environmental factors will depend on the
combination of specific conditions, their timing along the
lifespan, and their interaction with biological factors such as
sex and the individual genetic background. Thus, aging and the
risk for chronic diseases is the result of the combination of
multiple factors. Understanding the interplay of these factors
may offer the opportunity to design specific interventions.
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SEX-DEPENDENT CHANGES ON
IMMUNE-INFLAMMATORY RESPONSE

The inflammatory response is different in men and women.
Adult females develop stronger innate and adaptive immune
responses than males. These sex-related differences can
determine the ability of immune cells to generate an effective
inflammatory response, which translates into epidemiological
differences on the prevalence of various pathologies, including
allergies (22), asthma (23, 24), autoimmune diseases (25),
anaphylaxis (26), neonatal sepsis (27), and cancer (28),
among several pathologies. The immune response of women
is polarized towards an increased production of Th2 cells, T
regulatory cells (Treg), M2 macrophages, IL4, IL10, and
GATA-3 cytokines, and decreased Th1, Th17, TBet, and
RORgt lymphocytes (29–31). On the contrary, men show an
immune response that depends on Th1 lymphocytes (32, 33),
high IL33 production (34) and low levels of reactive mast cells
(35). Men have also an increased response of microglia in the
central nervous system (CNS) and an increased presence of
TNFa and prostaglandins in response to inflammatory
stimuli (36).

Mechanisms Involved in the
Sex-Dependent Differences in
Inflammatory Response
Differences in inflammatory response between men and women
vary among specific tissues. In the CNS inflammation, women
show greater levels of B-cell (CD19+, CD5+, CD1dhi B10)
migration from the spleen to the site of injury than men,
followed by an increase of macrophages/microglia (CD11b+,
CD206), which appears to generate a lower neuroinflammatory
response in female compared with male mice (37). In addition,
women develop an increased immunoreactivity due to high
numbers of IFN-producing dendritic cells (38, 39). Female
mice tend to have M2 phenotype and activated eosinophils
and mast cells show a higher reactivity than in male mice (35,
40). However, in response to an acute inflammatory stimulus,
males produce higher amounts of inflammatory cytokines,
CD8a+ neutrophil and T cells infiltration of the injury site
(41). Conversely, the inflammatory microenvironment in
female mice is characterized by an increased production of
antibodies (42, 43) and a differential pattern migration of
antibody-secreting cells (42).

The immune system responds differently in men and women
not only because of the influence of sex hormones, but also
differences in the patterns of autosomal methylation and X
chromosome methylation, which determine distinctive profiles
of gene expression (43, 44). Sex hormones exert antagonist
effects on the immune system: Both estradiol and testosterone
have a suppressive effect on the immune response (45).

Estrogen is the sex hormone with the greatest impact on the
immune response, being described as one of the non-modifiable
regulators of the immune system, due to its immunoregulatory
and protective effects in many inflammatory models (46).
However, this is contradictory with the fact that women have a
Frontiers in Immunology | www.frontiersin.org 3
higher prevalence of autoimmune diseases than men, although
estrogens should be a protective condition (47).

The sex-dependent difference in the immune response is
time-, and estrogen dose-dependent (29). Variations on the
estrogen concentration during the ovulatory cycle, puberty or
menopause, can promote the development of immune-related
diseases (48). Mice exposed to chronic estrogen-treatment
generate hormone resistance, decreasing the clonal expansion
of Treg lymphocytes in autoimmune diseases (49, 50).

Estrogen regulates immune response primarily through a-
and b-estrogen receptors (ERa/b), mitogen-activated protein
kinase (MAPK) pathways, estrogen-dependent 3′-5′-cyclic
adenosine monophosphate (cAMP) response element-binding
(CREB), and modifications in the production of cAMP in
immune cells (51). In addition to estrogen receptors, the
presence of IL receptors influences the type of immune
response; female macrophages express greater amounts of IL4
receptors than males. IL4 receptors favor the M2 phenotype
when stimulated by estrogen. In agreement with that, estrogen
induces an increased expression of IL4 on naive CD4+ T cells
(40, 52). For a better general view of estrogen´s mechanisms and
effect on the innate immune system cells we recommend reviews
that have extensively covered those topics (53–56).

Dependence on the Sex of the Immune
Response Gene Expression
Sex regulates gene expression in multiple human tissues, in fact,
one third of the autosomal genes that are expressed in a sex-
biased manner exhibit androgen or estrogen hormonal response
elements (57, 58). Sex hormones play a strong role in sexually
dimorphic gene networks (59), inducing aberrant expression in
immune response genes via differential methylation CCL18
CXCL5 IL5 (60). There are changes in the methylation pattern
of sex-dependent immune response genes during embryonic
development, which are reinforced in puberty by the estrogen-
mediated induction of active forms of chromatins that are
maintained during adulthood (61).

Immune response-related genes located in chromosomes 3
and X are differently expressed in B lymphocytes depending on
the sex of the individual (62). Among the differentially expressed
genes that are relevant for the immune/inflammatory response,
can be mentioned the Toll-like signaling, cytokine receptors, Jak-
STAT pathway and genes related to the activation of T-cell
receptors (63). Phenotypically, the different pattern of gene
expression may explain the greater female T-cell expandable
capacity when exposed to an antigen (64).

Female T cells present higher activation and division
capacities than their male counterparts. However, male T cells
can develop greater infiltration potential and a lower self-reactive
phenotype than female ones (65, 66). These differences could be
due to the high expression of peroxisome proliferator-activated
receptors (PPARs) (64), prostaglandins, and cyclooxygenase-2
(COX-2) in males (67).

The influence of sex on the immune response is observed
throughout life and is accentuated with aging. In the neonatal
stage, women have a lower concentration of regulatory T
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lymphocytes than men (68). During childhood, men develop a
more intense immune response and are more likely to develop
infections by various pathogens compared with women (69, 70).
With increasing age, the dynamics and proportion of lymphocytes
and myeloid cells differ depending on the sex due to the differential
expression of 144 genes of the immune response in men and
women (71). Also, in aged individuals, epigenomic changes
generate a more robust innate and pro-inflammatory response in
men and an increased activity in the adaptive immune response in
women (72, 73). In recent times, during the COVID-19 pandemic, it
has been observed that the infection by SARS-CoV-2 in older adults
shows conspicuous differences; men have elevated plasma levels of
IL8 and IL18 and a high amount of monocytes whereas women
develop a robust activation of T lymphocytes (74). This differences
in the immune response could explain the higher mortality of
COVID19 in men than in women (75, 76).

To recapitulate, sex hormones and genetic expression
patterns in men and women can generate distinct immune and
inflammatory responses that determine singularities in the
epidemiological distribution of immune diseases. Research
protocols in immune response and inflammation must be
redefined to avoid results biased by sex. Furthermore, research
in women is urgently needed to define the efficacy for women of
several therapies that were originally tested in men.
NUTRIENTS AND INFLAMMATION: ROLE
OF THE DIET AND POLYUNSATURATED
FATTY ACIDS

The increase in noncommunicable diseases (NCDs), such as
obesity, hypertension and cancer as well as the low-grade chronic
inflammation that characterizes most NCDs (77) can be affected
by environmental factors that change the immune response.
Lifestyle factors like nutrition can modulate the immune system.
It has been reported in mice that western diet-induced systemic
inflammation and reprogramming of myeloid cell precursors is
mediated by the activation of the NLRP3 inflammasome, which
is a key sensor of the innate immune system for metabolic danger
signals, such as uric acid and cholesterol (78). Metabolic
regulation appears to be very robust and long lasting, being
reported that proper nutrition during pregnancy can reduce the
risk for NCDs in the offspring even at adult age (79, 80).

