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Abstract: Metal–organic frameworks (MOFs) have significant potential for hydrogen storage. The
main benefit of MOFs is their reversible and high-rate hydrogen adsorption process, whereas their
biggest disadvantage is related to their operation at very low temperatures. In this study, we describe
selected examples of MOF structures studied for hydrogen adsorption and different factors affecting
hydrogen adsorption in MOFs. Approaches to improving hydrogen uptake are reviewed, including
surface area and pore volume, in addition to the value of isosteric enthalpy of hydrogen adsorption.
Nanoconfinement of metal hydrides inside MOFs is proposed as a new approach to hydrogen
storage. Conclusions regarding MOFs with incorporated metal nanoparticles, which may be used as
nanoscaffolds and/or H2 sorbents, are summarized as prospects for the near future.
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1. Introduction

Creating an environmentally friendly and carbon-neutral society is currently a sig-
nificant challenge. An emphasis on reducing the carbon footprint of human activities
and efforts made to adopt sustainable and renewable energy sources resonate at various
levels of society. Supported by funding of approximately EUR 1 billion, the European
Commission has requested research and innovation projects aimed at responding to the
climate crisis, and to help protect Europe’s unique ecosystems and biodiversity [1,2]. Nu-
merous areas and activities exist in which society, politicians, researchers, and engineers are
focusing on building a natural and more environmentally friendly economy. The transport
sector and the automotive industry represent significant challenges. The introduction
and use of batteries and electric vehicles is an important step toward reducing the carbon
footprint of traffic; however, this strategy is applicable to urban transport rather than to
freight, air, or shipping. Several large ocean-sailing container ships produce more harmful
emissions than all the cars in the world combined. A solution to reduce greenhouse gases in
various human activities, including heavy transport, is offered by hydrogen technologies,
which have advanced considerably in recent years. Several economic forecasts indicate the
approaching period of a hydrogen-based economy [3,4]. An example of this trend may be
seen in the Olympic Games in Tokyo 2021 [5,6], where the Olympic torch is going to be
powered by hydrogen, and Japan wants to use the Olympic games to promote hydrogen to
the world [5,6]. Another sign of this trend is the anticipated growth of hydrogen technology
companies’ share prices on the world’s stock exchanges [7].

The development of hydrogen technologies and a wider use of hydrogen fuel cell
systems require new materials that can store large amounts of hydrogen at relatively low
pressures with small volume, low weight, and fast kinetics for recharging. An ultimate
system objective in 2020 for automobile fueling was set by the U.S. Department of Energy
(DoE) at ~7 wt% hydrogen by weight [8]. Various materials have been studied in this
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respect, e.g., metal hydride systems [9–18]; however, numerous problems are associated
with the use of high-temperature H2 storage materials (interstitial and complex metal hy-
drides or their reactive hydride composites), namely, their high cost, low specific uptake by
weight, unfavorable kinetics requiring heating cycles, and susceptibility to contamination
by impurities. In addition, various carbon-based adsorbents (carbon black, intercalated
graphite, carbon nanotubes, and nanoporous polymer networks) have been widely studied
and categorized as low temperature H2 storage materials, although they have been subject
to ambiguous results [19–27]. It remains difficult to systematically engineer the molecular
structure of these hydrogen adsorbers and identify specific hydrogen binding sites.

Among the most challenging materials for hydrogen storage are porous coordina-
tion polymers, also called metal–organic frameworks (MOFs). MOFs are two- or three-
dimensional porous crystalline materials with infinite lattices. As a result of their ultra-high
surface area values (more than 2500 m2·g–1 measured by the Brunauer–Emmett–Teller (BET)
approach), they were found to be promising gas adsorbers for small gaseous molecules,
including CH4, CHCl3, CCl4, C6H6, C6H12, CO2, Ar, N2, and H2. The main benefit of MOFs
is their reversible and high-rate hydrogen adsorption process. A reasonable number of H2
molecules inside the body of MOFs may only be obtained at very low temperatures [28–54].
To date, MOFs have shown significant progress in applications of gas separation, catalysis,
and coordination chemistry. For example, homochiral MOFs have become one of the most
widely studied porous materials to enable enantioseparation [55]. Properties of zeolites and
MOFs have been combined in metal–organic zeolites (MOZs) and proposed as promising
catalysts [56]. The Cu-based boron imidazolate cage (BIF-29) with six exposed mononuclear
Cu centers [57] and Ti-based MOFs (FIR-125, FIR-125, and FIR-127) made of Ti8O8(CO2)16
building units [58] have been considered to be effective photocatalytic materials.

In the present review, we summarize the known physical and chemical factors affecting
hydrogen adsorption in porous MOFs. We also propose new views. Thousands of different
MOF structures are currently known, therefore, to clearly discuss the influence of the
relevant factors of hydrogen adsorption, we focus mainly on MOFs that have cubic cavities
of uniform size and internal structure. The focus is on the MOF-5 and its isorecticular
MOF series (IRMOFs), that have the same framework topology and surface environment,
but different pore sizes. When appropriate, we also discuss the known MOFs of other
symmetries. Additionally, we provide a perspective of new MOF-based materials for
effective hydrogen sorption.

2. Basic Knowledge of Interaction between Solid Porous MOFs and
Gaseous Hydrogen
2.1. Hydrogen Sorption

Gas sorption and desorption (where the latter is the reverse of sorption) of the sorbate
(e.g., gaseous hydrogen) by the sorbent (e.g., MOFs) is a dynamic process. Absorption
occurs when the adsorbate may be incorporated into the internal structure of the adsorbent;
hence, the structure and properties of the absorbate and absorbent may be modified.
Absorption is often related to chemisorption, which occurs when the interaction force
between the sorbent surface and the adsorbate is similar to that of chemical bonding in bulk
compounds. Adsorption is a physical process of attracting atoms, ions, or molecules of the
sorbate to the sorbent surface or interfacial layer and is related to weak intermolecular forces
(van der Waals forces) of the same kind as those responsible for the nonideality of gases
and the condensation of vapors. It is assumed that the electronic structures of sorbate and
sorbent are not affected by physical adsorption. In the case of molecular H2 physisorption,
the H–H bond in the gas phase is preserved in the sorbed state, whereas in the case
of H2 chemisorption, the H–H bond is broken during the sorption process. Therefore,
chemisorption can only occur in a monolayer on the sorbent surface, whereas physisorption
is usually accompanied by multilayer adsorption. The heat values of hydrogen adsorption
for most nanoporous materials, including MOFs, crosslinked polymers, or porous carbons,
are within the range of 4–7 kJ·mol–1 [24].
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2.2. Surface Area

According to IUPAC [59], porous materials are classified according to their pore sizes:
macroporous (pore size > 500 Å), mesoporous (pore size ~20–500 Å), and microporous (pore
size < 20 Å) materials. The microporous materials may be classified into supermicroporous
(pore size ~7–20 Å) and ultramicroporous (pore size < 7Å). Most MOFs are microporous
materials, although supermicroporous and ultramicroporous MOFs are well known. Ul-
tramicropores are filled at very low relative pressures p/po (where p is the equilibrium
pressure and po is the saturation vapor pressure at the adsorption temperature) directed
by gas–solid interactions, and the rates of adsorption highly depend on temperature. In
supermicropores, in addition to gas–solid interactions, a cooperation effect (when pore
filling occurs at a relatively low p/po value) takes place. Pore filling occurs when it is
energetically as favorable for a gas molecule to exist between the monolayers of the gas in
the center of the pore as it is to complete the monolayer coverage. A continuous monolayer
of adsorbate molecules surrounding uniform sorbent surfaces is the main concept of the
Langmuir adsorption model:

ΘA =
KA

eq pA

1 + KA
eq pA

(1)

where θA is the fractional occupancy of adsorption sites; pA is the partial pressure of the
adsorbate; KA

eq is the equilibrium constant of the chemical interaction between the adsorbate
molecule and the empty site. Most MOFs have different types of atomic surfaces; therefore,
the interactions with gases highly depend on the metal atoms and organic ligands forming
MOFs. At the evaluation of the MOF surface area, a common Langmuir equation may not
be suitable. This is mainly due to localized adsorptions in ultramicropores and multilayer
adsorption in supermicropores of MOFs.