The Impact of the Diet on the Immune
Response and Inflammation
Some diet types can result in metabolic and epigenetic changes
that affect immune function (81), as reported in populations that
consume a high-fat and low-fiber western diet, who show a
prevalence of NCDs higher than populations that consume a
Mediterranean diet or a diet based on bioactive compounds, like
the hydroxytyrosol in olive oil (82–84). There is evidence
supporting the anti-inflammatory activity of phenolic extracts
from olive oil, such as their ability to reduce lipopolysaccharide
(LPS)-stimulated Nitric oxide (NO) production by the RAW-
264.7 macrophage cell line. The hydroxytyrosol stearate and
Frontiers in Immunology | www.frontiersin.org 4
the hydroxytyrosol oleate decrease NO production in a
concentration-dependent manner (85). In addition, olive oil
extracts increase total plasma glutathione concentration (86),
increasing the antioxidative response of the individual.

Nordic diet has many similarities with the Mediterranean
diet, but its effects on low-grade chronic inflammation are less
known. Both diets include abundant fruits, vegetables, whole
grain products, fish and vegetable oil, but restrict saturated fat
and red and processed meats (87, 88). Observational (89, 90) and
interventional (91, 92) studies report an inverse association
between the adherence to Nordic diet and the concentration of
high sensitivity C-reactive protein (hsCRP). Single intervention
studies reported beneficial effects, reducing IL1 receptor a
(IL1Ra) (87) and Cathepsin S (93), and downregulation of
inflammatory mediators in the adipose tissue (94) and
peripheral blood mononuclear cells (PBMCs) (95). A key
nutrient in fish are the n3 polyunsaturated fatty acids (PUFAs)
(88). The Greenland Inuit population, which has a high dietary
intake of n3-PUFAs, have a lower incidence of myocardial
infarction than the Danish population (96). Numerous studies
associate the cardioprotective effects of n-3 PUFAs to their effect
on immunomodulation (97–99), and control of inflammation,
including neuroinflammation during aging (100).

The Mechanism of the Anti-Inflammatory
Effects of n3-PUFAs
n3-PUFAs can regulate the transcription and expression of
inflammatory mediators such as cytokines, chemokines and
adhesion molecules in cardiomyocytes, fibroblasts, endothelial
cells, and monocyte-macrophages (101–104). Anti-inflammatory
effect of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)
and their biologically active metabolites (D and E Resolvins -
mediators derived from omega-3 fatty acids, primarily EPA and
DHA that block the production of proinflammatory mediators and
regulate leukocyte trafficking to inflammatory sites) can bemediated
through one of the mechanisms capable of reducing inflammation
of RAW-264.7 cells and of primary intraperitoneal macrophages
(105). One of the mechanisms is the activation of G-protein coupled
receptors (GPR), ea. GPR120 inhibition of Toll-like receptor 4
(TLR4)-mediated inflammatory response, which blocks NFkB
activation. The other is mediated by nuclear receptors, particularly
PPARs-a/g. DHA binds to PPARs with high affinity resulting in the
activation of anti-inflammatory cascades (106), which appears to be
responsible for the beneficial health effects (97). The inhibition of
NFkB-mediated pro-inflammatory activity (107) is the common
mechanism of immunomodulation by n3-PUFAs, being DHA
more effective than EPA in reducing LPS-n3-PUFAs induced
inflammatory cytokine production by macrophages (108).

n3-PUFAs are incorporated into phospholipid bilayers and in
human atherosclerotic plaques. Their incorporation is associated
with a reduction in the number of foam- and T cells, and a
decrease in inflammation (109). The increased incorporation of
n3-PUFAs in membranes affects both the innate and adaptive
immune responses, impairing the maturation of dendritic cells
and the function of macrophages, as well as the polarization and
activation of T and B cells (110–112). It is well known that n3-
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PUFAs compete with n6-PUFAs for being incorporated into cell
membranes and for the active sites of COX-2 and Lipoxygenase,
resulting in the production of less potent pro-inflammatory or
even anti-inflammatory mediators, such as the 3-series of
prostaglandin and thromboxane (113). Resolvins reduce also
neutrophil-derived ROS production, favoring neutrophil
apoptosis and clearance by macrophages, and inhibit
chemokine signaling (114). The partial agonist/antagonist
activity of Resolvin E1 (RvE1) on the leukotriene B4 receptor
on polymorphonuclear cells (PMNs), inhibits NFkB activation,
reduces release of pro-inflammatory cytokines and reduces
infiltration by PMN (115). Moreover, RvE1 reduces TNFa and
IFNg presence in the aortic wall, decreases the levels of the
inflammatory marker CRP and reduces macrophage infiltration
of the intima. Thus, RvE1 attenuates atherosclerosis and
atherosclerotic plaque formation (116).

Aging is associated with the activation of inflammatory signaling
pathways (117, 118), which can be targeted by specific nutrients
with anti-inflammatory effects, such as n3-PUFAs (119, 120). In the
brain, the main n3-PUFA is DHA, representing 12–14% of total
fatty acids (121). Aging and neurological disorders are associated
with decreased levels and turn-over rate of brain n3-PUFAs (122–
125). In aged mice, n3-PUFA supplementation and diets enriched
in DHA have been reported to revert age-induced spatial memory
deficits and impairment on learning and memory (126–128). In
older adults, a low consumption of n3-PUFAs and decreased
erythrocyte DHA levels are associated with cognitive impairment
(129, 130). Dietary supplementation with DHA is positively
correlated with an improvement in declarative memory test
performance, improved cognitive function (131, 132) and a lower
risk of developing neurological disorders (133). The probable
mechanisms by which n3-PUFAs mediate their effects in the
resolution of age-related neuroinflammation are the increased
synthesis of n3-PUFA-derived RvD1 and decreased n6-PUFA-
derived oxylipins, displaying an anti-inflammatory profile
(134, 135).

To recapitulate, the evidence indicates that n3-PUFAs and
their bioactive metabolites have immunomodulatory and anti-
inflammatory properties. Potential cardioprotective lipid
mediators, through multiple mechanisms, including changes in
cell membranes composition, and modification of both cell
signaling and gene expression, shift the pattern of lipid
metabolites toward a more anti-inflammatory metabolite
profile. Dietary habits may be essential regulators of the
inflammatory profile and promote healthy aging, reinforcing
the recommendation of a n3-PUFA rich diet.
THE IMPACT OF PSYCHOLOGICAL
AND SOCIAL STRESS IN THE
INFLAMMATORY RESPONSE

The long term chronic psychological stress is increasing among
the world’s population (136). Its circuit arises at high cortical
centers through the limbic system to the hypothalamus, where
corticotropin-releasing factor (CRF) is produced, which is
Frontiers in Immunology | www.frontiersin.org 5
responsible for inducing the pituitary gland to liberate
adrenocorticotropic hormone (ACTH) that signals the adrenal
cortex to synthesize and secrete glucocorticoids (GCs) (137).
Stress also activates the sympathetic nervous system (SNS),
particularly the adrenal medulla, activating chromaffin cells to
produce epinephrine (EPI), a main stress hormone along with
GCs. The latter plays a key regulation feature inhibiting the
hypothalamic-pituitary-adrenal (HPA) axis through negative
feedback at the pituitary gland, hypothalamus, and medial
prefrontal cortex, reducing CRF secretion [rewieved in (138)].

Stress and Epigenome Changes
The interplay of social and environmental stressors induces
inflammation through multiple biological mechanisms,
including epigenetic factors (139). Studies in rats show that the
methylation patterns of genes involved in the stress response,
such as the glucocorticoid receptor (Nr3c1) and CRF, can be
modified by psychosocial factors from early childhood (140).
Similarly, early life adversity induces acute and long-lasting
epigenetic modifications in Nr3c1 genes, regulating HPA axis
and cytokine production, reinforcing the importance of the
activation inputs during critical periods of development
(137, 141).