The BET theory considers multilayer adsorption; therefore, this approach has become
a common and simple method to calculate the surface area:

p/p0

n(1− p/p0)
=

1
nmC

+
(C− 1)(p/p0)

nmC
(2)

where n is the specific amount of the adsorbed gas at the relative pressure of p/po, C is the
BET constant, and nm is the specific monolayer capacity. It has been shown that the BET
surface area calculated from the N2 adsorption isotherm obtained by the Grand Canonical
Monte Carlo (GCMC) simulation is very similar to the experimental BET surface area [60].
Reasonable values of the BET surface areas; however, may only be obtained in a linear
range of Equation (2). In addition, this condition was experimentally confirmed mainly
using p/po values of 0.05–0.3, which are only applicable to non-porous or mesoporous
materials. In the case of supermicroporous MOFs and ultramicroporous materials with
pores that vary in terms of size, form, and chemical surroundings, the BET calculation on
the surface area is inaccurate. In 2007, Llewellyn et al. recommended consistent criteria
to address this issue [61]: (1) the BET approach should be limited to the range in which
the term n(1 − p/po) increases continuously with the p/po value; (2) the C constant resulting
from the linear fit should be positive with a value of at least 10; and (3) the nm value
corresponds to a certain value of p/po, which must be located within the linear region
chosen for the area calculation. I. Senkovska and S. Kaskel [62] concluded that strong
surface tension effects during subcritical adsorption can cause deformation of adsorbent
structure, especially in the case of MOFs in which the tension forces act simultaneously
when the pore is being filled. As a result, that the calculated surface area of the framework
depends on the pressure range used in the calculation, the BET equation to determine the
surface area of MOFs should be adapted to a specific situation. The specific surface areas
of MOFs are generally determined from the N2 adsorption isotherms at 77 K; however,
it should be mentioned that the use of alternative probe molecules will often result in
different values of surface area.
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In monolayer adsorption, all adsorbed H2 molecules are in contact with the sorbent
surface. The monolayer can be in the form of different surface structures, including a
close-packed array. The monolayer hydrogen capacity (na,m) is determined as the number
of H2 molecules sufficient to completely cover the sorbent surface. The surface coverage (θ)
is assigned as the ratio of the adsorbed amount of H2 to the monolayer hydrogen capacity.
The surface area (As) of the sorbent is usually calculated from the monolayer hydrogen
capacity when the area effectively occupied by the H2 molecules in the complete monolayer
(σm) is known:

As = na,m L σm (3)

where L is Avogadro’s constant. The specific surface area (as) can be calculated as the ratio
of As to the mass (m) of the sorbent:

as =
As

m
(4)

2.3. Surface Excess and the Total Adsorbed Amount of Hydrogen

The adsorption process initially appears to be a simple procedure because, during the
interaction between MOFs and the hydrogen gas, only the adsorption space exists (e.g.,
the adsorbed layer). In practice, however, to evaluate the total amount adsorbed (na), the
volume of the adsorption space (Va) is needed, which cannot be measured simply [60].
According to the Gibbs model, the difference in the amounts of the molecular hydrogen
gas that would be present in the equivalent volume of the adsorbed phase in the presence
and the absence of adsorption is a quantity called the surface excess amount nσ. In this
case, adsorption is assumed to be two-dimensional (i.e., Va = 0) and to occur on the Gibbs
dividing surface (GDS), which restricts the volume available for the homogeneous gas
phase (Vg). Calculating the gas phase amount (ng) in equilibrium with the adsorbent may
be carried out with the appropriate gas laws. In practice, the nσ value may be determined by
adsorption manometry or gravimetry. In the case of of H2 gas adsorption up to 1 bar, the na
and nσ values are nearly identical, provided the latter is calculated with the GDS very close
to the adsorbent surface. When the H2 pressure >1 bar, the difference between the value
of na and nσ is clear. The experimental nσ data can be converted into the corresponding
na value, when the volume of the solid MOF (Vs) and Va and are known. When the GDS
exactly coincides with the actual adsorbent surface [63], the total adsorbed amount of
hydrogen in the MOF is:

na = nσ + CgVa (5)

where na and nσ values are in mg·g−1; Cg is the compressed gas concentration at a given
temperature and pressure, in g·cm–3; and Va is the volume of the adsorption space in cm3.
The na value can be derived from the excess adsorption isotherm, which is the relationship
between the nσ value and the equilibrium pressure of the gas (p) at constant temperature.
At gas adsorption temperatures below the critical point, the p/po value is usually considered,
whereas at those above the critical point, only the p value must be considered, because no
saturation vapor pressure (po) exists.

The authors of [64] considered the volume of a pore as a complex object with a volume
of the free-gas phase between two volumes of adsorbed molecules (Va). In a simplified case,
the Va value is taken as a pore volume and may be calculated using the crystallographic
density of the sample (dbulk) and the skeletal density of the material (dskeletal) [40]:

Va =
1

dbulk
− 1

dskeletal
(6)

The obtained Va value is measured in cm3·g–1 and dskeletal is measured in g·cm–3:

dskeletal =
m

Vskeletal
(7)
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where m is the sample mass in grams and Vskeletal is the skeletal volume of MOFs in cm3.
Vskeletal is normally determined using the gas sorption isotherm measured at 298 K up to
the pressure of 100 bar. The hydrogen adsorption capacity in MOFs is expressed in wt%
but more often the mass in mg or mmol of H2 adsorbed per gram of MOF is used [65].

2.4. Isosteric Enthalpy of Hydrogen Adsorption

Using the differential energies/enthalpies of adsorption (∆adsU)/(∆adsH) versus the
adsorbed total amount (na), the energetics of micropore filling can be estimated. The ∆adsH
value at constant coverage can be evaluated by determining the isotherms at two or more
different T values. The respective data processing may be related graphically as ln P for a
given na value as a function of 1/T. Using the Clausius-Clapeyron equation, it is possible
to establish the “isometric heat of adsorption” when it is assumed that there is no enthalpy
or entropy variation with T [66]:

∆adsHna = R

(
∂ ln[P]

∂ 1
T

)
na

(8)

where ∆adsHna is the enthalpy of differential adsorption and R is the gas constant. By
comparison, using adsorption isotherms obtained at different temperatures, the energetics
data assessment leads to the isosteric heat of hydrogen adsorption (Qst). As a result, that Qst
is equal to −∆adsH, the term “isosteric enthalpy of adsorption” is preferable [55]. Therefore,
energy of hydrogen physisorption can be obtained directly from the hydrogen adsorption
calorimetry (which is more reliable) or indirectly using the Clausius–Clapeyron relation:

Qst = R ln
(

P1

P2

)
T1T2

T2 − T1
(9)

The accuracy of this type of calculation depends on the measurement of the P values,
which depends on the “adsorbent–adsorbate balance”. Typical problems appear in the
case of gas adsorption in microporous materials at low P values. A small deviation in
equilibrium due to molecular diffusion or thermal transfer can generate a relatively large
variation in pressure measurements, leading to dispersion of the Qst value [66]. Evaluation
of the Qst value has also been proposed using the Chakraborty–Saha–Koyama model [67]
based on the concepts of chemical equilibrium potentials between the gaseous and adsorbed
phases, the state equation, and the Maxwell relationships. The conventional form of Qst
with the Clausius–Clapeyron approach was obtained as:

Qst (conventional) = RT2

[ (
∂ ln[P]

∂T

)
ma

]
(10)

where ma is the adsorbate mass.

3. Structure and Topology of MOFs Studied for Hydrogen Adsorption
3.1. MOF-5 and Isorecticular Compounds

The group of Yaghi described the first carboxylate-based MOFs, such as MOF-2 [68]
and MOF-5 [69], in the mid-1990s. Subsequently, significant research interest has been
shown in these materials, which have been tested for applications such as gas storage,
separation, and conversion [70,71], and drug delivery [72]. As a result, several novel MOF
crystal structures have been described, and thousands of different examples with various
symmetries and topologies are known [68–72].