Stress and Immune Response
Acute short-term emotional stress, such as speaking in public,
leads to a transient increase in circulating inflammatory biomarkers
and natural killer (NK) cells by the SNS catecholaminergic
activity (142). On the contrary, chronic stress results in a
reduction of cytotoxic NK activity, determining a poorer
response to cytokines (143). Therefore, stress appears to have
short term beneficial immune effects, whereas chronic stress in
the absence of immune challenge has the opposite effect (138,
144), activating constantly the HPA axis with the consequent
persistent elevation of systemic GCs and reduction of NK cell
responsiveness to cytokines (143), affecting the balance of the T
helper cell type 1/type 2 (Th1/Th2) cytokine networks,
predisposing to a wide range of diseases (145). The stress
magnitude has been associated with IL1b mRNA overexpression
in peripheral PBMCs, providing a molecular mechanism by
which psychological stress is translated into an immune system
response (146, 147).

Chronic Stress and Chronic Inflammation
When stress becomes chronic, such as in depression, there is a
maintained overproduction of inflammatory cytokines, which
have been associated with GCs resistance. Immune cells become
less sensitive to their anti-inflammatory effects because of their
persistent secretion, leading to chronic low-grade inflammation
(147, 148). Activation of the innate and adaptive immune system
by chronic mild stressors increases inflammatory cytokines
gene expression, maturation and trafficking of dendritic cells
(DC), increased macrophage number and T cells recruitment
and activation. Social stressors can induce an increase
in inflammatory responses and a state of GCs resistance at
different levels (144, 149).
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Brain Inflammation
The acute repeated social defeat stress (RSDS) and chronic
restraint stress (CRS) models induce an inflammatory response
that results in neuroinflammation and depressive behavior
(150). Stress activates the HPA axis and the sympatho-adreno-
medullar (SAM) axis causing neuroinflammation by circulating
cytokines that crossed the blood-brain barrier (BBB) at the
circumventricular organs and by cytokine BBB transporters.
An inflammatory response that promotes BBB permeability,
allowing more inflammatory factors entering the brain,
including CRF, metalloproteinase-9, IL6, and TNFa (150).
Additionally, microglia produce chemokines that attract
monocytes into the brain (150).

Endothelium Inflammation
Activation of SNS and HPA axis through continuous
psychological stress dysregulate cytokine production, and
together with the stress hormones corticosteroids and
catecholamines, can affect endothelial adhesion molecules,
causing endothelial damage (138). Corticosteroids could
facilitate the infiltration of monocytes by increasing the
expression of IL1 and IL6 receptors on endothelial cells. These
monocytes and lymphocytes, after attaching to such sites, would
commence the process of infiltration into the wall vessels, leading
to foam cell formation and thrombotic events (138, 151).

Pancreas and Liver Inflammation
Chronic unpredictable mild stress (CUMS) decreases body mass
and impairs the metabolism of carbohydrates and lipids. A
model for CUMS showed an increased liver and pancreas
protein-lipid peroxidation and protein oxidation (152). High
ROS production in both organs could be a result of a response
mechanism to stress at the cellular level. In the liver, protein
oxidation can be due to the regulation of metabolic impairments
by GCs and EPI (152). The antioxidant system of the liver is in
general more efficient than the pancreas. However, it is insufficient
to clear the reactive species increased as consequence of chronic
stress, which could be due to alterations in the antioxidant
enzymatic activity (138).

Chronic Stress and Aging
Altogether, stress appears to have short term beneficial effects on
the immune function, whereas chronic stress (138, 144) activates
persistently the HPA, elevating systemic GCs, and impairing the
cytokine balance. The overproduction of inflammatory cytokines
lead to GCs resistance driven by immune cells that lose their
sensitivity to GCs, leading to a state of chronic low-grade
inflammation (138, 145). This GCs imbalance, shares common
features with aging, mediating an enhanced neuroinflammatory
priming (153). The presence of psychological stress potentiates
the defective immune response observed in aging, which at the
same time conditionate an exaggerated sickness response to
immune challenges (such as chronic stress). Thus, chronic
stress contributes to the phenomenon of inflammaging, which
promotes the development of several age-related pathologies,
including atherosclerosis and diabetes among others [reviewed in
(154)]. Additionally, there is an impairment of the antioxidant
Frontiers in Immunology | www.frontiersin.org 6
defense system to manage ROS production after chronic stress,
resulting in the damage of various tissues (138). In addition,
people exposed to chronic stress age rapidly, showing a faster
telomere shortening in their cells (155–157). On the other hand,
epigenetic changes acquired during critical developmental stages
could shape chronic stress-response along the lifespan, either
promoting or reducing pathological aging (139, 140).
INFLAMMATORY RESPONSE INDUCED
BY DRUG ABUSE

Substance abuse, such as alcohol and drugs, are important triggers
of chronic inflammatory processes (158, 159). The effects of
alcohol on human health are complex and depend on multiple
factors. However, many of those factors are associated with the
generation of immunosuppression and increased morbimortality
in heavy users. Those effects, which have been previously reviewed
by Goral et al. (160) will not be discussed in this review. Here, we
will describe the effect of cocaine and methamphetamine abuse.
Both drugs are potent psychostimulants that, when repeatedly
consumed, significantly disrupt the functioning of the CNS, and
modify the regulation of the immune response, leading to a
chronic neuroinflammatory state (161). In general, it is known
that drug abuse, among other factors, increases NFkB
transcription of multiple proinflammatory genes that spread
across brain cell types further amplifying of NFkB transcription,
as has been reviewed by Crews et al. (162).

Cocaine
Cocaine (benzoylmethylecgonine according to the International
Common Denomination) is a strong stimulant tropane alkaloid
that acts by modulating the catecholaminergic neurotransmitter
dopamine. Studies of the striatum of mice after the
administration of various drugs showed that 1 h after
administration of 25 mg/kg cocaine, there is a significant
increase in gene arrays for Hypoxia-inducible factor 1 (HIF-1),
transcription factors, and cytokine receptors (IL6r, TNFa). Two
hours after cocaine administration, there is an increased gene
expression for various TNF receptors, inducible NO synthase
(iNOS) and adhesion molecules (163). In the nucleus accumbens
of mice stimulated with cocaine, there is a significant increase in
matrix metalloproteinase 28 (MMP28), Macrophage Colony
Stimulating Factor (MCSF) and Major Histocompatibility
Complex II (MHC-II) (164). The brain of human subjects
consuming cocaine shows an increased density of macrophages
and activated microglia (165). Cocaine induces the activation of
microglia through the endoplasmic reticulum stress and
autophagy pathways (166). Studies of human and rodent
immune cell populations after cocaine administration show
decreased numbers of T lymphocytes, modulation of NK
activity and cytokine production (167).

Among brain glial cells, astrocytes are the most abundant,
and perform critical functions, being involved in neurogenesis,
promotion of neuronal survival, elimination of free radicals, and
the production of NO to maintain neuronal homeostasis (166).
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Nevertheless, astrocytes can also be activated by toxic stimuli,
leading to a new phenotype called “reactive astrocytes”, similar
with the changes observed after inflammatory activation. This
phenomenon has been described in various neuropsychiatric
disorders, such as Alzheimer’s and Parkinson’s disease,
amyotrophic lateral sclerosis and multiple sclerosis (166). The
reactivity of astrocytes to toxic stimuli, such as cocaine,
infection or disease, potentiates the neuroinflammatory
process (168).

Methamphetamine
Methamphetamine (desoxyephedrine; METH) is a synthetic
adrenergic agonist with psychostimulatory effects, structurally
related to the ephedrine alkaloid and adrenaline. Studies on the
effect of METH are limited. However, it has been determined
that its abuse affects the immune response. Animals exposed to
both acute and chronic METH use show alkalization of normally
acidic organelles in immune cells, inhibition of antigen
presentation, and impairment of phagocytosis (169). METH
also generates mitochondrial oxidative damage, dysfunction of
T lymphocytes and decreased production of antibodies and
cytokines (159).