Due to the large number of existing MOFs and their structural diversity, in this work
we focus mainly on MOFs with cubic symmetry, including the IRMOF series.
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The well-known MOF-5 (also called IRMOF-1) was prepared under solvothermal
conditions using the Zn2+ cation and 1.4-benzenedicarboxylic acid (H2BDC):

4 Zn2+ + 3 H2[O2C-C6H4-CO2] + 8 OH- → 3 Zn4O[O2C-C6H4-CO2]3 + 7 H2O (11)

This compound crystallizes in the Fm-3m space group with a cubic symmetry and
composition of [Zn4O(BDC)3]n. The structure is formed by four Zn2+ cations that share
one oxygen atom, forming regular tetrahedral [Zn4O]6+ clusters [73]. Each zinc atom is
further tetrahedrally coordinated and each edge of the Zn tetrahedron is capped by a
[BDC-CO2] group to form a [Zn4(O)(CO2)6] cluster [73]. These clusters are subsequently
bridged by six BDC molecules in octahedral coordination to form a robust microporous
cubic structure (Figure 1). Figure 1 shows one cavity of MOF-5—the overall structure is
more complex, composed of larger cavities (15.1 Å in diameter) and smaller cavities (11.0 Å
in diameter) in an alternating manner, so that the unit cell consists of four larger and four
smaller cavities [69]. The calculated surface area of MOF-5 is about 2500–3000 m2·g–1.
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The crystal structure of MOF-5 can also be described using topology tools. The struc-
ture can be viewed as a simple cubic six-connected net with two simplifications: (1) the 
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Figure 1. Isoreticular series of MOF-5 (IRMOF-1). Crystal structures of the IRMOFs-n (n = 1, 7, 8,
10, 12, 14, and 16), labeled respectively. The color scheme is as follows: Zn (blue polyhedra), O (red
spheres), C (black spheres), Br (green spheres in 2), amino-groups (blue spheres in 3). The large yellow
spheres represent the largest van der Waals spheres that would fit in the cavities without touching
the frameworks. Reprinted with permission from [73]. Copyright © 2002, American Association for
the Advancement of Science. All rights reserved.
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The crystal structure of MOF-5 can also be described using topology tools. The
structure can be viewed as a simple cubic six-connected net with two simplifications:
(1) the nodes (vertices) of the net are replaced by clusters of the secondary building units
(SBUs), which are Zn4O; and (2) the edges of the net are replaced by infinite rods (struts) of [–
O2C–C6H4–CO2

–] anions. MOF-5 is a prototype for a class of porous materials with similar
structure constructed from octahedral [Zn–O–C] clusters made of organo-dicarboxylate
linkers (struts), where “organo” represents, for example, biphenyl, tetrahydropyrene,
pyrene, or terphenyl. Depending on the size of the acid molecule used, holes of different
sizes can be prepared. These isostructural compounds are referred to as IRMOFs and have
the same framework topology. Pore size in IRMOFs can be incrementally varied from 3.8 to
28.8 Å, and the open space can represent up to 91.1% of the crystal volume [73]. IRMOFs can
be prepared with an organic linker substituted by –Br, –NH2, –OC3H7, –OC5H11, –C2H4, or
–C4H4. From the IRMOF series, IRMOF-20, which is formed by thieno[3, 2-b]thiophene-2,5-
dicarboxylate fragments, is of particular interest from a hydrogen adsorption perspective
because, above 1 bar, IRMOF-20 shows higher gravimetric and volumetric hydrogen
density than MOF-5, as shown by an isothermal pressure swing experiment between
Pmin = 5 bar and Pmax = 35, 50, or 100 bar [74].

3.2. Other MOFs Formed by Metal Clusters Interconnected by Carboxylate Linkers

Another type of MOF that may be promising for hydrogen adsorption is represented
by a framework with a cubic structure based on metal clusters interconnected by polytopic
carboxylate linkers. The well-known representatives of this MOF family are UiO (where
UiO refers to the University of Oslo) and HKUST-1 (HKUST referring to the Hong Kong
University of Science and Technology). UiO-66 is prepared from Zr2+ ions and [BDC]2–