METH has effects in various tissues (170). In the lungs, the
number of T lymphocytes decreases compared with that of
untreated animals, indicating a reduction in circulating CD3+
cells, and levels of IL6 and IL10 increases. In the spleen,
recruitment of PMN and the number of Ly-6G+ and F4/80+
are increased, whereas CD3+ cells are significantly reduced. In
addition, levels of TNFa, IFNg, IL6, and IL12 are higher than
those of control mice. In the liver, there is an increase of T
lymphocytes and macrophages, hepatocellular atrophy, and
increased levels of IFNg, TNFa, IL1b, -4, -6, -10, and -12 in
the group exposed to METH compared with control
animals (170).

In the CNS, METH can induce the activation of calpains and
caspases; the production of ROS with the subsequent induction
of oxidative stress, and the release of high amounts of glutamate,
causing excitotoxicity (171). Recently, Raineri et al. reported that
METH induces activation of astrocytes and microglia, increasing
the levels of IL6 and TNFa mRNA and its receptor (TNFR1) in
the mouse striatum and hippocampus (172, 173).

Drug Use and Aging
Medical advances have resulted in the increment of the average
life expectancy in developed countries. The aging of the
population is associated with an increase in the number of
older people using drugs of abuse. From 2000 to 2012, the
number of cocaine users aged 55 or older that required
treatment for drug addiction in the US increased by 63% (174,
175). Aging is associated with low-grade basal inflammation that
can be compounded by substance use. As cocaine exposure is
associated with elevated inflammation and altered immune
functioning, the presence of cocaine use disorder might
exacerbate inflammatory processes in aging adults (176). A
recent report by Soder et al, compared the levels of
inflammation (through the neutrophil to lymphocyte ratio) in
older adults with cocaine use disorder (CUD) and in healthy
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older adults, finding that the group with CUD had a significantly
higher baseline level of inflammation (176). The use of illegal
drugs such as cocaine or methamphetamine has not been shown
to affect cognitive function in older adults at the clinical level.
However, the evaluation of the cognitive function of young drug
users reveals a decreased performance compared with healthy
young people. In fact, the cognitive function of young drug users
is similar to that of adults older than 60 years of age (174,
177, 178).

In summary, both cocaine and METH can directly impair the
immune response, induce the activation of glial cells and
stimulate the release of pro-inflammatory mediators in the
CNS. All those effects cause relevant changes in glial cell
regulation and inflammatory activation, triggering chronic
neuroinflammation and potentiating pathological aging.
INDUCTION OF AN UNCONTROLLED
INFLAMMATORY PROCESS BY
AIR POLLUTION

Air pollution has become an important threat to public health.
Air pollutants consider a mixture of gases such as nitrogen oxides
(NOx), sulphur oxides (SOx), tropospheric ozone (O3), volatile
organic compounds (VOCs), and particulate matter (PM) (179).
PM can enter the respiratory tract leading to severe in situ
damage as well as inducing additional systemic effects (180). The
World Health Organization (WHO) suggests a maximum annual
exposure of 10 μg/m³ of PM2.5, however, the exposure of 90% of
the world’s population exceeds the proposed limit (181).
Exposure to air pollutants is associated with increased
morbimortality associated with respiratory, cardiovascular,
metabolic, neurological, carcinogenic and autoimmune diseases
(17, 182–184). Inflammation is the main pathophysiological
mechanism induced by air pollutants.

Oxidative Stress
In terms of the molecular and cellular mechanism induced by
pollutants, PM and SOx can generate ROS, inducing oxidative
stress, together with mitochondrial dysfunction and the
consequent energy deprivation (185–187). As a direct
consequence, NFkB and MAPK inflammatory pathways are
activated, triggering an innate immune activation (188, 189).
Despite the attempts to resolve the inflammatory event,
the outcome appears to be an imbalance in lymphocyte
homeostasis and immune system dysregulation, with inhibition
of Th1 and Treg lymphocytes (190). There is also an increase of
Th2 lymphocytes and recruitment of eosinophils, resulting in
respiratory disorders such as asthma (186, 191, 192). In parallel,
PM deactivates the nuclear factor erythroid 2 pathway (Nrf2),
involved in antioxidant regulation and prevention of oxidative
stress, a necessary process for the resolution of inflammation.
Therefore, to maintain oxidation-reduction reactions becomes
impossible, becoming a breaking point towards increased ROS
production and the non-resolution of the inflammatory
event (193).
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Activation of the Aryl Hydrocarbon
Receptor
Another mechanism of action of pollutants is the activation of
the aryl hydrocarbon receptor (AhR) by toxic agents. The
binding of PM to AhR increases circulating Th17 and
decreases Treg lymphocytes. Increase in Th17 associates to the
release of IL17, promoting an abrupt increase of Th2 lymphocyte
response. These changes promote the dysregulation of the
immune response associated with the development of
autoimmune processes (193). Aberrant increases in Th17 may
result in increased inflammation, with consequences such as
asthma and acute respiratory failure syndrome (ARDS), due to
neutrophil infiltration and tissue damage (194). Studies suggest
the existence of a decline in Treg levels and, therefore, an
inability to suppress Th1, Th2 and phagocyte responses (195,
196). In addition, exposure to PM has been associated with
fibrotic events, where IL17 increases synthesis and secretion of
collagen in the lung parenchyma (197, 198). In addition, it has
been described that PM also induces the expression of TGFb,
directly promoting fibroblast differentiation, which could also
induce collagen deposition followed by a lower antifibrotic
process in the liver (199).

Epigenetic Regulation
Pollutants may promote direct DNA damage through oxidation
of nitrogenous bases. Hu and Yu described in a 2019 paper
different mechanisms and changes in miRNA expression that
comprise specific targets of DNA methyltransferases, which can
impair the methylation of tumor suppressor genes (200).
Furthermore, urban populations show increased levels of
mitochondrial methylation genes due to PM exposure (201).
There is evidence of the existence of methylation, acetylation and
phosphorylation of histones H3 and H4, markers found in genes
involved in the activation of immune cells and cardiovascular
diseases (200, 202–205). Altogether, air pollutants can generate
DNA adducts promoting carcinogenesis and deteriorate
telomerase activity, as reviewed by Martens and Nawrot
(2016), and contributing to continuous DNA damage and
premature aging (206, 207).

Temporal and Concentration Effects Over
Inflammatory Mediators
In vivo studies suggest that the inflammatory activation is dose-
and time-dependent. Mice exposed to PM show that both
variables are determinant for the outcome. However,
inflammatory effects and major genetic changes appear to be
especially dependent on the exposure to high concentrations of
PM. One possible explanation is that a prolonged exposure could
induce an adaptive response of the inflammatory activation
(208), which may be mediated by the inactivation of the Nrf2
pathway, generating a loss of antioxidant capacity and
deregulation of the immune system (193). The resolution
appears to depend on the exposure context. Acute exposure
would result in high levels of ROS and damage, whereas
prolonged stimulation, even a low-grade one, generates a
constant production of ROS and chronic low-grade
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inflammation (187), consequent with the potentiation of
disease risk and an epigenetic age acceleration (206),
promoting pathological aging.

Direct causes of the deregulation of the inflammatory
resolution process resulting from inhaled contaminants are still
unknown, however, the burden of associated chronic diseases is
expected to increase. It is mandatory to intensify environmental
policies specifically in lower-middle-income countries in
prevention of the development of inflammatory conditions and
the subsequent chronic diseases.
AGING, EPIGENETIC AND IMMUNO-
INFLAMMATORY IMBALANCE

Aging, characterized by a progressive loss of cellular functions, is
an inevitable physiologic process inherent to all living beings
(209). The number of older adults is increasing. During the next
30 years, up to 22% of the world population will be older than 60
years (210). This demographic change is accompanied by a
higher incidence of NCDs accumulated in the aging population
(211). Therefore, various strategies have been proposed to
improve the health and quality of life of older adults (212),
along with recommendations for the development of Public
Policies that support the fiscal expenditure resulting from
NCDs (213).

One of the most studied events of aging is the impairment of
the immune system, characterized by an aberrant-increased
activation of the innate immunity (214, 215), and high levels of
circulatory inflammatory mediators that establish an
inflammatory environment, and a decrease of the adaptive
immune response (216, 217) and a decrease of the adaptive
immune response (214) due to this low-grade chronic
inflammation (214, 218), which together would promote the
inflammaging phenomenon (219). Interestingly, it is proposed
that age would not be the cause per se of these diseases associated
with aging (214). Thus, there is a deterioration of the immune
system’s response to external stimuli, which depends on the
individual’s history (218). Also, several epigenetic mechanisms
can modulate the immune response in aging, enhancing changes
in intercellular communication that could perpetuate
inflammatory events (220). On the other hand, it is described
that epigenetic clocks would be useful to analyze mechanisms
associated with this environmental influence (221). Finally, they
would be capable of modulating the immune response in aging,
enhancing changes in intercellular communication that could
perpetuate inflammatory events (220).

Aging and Systemic Inflammation
Multiple age-dependent changes play important roles in the
promotion of NCDs, with increased oxidative stress standing out
as one of the main mechanisms. Over the last two decades,
evidence has revealed that increased oxidative stress and
inflammation are involved in various NCDs such as Alzheimer‘s
disease (219), rheumatoid arthritis (222), cardiovascular diseases
(223, 224), and cancer (225), among others. Also, recent studies
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propose that the activation of NFkB signaling pathways could be
the main driver of these associations (226–229). Interestingly, De
Almeida et al. showed different sources of low-grade chronic
inflammation that promote cardiovascular disease (226). In the
CNS, high levels of ROS lead to the activation of astrocytes and
microglia, further increasing the overproduction of ROS and
proinflammatory cytokines that promote the development of
neurodegenerative changes (217, 230, 231). In fact, several
systemic biomarkers appear to be associated with neuro-
inflammation and the development of CNS diseases associated
with aging (230). These modifications trigger the phenotype of
senescent or aged cells characterized as SASP (216, 232) extensively
studied in the context of the deleterious effects of aging. However,
SASP is also essential for remodeling and promoting wound
healing, which requires a strict control of the inflammatory
response, thus avoiding the induction of cell aging phenotypes
that contribute to the development of chronic inflammatory
diseases (233).

Mechanisms Associated With the Immune
Imbalance
The immune imbalance in aging occurs due to various
alterations in cellular behavior and phenotype, which cause
functional deficiencies in immune cells (3). For example, this
context induces polarization of macrophages towards an
inflammatory phenotype characterized by strong activation of
the inflammasome (234). Thus, these events could induce IL1b
and TNFa release, changes in the chemoattraction of neutrophils
mediated by the reduction of the intercellular adhesion molecule
1 (ICAM-1) expression, and the aberrant activation of the
phosphoinositide lipid kinase-3 (PI3K) (235). Also, there is a
decrease in the expression of pattern recognition receptors
(PRR), which leads to the activation of proinflammatory
signaling promoting tissue damage (215, 216). Finally, the
reduced level of certain hormones due to the impaired
hypothalamic function causes the loss of muscle mass and an
increase in adipose tissue, further contributing to the release of
inflammatory cytokines and changes in metabolism (236).
Despite the remarkable effort being made to understand the
basis of the processes underlying the inflammatory imbalance
during aging, it is not fully understood.

Role of Epigenetics in the Immune
Imbalance
In aging, there are cumulative epigenetic changes that promote
low-grade inflammation (220, 237), including a decrease in the
global genome methylation, with increased methylation in
specific regions, as those with repressive histone marks of
CD8+ and CD4+ T cells (238) and bivalent chromatin
domains (239) and histone acetylation and methylation.
However, the influence of genomic methylation during aging
remains undetermined (237). Several studies correlate the
methylation of multiple sites on CpG islands with the increase
of the low-grade inflammation marker, CRP (220, 232, 240).
Nonetheless, Stevenson et al. propose that the DNA methylation
could be better associated with the low-grade chronic
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inflammation than CRP (237). In addition, the age-related
mitochondrial dysfunction, with the resulting oxidative stress
and decreased ATP production (241), affect the expression and
activity of DNA methyltransferases, which are responsible for
maintaining the methylation pattern of DNA (242). The reduced
methylation results in the demethylation of the TNFa promoter
in leukocytes and macrophages (243) and the adhesion of
immune cells to the endothelium (244). Also, many epigenetic
events contribute to the differentiation of proinflammatory T
cells, Th17 (220), which can compromise immunocompetence,
associated with repression of differentiation of immune cells, loss
of Treg function (240) and the alteration of the hematopoietic
stem cells differentiation (245).

Thus, epigenetic mechanisms appear to have a major role in
the inflammatory imbalance, which are associated with the
accumulation of damage in time that ultimately leads to the
perpetuation of a constant inflammatory response.
MODULATION OF THE INFLAMMATORY
ACTIVATION THROUGH PHYSICAL
EXERCISE

According to the WHO, 60% of the world population is
sedentary, lacking the benefits of physical exercise (246).
Conditions such as sedentarism, unhealthy diet, overweight,
obesity and aging induce chronic low-grade inflammation.
Physical exercise increases the anti-inflammatory potential and
reduces the pro-inflammatory effect (247). This equilibrium is
partly modulated through TLRs (248), which are fundamental
for the recognition of PRRs, including the damage-associated
molecular patterns (DAMPs) and the induction of an
inflammatory response in the absence of pathogens.

Anti-Inflammatory Exercise
There is evidence that in young people, physical exercise
decreases TLRs expression, co-stimulatory molecules CD80/
CD86, and MHCII (248, 249) in CD14+ monocytes. Physical
exercise also affects the adipose tissue. Exercising reduces TLR4
mRNA expression and TNFa production in adipocytes
(250, 251) in obese mice. Chronic physical exercise decreases
TNFa and TLR4 gene expression in the skeletal muscle
(252). The evidence suggests that obesity- or cerebral ischemia-
induced neuroinflammation, which are associated with the
overexpression of TLR2 and TLR4, may be reduced by physical
exercise through the reduction of TLRs expression as well as their
downstream signaling molecules (TNFa, IL1b, MyD88, TRAF6,
552 TAK1, and NFkB), together with the reduced microglial
activation (253, 254). There is evidence that cigarette smoking
induces inflammatory status [reviewed in (255)]. However,
exercise training reduces smoke-induced inflammation. In that
sense, training for 30 min with endurance exercise for 5 days in
smoke-exposed mice demonstrated that therapeutic exercise
training significantly reduces the expression of IL1b and TNFa
mRNA in rectus femoris (256).
October 2020 | Volume 11 | Article 570083

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bachmann et al. Environment-Induced Inflammation in Aging
Physical exercise has been used as a therapeutic tool in
chronic pathological conditions. In that sense, obese older
adults (body mass index 38 ± 2 kg/m2; 69 ± 1 years)
undergoing an exercise program consisting in physical therapy,
endurance, and resistance for 90 min, 3 days per week, show a
reduced expression of TLR4, IL6, and TNFa mRNA in skeletal
muscle (257). In older adults, 8-week physical exercise reduces
the expression of TLR4 and TLR2, as well as TLRs downstream
mediators, such as MyD88, p65, pp38, TRIF, IKKi/IKKϵ, IRF3,
and pIRF7 in PBMCs (258). Similarly, dendritic cells from
multiple sclerosis patients undergoing an exercise (endurance
and resistance) program for 12 weeks reduce TNFa and MMP9
secretion when stimulated with a TLR4 ligand (LPS in
combination with IFNg, or a TLR7 ligand) (259), suggesting
that long-term physical exercise decrease TLR responsiveness.

Pro-Inflammatory Exercise
On the other hand, high-intensity physical exercise in untrained
individuals induces inflammation, resulting in the increased
expression of TLR4, AP1, NFkB, and p65 in mice myocardium
and in adipose tissue (260–262). Physical exercise associated with
eccentric contractions causes expression of TLR and NFkB in
skeletal muscle and liver in rats (263, 264). Furthermore, this
phenomenon induces muscle damage, which can increase
chemotaxis, attracting NK, CD8+ 559 T cells, macrophages
and neutrophils to the site of injury, promoting the production
of COX560 2, iNOS, monocyte chemotactic protein-1 (MCP-1),
TNFa, IL6, and IL1b, in addition to the production of ROS and
the activation of NFkB (265, 266). In healthy young males, one
session of intense endurance exercise (1 h intense cycling
immediately followed by 1 h intense running), increases
plasmatic concentrations of IL6 and IL10, in addition to
increased gene expression of proinflammatory IL1 receptor
(IL1R) and TLR signaling pathways. Moreover, plasma
myoglobin changes in correlation with neutrophil TLR4 gene
expression (r= 0.74), suggesting that their transcriptional activity
was particularly induced by DAMPs (267). Therefore,
inflammation and muscle damage are mainly associated with
the type and intensity of the exercise, with loads that exceed
individual physical abilities.

Exercise, Epigenetic Regulation, and
Inflammation
Chronic physical exercise generates epigenetic modifications.
The physical exercise associated with an energy expenditure
>500 kilocalories per week, results in hypomethylation of the
IL10 gene and hypermethylation of the TNFa gene (268), with
an inverse correlation between TNFa methylation and TNFa
mRNA expression (269). The methylation of the caspase
recruitment domain (ASC) of the apoptosis-associated speck-
like protein gene, the main regulator of inflammasome and
promoter of the activation of IL1b and IL18, decreases with
aging. However, older adults who maintain physical exercises
regularly express higher levels of ASC methylation than subjects
not exercising, which would imply a decreased release of
inflammatory cytokines (270–273). Similarly, in review a 6-
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month walk training can induce hypermethylation of the
NFkB-2 gene, suppressing inflammation through the inhibition
of the NFkB pathway (274).
DISCUSSION

As life expectancy increases, age-related diseases thrive. Aging is a
complex multifactorial process of molecular and cellular decline that
renders individuals susceptible to disease and death. Maintenance of
cell integrity, cell metabolism and host-defense mechanisms are
tightly regulated by the surrounding microenvironment. A growing
body of evidence in different biological models has contributed
towards identifying biological mechanisms that ward off structural
and functional deterioration. These data offer us insights into
healthy aging. Molecular integrity of the genome, telomere
length, epigenetic stability, and protein homeostasis are all
features linked to more youthful stages (regardless of the age),
associated with mitochondrial fitness, metabolic regulation,
efficient intercellular communication, stem cell renewal, and
regenerative capacity in tissues. A good understanding of the
environmental and endogenous mechanisms that underlie age-
related normal and deleterious changes, and how these pathways
interconnect, remains a major challenge for slowing pathological
aging while extending older adults’ healthy lifespan.

The study of the environmental influence on the development
of complex-chronic diseases shows that in addition to genetic
predisposition, the pathogenesis is promoted by changes in
metabolism and behavior, cellular environment, and epigenetic
regulation patterns. The type of nutrient, or environmental
cytokine milieu dramatically affects not only the homoeostasis
of tissues but also of complete organs and even of the whole
individual. Thus, tissue stress, malfunction, and damage may
induce inflammation alarm responses, which result either in
resolution of tissue damage, restoration of normal cell function
or development of chronic disease (Figure 1). Older adults often
present inflammaging, characterized by increased levels of pro-
inflammatory cytokines IL1, IL6, IL8, TNFa/CRP (275).
However, the cellular sources of these cytokines are partially
unknown. The increased inflammatory cytokines have been
proposed to be a driver of unsuccessful aging (increased
morbidity, degenerative processes, or frailty) and shortened
health-span. The inflammatory scenario is complex and occurs
in response to various internal and environmental stimuli
(Figure 1) mediated mainly by a high level of pro-
inflammatory cytokines. Indeed, in healthy aging, increased
production of the anti-inflammatory cytokines TGFb and IL10,
can regulate the pro-inflammatory state (276, 277).

Research into the impact of environmental factors on
inflammaging is at an early stage and the involved mechanisms
are not completely understood. Several hypotheses have been
developed to explain the chronic inflammation: aging-related
increase of stress (278) and oxidative stress (279), DNA damage
in senescent cells [reviewed in (280)], and stem cell aging (281). The
proposed mechanisms are likely interdependent, resulting in the
generation of ROS causing oxidative damage and amplification of
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the cytokines secretion, thus perpetuating a vicious circle of
systemic inflammation where tissue injury and healing
mechanisms proceed in parallel while damage slowly accumulates
over the lifespan of the individuals. Endocrine and metabolic
alterations are linked to the shift towards a pro-inflammatory
profile, which could explain some age-related pathologies, such as
Alzheimer’s and Parkinson’s disease, osteoporosis, diabetes, cancer,
and frailty (282, 283).

Regarding stress-induced immune modifications, new evidence
suggests that cross talk signals between the CNS, endocrine and
immune system are required for optimal response to stress
[discussed in (284)]. Various stressors can affect the activity and
regulation of immune cells via direct regulation by the autonomic
and peptidergic system or through the release of neuroendocrine
mediators. Moreover, neuronal catecholamines modulate immune
cell functions. These interactions are bidirectional, cytokines
produced by immune cells, such as IL1, can modulate the
production of corticotropin-releasing hormone (CRH) by the
hypothalamus. Chronic diseases are favored by some modern
living conditions, such as the intake of high-caloric foods and the
low level of physical activity, or endogenous signals produced by the
chronic stress of modern life. There are many challenges in
conducting research on biosocial processes, which will define
novel disease-trigger factors.

Tailor-made approaches will depend on genetics, epigenetics
and a constellation of factors depending on the historical as well
Frontiers in Immunology | www.frontiersin.org 11
as the present exposure to the environment. Although
environmental factors also express themselves as epigenetic
changes, the combinatorial effect of the multiple factors
generates complex patterns of epigenetic regulation, and the
concomitant exposure to environmental factors can further
modify the individual response.
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FIGURE 1 | Biological and environmental factors determining the inflammatory response and the aging phenotype. Endogenous and environmental factors can be
mostly beneficial (in green) and deleterious (in red) or can have both beneficial and deleterious effects depending on the specific context. The interplay of lifespan
endogenous and environmental factors regulates the aging phenotype depending on DNA damage, epigenetic changes, and inflammation. These drivers can induce
functional aging hallmarks: changes in endocrine and metabolic regulation, and defective immune regulation that will further determine the response of the individual. In
yellow we show processes that can participate in both protection and damage. Exposure to various alarm signals induce an acute inflammation that, when associated
with deleterious environmental and biological factors, potentiates chronic inflammation, which can be further promoted by excess ROS production and oxidative stress
that results from mitochondrial dysfunction or NOX2 activity, leading to inflammaging and eventually to age-related disease. On the contrary, in the presence of protective
environmental and biological factors, the initial inflammatory activation will be resolved and lead to a healthy aging process. ROS, reactive oxygen species.
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173. Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, et al.
Methamphetamine-induced neuroinflammation and neuronal dysfunction
in the mice hippocampus: Preventive effect of indomethacin. Eur J Neurosci
(2010) 31:315–26. doi: 10.1111/j.1460-9568.2009.07059.x
Frontiers in Immunology | www.frontiersin.org 16
174. Chao T, Haney M, Cooper ZD, Vadhan NP, Van Dam NT, Van Snellenberg
J, et al. Cognitive function in aging cocaine smokers. J Psychopharmacol
(2019) 33:801–10. doi: 10.1177/0269881119849812

175. Chhatre S, Cook R, Mallik E, Jayadevappa R. Trends in substance use
admissions among older adults. BMC Health Serv Res (2017) 17:1–8.
doi: 10.1186/s12913-017-2538-z

176. Soder HE, Berumen AM, Gomez KE, Green CE, Suchting R, Wardle MC,
et al. Elevated neutrophil to lymphocyte ratio in older adults with
cocaine use disorder as a marker of chronic inflammation. Clin
Psychopharmacol Neurosci (2020) 18:32–40. doi: 10.9758/CPN.2020.
18.1.32

177. Hankosky ER, Westbrook SR, Haake RM, Willing J, Raetzman LT, Juraska
JM, et al. Age- and sex-dependent effects of methamphetamine on cognitive
flexibility and 5-HT2C receptor localization in the orbitofrontal cortex of
Sprague-Dawley rats. Behav Brain Res (2018) 349:16–24. doi: 10.1016/
j.bbr.2018.04.047

178. Sanvicente-Vieira B, Kommers-Molina J, de Nardi T, Francke I, Grassi-
Oliveira R. Crack-cocaine dependence and aging: Effects on working
memory. Rev Bras Psiquiatr (2016) 38:58–60. doi: 10.1590/1516-4446-
2015-1708

179. Huang C, Wang Q, Wang S, Ren M, Ma R, He Y. Air pollution prevention
and control policy in China. Adv Exp Med Biol (2017) 1017:243–61.
doi: 10.1007/978-981-10-5657-4_11

180. Saxon A, Diaz-Sanchez D. Air pollution and allergy: You are what you
breathe. Nat Immunol (2005) 6:223–6. doi: 10.1038/ni0305-223

181. WHO. WHO Global Ambient Air Quality Database. World Health
Organization (2018). Available at: https://www.who.int/airpollution/data/
cities/en/#.

182. Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, et al.
Air pollution associated epigenetic modifications: Transgenerational
inheritance and underlying molecular mechanisms. Sci Total Environ
(2019) 656:760–77. doi: 10.1016/j.scitotenv.2018.11.381

183. Yang L, Hou XY, Wei Y, Thai P, Chai F. Biomarkers of the health outcomes
associated with ambient particulate matter exposure. Sci Total Environ
(2017) 579:1446–59. doi: 10.1016/j.scitotenv.2016.11.146

184. Lin CY, Wang CM, Chen ML, Hwang BF. The effects of exposure to air
pollution on the development of uterine fibroids. Int J Hyg Environ Health
(2019) 222:549–55. doi: 10.1016/j.ijheh.2019.02.004

185. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L,
Hemmingsen JG, et al. Role of oxidative damage in toxicity of particulate.
Free Radic Res (2010) 44:1–46. doi: 10.3109/10715760903300691

186. Reno AL, Brooks EG, Ameredes BT. Mechanisms of Heightened Airway
Sensitivity and Responses to Inhaled SO2 in Asthmatics. Environ Health
Insights (2015) 9:13–25. doi: 10.4137/EHI.S15671

187. Zhou W, Tian D, He J, Zhang L, Tang X, Zhang L, et al. Exposure scenario:
Another important factor determining the toxic effects of PM2.5 and possible
mechanisms involved. Environ Pollut (2017) 226:412–25. doi: 10.1016/
j.envpol.2017.04.010

188. Steenhof M, Gosens I, Strak M, Godri KJ, Hoek G, Cassee FR, et al. In vitro
toxicity of particulate matter (PM) collected at different sites in the
Netherlands is associated with PM composition, size fraction and oxidative
potential - the RAPTES project. Part Fibre Toxicol (2011) 8:1–15.
doi: 10.1186/1743-8977-8-26

189. Bhargava A, Shukla A, Bunkar N, Shandilya R, Lodhi L, Kumari R, et al.
Exposure to ultrafine particulate matter induces NF-KB mediated epigenetic
modifications. Environ Pollut (2019) 252:39–50. doi: 10.1016/
j.envpol.2019.05.065

190. Pierdominici M, Maselli A, Cecchetti S, Tinari A, Mastrofrancesco A, Alfè M,
et al. Diesel exhaust particle exposure in vitro impacts T lymphocyte
phenotype and function. Part Fibre Toxicol (2014) 11:1–14. doi: 10.1186/
s12989-014-0074-0

191. Ji X, Han M, Yun Y, Li G, Sang N. Acute nitrogen dioxide (NO2) exposure
enhances airway inflammation via modulating Th1/Th2 differentiation and
activating JAK-STAT pathway. Chemosphere (2015) 120:722–8.
doi: 10.1016/j.chemosphere.2014.10.039

192. Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, González-Barcala
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the Role of Inflammation and Oxidative Stress on Age-Related
Cardiovascular Diseases. Oxid Med Cell Longev (2020) 2020:1–20.
doi: 10.1155/2020/1954398

227. Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Singh SP. NF-kB-Mediated
Neuroinflammation in Parkinson’s Disease and Potential Therapeutic Effect
of Polyphenols. Neurotox Res (2020) 37:491–507. doi: 10.1007/s12640-019-
00147-2

228. Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC, et al.
Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kB-
driven inflammation and cardiovascular risk. Proc Natl Acad Sci USA (2019)
166:11370–9. doi: 10.1073/pnas.1816847116

229. Hammond SL, Bantle CM, Popichak KA, Wright KA, Thompson D, Forero
C, et al. NF-kB signaling in astrocytes modulates brain inflammation and
neuronal injury following sequential exposure to manganese and MPTP
during development and aging. Toxicol Sci (2020) 56:1–38. doi: 10.1093/
toxsci/kfaa115
October 2020 | Volume 11 | Article 570083

https://doi.org/10.1016/j.scitotenv.2018.10.188
https://doi.org/10.1016/j.envpol.2018.09.062
https://doi.org/10.1183/16000617.0116-2016
https://doi.org/10.1016/j.envpol.2017.03.070
https://doi.org/10.1016/j.envpol.2017.03.070
https://doi.org/10.1016/j.envres.2019.03.053
https://doi.org/10.1016/j.ecoenv.2018.12.061
https://doi.org/10.4049/jimmunol.1004081
https://doi.org/10.1039/c7tx00262a
https://doi.org/10.1016/j.envpol.2017.06.028
https://doi.org/10.1186/1743-8977-10-18
https://doi.org/10.1289/EHP4522
https://doi.org/10.1038/srep43737
https://doi.org/10.1038/srep43737
https://doi.org/10.1186/s13148-019-0713-2
https://doi.org/10.1186/s13148-019-0713-2
https://doi.org/10.1016/j.chemosphere.2019.03.096
https://doi.org/10.1016/j.envint.2019.105071
https://doi.org/10.1016/j.envint.2019.105071
https://doi.org/10.1007/s40572-016-0098-8
https://doi.org/10.1007/s40572-016-0098-8
https://doi.org/10.1016/j.redox.2019.101264
https://doi.org/10.1016/j.redox.2019.101264
https://doi.org/10.1038/s41586-018-0457-8
https://doi.org/10.1172/JCI68833.946
https://doi.org/10.1186/s12877-019-1348-z
https://doi.org/10.1186/s12877-019-1348-z
https://doi.org/10.1186/s12955-020-01347-7
https://doi.org/10.1080/13696998.2019.1600523
https://doi.org/10.1080/13696998.2019.1600523
https://doi.org/10.1016/j.smim.2018.09.003
https://doi.org/10.1016/j.smim.2018.09.003
https://doi.org/10.1016/j.bbi.2017.12.007
https://doi.org/10.3389/fcvm.2018.00012
https://doi.org/10.3389/fnagi.2015.00124
https://doi.org/10.1016/j.jim.2018.08.005
https://doi.org/10.1038/s41583-020-0325-z
https://doi.org/10.1016/j.smim.2018.10.009
https://doi.org/10.1016/j.smim.2018.10.009
https://doi.org/10.1186/s13148-020-00893-7
https://doi.org/10.3390/medsci6020033
https://doi.org/10.3390/cells8111383
https://doi.org/10.1155/2019/3085756
https://doi.org/10.1038/s41568-019-0222-9
https://doi.org/10.1038/s41568-019-0222-9
https://doi.org/10.1155/2020/1954398
https://doi.org/10.1007/s12640-019-00147-2
https://doi.org/10.1007/s12640-019-00147-2
https://doi.org/10.1073/pnas.1816847116
https://doi.org/10.1093/toxsci/kfaa115
https://doi.org/10.1093/toxsci/kfaa115
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bachmann et al. Environment-Induced Inflammation in Aging
230. Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM,
et al. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol
(2019) 15:540–55. doi: 10.1038/s41582-019-0231-z

231. Ventura MT, Casciaro M, Gangemi S, Buquicchio R. Immunosenescence in
aging: Between immune cells depletion and cytokines up-regulation. Clin
Mol Allergy (2017) 15:1–8. doi: 10.1186/s12948-017-0077-0

232. Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity
towards healthy aging. Mech Ageing Dev (2018) 174:18–29. doi: 10.1016/
j.mad.2018.01.002

233. Xu W, Larbi A. Immunity and Inflammation: From Jekyll to Hyde. Exp
Gerontol (2018) 107:98–101. doi: 10.1016/j.exger.2017.11.018

234. Hu My, Lin Yy, Zhang Bj, Lu D, Lu Z, Cai W. Update of inflammasome
activation in microglia/macrophage in aging and aging-related disease. CNS
Neurosci Ther (2019) 25:1299–307. doi: 10.1111/cns.13262

235. Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, et al. Aging of the
immune system: Focus on inflammation and vaccination. Eur J Immunol
(2016) 46:2286–301. doi: 10.1002/eji.201546178

236. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a
new immune–metabolic viewpoint for age-related diseases. Nat Rev
Endocrinol (2018) 14:576–90. doi: 10.1038/s41574-018-0059-4

237. Stevenson AJ, McCartney DL, Hillary RF, Campbell A, Morris SW,
Bermingham ML, et al. Characterisation of an inflammation-related
epigenetic score and its association with cognitive ability. Clin Epigenet
(2020) 12:113. doi: 10.1186/s13148-020-00903-8

238. Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, et al. Age-
related profiling of DNA methylation in CD8+ T cells reveals changes in
immune response and transcriptional regulator genes. Sci Rep (2015) 5:1–11.
doi: 10.1038/srep13107

239. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, et al.
Human aging-associated DNA hypermethylation occurs preferentially at
bivalent chromatin domains. Genome Res (2010) 20:434–9. doi: 10.1101/
gr.103101.109

240. Jasiulionis MG. Abnormal epigenetic regulation of immune system during
aging. Front Immunol (2018) 9:197. doi: 10.3389/fimmu.2018.00197

241. Messina F, Cecconi F, Rodolfo C. Do You Remember Mitochondria? Front
Physiol (2020) 11:271. doi: 10.3389/fphys.2020.00271

242. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial
Turnover and aging of long-lived postmitotic cells: The mitochondrial-
lysosomal axis theory of aging. Antioxid Redox Signal (2010) 12:503–35.
doi: 10.1089/ars.2009.2598

243. Gowers IR, Walters K, Kiss-Toth E, Read RC, Duff GW, Wilson AG. Age-
related loss of CpG methylation in the tumour necrosis factor promoter.
Cytokine (2011) 56:792–7. doi: 10.1016/j.cyto.2011.09.009

244. Bradburn S, McPhee J, Bagley L, Carroll M, Slevin M, Al-Shanti N, et al.
Dysregulation of C-X-C motif ligand 10 during aging and association with
cognitive performance. Neurobiol Aging (2018) 63:54–64. doi: 10.1016/
j.neurobiolaging.2017.11.009

245. Mejia-Ramirez E, FlorianMC. Understanding intrinsic hematopoietic stem cell
aging. Haematologica (2020) 105:22–37. doi: 10.3324/haematol.2018.211342

246. Norum KR. World Health Organization’s Global Strategy on diet, physical
activity and health: The process behind the scenes. Scand J Nutr (2005)
49:83–8. doi: 10.1080/11026480510037147

247. Cabral-Santos C, de Lima Junior EA, Fernandes IM da C, Pinto RZ, Rosa-
Neto JC, Bishop NC, et al. Interleukin-10 responses from acute exercise in
healthy subjects: A systematic review. J Cell Physiol (2019) 234:9956–65.
doi: 10.1002/jcp.27920

248. Lancaster GI, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, Drayson MT,
et al. The physiological regulation of toll-like receptor expression and
function in humans. J Physiol (2005) 563:945–55. doi: 10.1113/
jphysiol.2004.081224

249. Oliveira M, Gleeson M. The influence of prolonged cycling on monocyte
Toll-like receptor 2 and 4 expression in healthy men. Eur J Appl Physiol
(2010) 109:251–7. doi: 10.1007/s00421-009-1350-9

250. Kawanishi N, Yano H, Yokogawa Y, Suzuki K. Exercise training inhibits
inflammation in adipose tissue via both suppression of macrophage
infiltration and acceleration of phenotypic switching from M1 to M2
macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev
(2010) 16:105–18.
Frontiers in Immunology | www.frontiersin.org 18
251. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA.
The anti-inflammatory effects of exercise: Mechanisms and implications for
the prevention and treatment of disease. Nat Rev Immunol (2011) 11:607–10.
doi: 10.1038/nri3041

252. Zanchi NE, Lira FS, De Siqueira Filho MA, Rosa JC, De Oliveira Carvalho
CR, Seelaender M, et al. Chronic low frequency/low volume resistance
training reduces pro-inflammatory cytokine protein levels and TLR4
mRNA in rat skeletal muscle. Eur J Appl Physiol (2010) 109:1095–102.
doi: 10.1007/s00421-010-1456-0

253. Ma Y, He M, Qiang L. Exercise therapy downregulates the overexpression of
TLR4, TLR2, MyD88 and NF-kB after cerebral ischemia in rats. Int J Mol Sci
(2013) 14:3718–33. doi: 10.3390/ijms14023718

254. Kang EB, Koo JH, Jang YC, Yang CH, Lee Y, Cosio-Lima LM, et al.
Neuroprotective Effects of Endurance Exercise Against High-Fat Diet-
Induced Hippocampal Neuroinflammation. J Neuroendocrinol (2016)
28:1–10. doi: 10.1111/jne.12385

255. Van Der Vaart H, Postma DS, Timens W, Ten Hacken NHT. Acute effects of
cigarette smoke on inflammation and oxidative stress: A review. Thorax
(2004) 59:713–21. doi: 10.1136/thx.2003.012468

256. Krüger K, Seimetz M, Ringseis R, Wilhelm J, Pichl A, Couturier A, et al.
Exercise training reverses inflammation and muscle wasting after tobacco
smoke exposure. Am J Physiol - Regul Integr Comp Physiol (2018) 314:R366–
76. doi: 10.1152/ajpregu.00316.2017

257. Lambert CP, Wright NR, Finck BN, Villareal DT. Exercise but not diet-
induced weight loss decreases skeletal muscle inflammatory gene expression
in frail obese elderly persons. J Appl Physiol (2008) 105:473–8. doi: 10.1152/
japplphysiol.00006.2008

258. Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, Mejıás Y, Rivas A,
de Paz JA, et al. Role of Toll-like receptor 2 and 4 signaling pathways on the
inflammatory response to resistance training in elderly subjects. Age
(Omaha) (2014) 36:9734. doi: 10.1007/s11357-014-9734-0

259. Deckx N, Wens I, Nuyts AH, Hens N, De Winter BY, Koppen G, et al. 12
Weeks of Combined Endurance and Resistance Training Reduces Innate
Markers of Inflammation in a Randomized Controlled Clinical Trial in
Patients With Multiple Sclerosis.Mediators Inflammation (2016) 2016:1–13.
doi: 10.1155/2016/6789276

260. Cristi-Montero C, Sánchez-Collado P, Veneroso C, Cuevas MJ, González-
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