ligands and crystalized in a cubic lattice with the Fm-3m space group, similar to MOF-5,
and the SBU composition of [Zr6O4(OH)4(COO)12] (Figure 2a)[75,76].
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Figure 2. Ball-and-stick representations of the 3D cubic framework structure of UiO-66 (a,b). Parts
of the framework showing spatial arrangements of the octahedral and the tetrahedral cages are
represented by orange and yellow spheres, respectively (c,d). Magnified views of the octahedral and
tetrahedral cages of Zr atoms are displayed as Zr (blue polyhedral), O (red spheres), and C (gray
spheres). The hydrogen atoms and guest molecules have been removed from all the structural plots
for clarity. Reprinted with permission from [76]. Copyright © 2013, Royal Society of Chemistry. All
rights reserved.
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The crystal structure of UiO-66 has two types of the cavities [76]: (1) an octahedral
cavity with a size of ~9 Å (orange spheres in Figure 2a,c), and (2) a tetrahedral cavity with
a size of ~7 Å (yellow spheres in Figure 2b,d). The UiO-66 material is unique because of
its hydrothermal, mechanical, and thermal stability. The surface area value of UiO-66 is
1187 m2·g–1. By changing the [BDC] linker to a larger dicarboxylate ligand, an isorecticular
UiO (Figure 3) can be prepared (e.g., UiO-67 [77], with surface area values within the range
of 3000–4170 m2·g–1). In addition, other isorecticular MOFs derived from zirconium Zr6
clusters, present in UiO-66, have been synthesized (e.g., NU-1101, MOF-808, and PCN-521).
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The crystal structure of HKUST-1 with the composition of {[Cu3(BTC)2(H2O)3]}n was
first studied in 1999 [78]. It is composed of BTC3- linkers (H3BTC = 1, 3, 5-benzenetricarboxylic
acid), which coordinate with Cu2+ ions to form a cubic lattice with the Fm-3m space group.
Within HKUST-1, the Cu2+ ions are organized in dimers with a “paddle wheel” cluster, in
which each copper atom is coordinated by four oxygen atoms from the [BTC3–] bridging
ligands. The fifth coordination site on each Cu2+ ion is occupied by an oxygen atom from a
water molecule, which can be easily removed by activation. Coordination of [BTC3–] with
the Cu2+ ions leads to the formation of a three-dimensional neutral skeleton with a surface
area of 1500 m2·g–1 and a complex structure [79] with three types of pores (see Figure 4).

It should be noted that, in addition to the structure types described above, there are
also other well-known MOF structures, such as the MIL and DUT families. A detailed
structural description of these MOFs exceeds the scope of this review, and in the struc-
ture description we focus mainly on the structures with a cubic symmetry. In addition,
we describe the structures of two other MOFs, namely, PCN-610/NU-100 and NU-1501,
because these MOFs show significant hydrogen adsorption capacities. Ahmed et al. [48]
undertook a systematic assessment of published databases of real and hypothetical MOFs,
and screened nearly half a million metal–organic frameworks, which were examined
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computationally. The most promising materials identified computationally were subse-
quently synthesized and characterized experimentally. Importantly, three MOFs with
usable capacities surpassing that of IRMOF-20 were demonstrated: SNU-70, UMCM-9, and
PCN-610/NU-100, of which the latter showed the highest storage capacities.
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Compound PCN-610/NU-100 contains ligands with C3 symmetry, namely 5,50,500-
(((benzene-1,3,5-triyltris(ethyne-2,1-diyl))tris(benzene-4,1-diyl))tris-(ethyne-2,1-diyl))triisophthalic
acid (H6ttei), with three coplanar isophthalate moieties. A solvothermal reaction of H6ttei
and copper(II) nitrate in DMF/HBF4 yielded Cu3(H2O)3(ttei)·19H2O·22DMF, whose X-
ray crystal structure revealed cubic Fm-3m symmetry with a noninterpenetrating (3,24)-
connected framework formed from Cu2-paddle-wheel units (see symbol “A” in Figure 5).
Interconnection of these paddle wheel Cu2(-COO)4 units with the H6ttei ligand results
in formation of three types of voids (see symbols “B”, “C”, and “D” in Figure 5) with
sizes 26.0, 18.6, and 12.0 Å, respectively. These voids can be described as cuboctahedra,
truncated tetrahedra, and truncated octahedra [48].
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Ultraporous MOFs, namely NU-1501-M (M = Al or Fe), based on metal trinuclear
clusters, have been reported [80]. The high porosity and surface area of these MOFs yielded
impressive gravimetric and volumetric storage performances for hydrogen and methane.
In contrast to the compounds described above, the structure of these MOFs has hexagonal
rather than cubic symmetry, and the space group P6m2. The compound is founded on the
prismatic triptycene-based organic ligand, peripherally extended triptycene (H6PET-2), see
Figure 6. The combination of these rigid trigonal prismatic linkers and M3O metal trimers
(M = Al3+, Fe3+) forms MOFs with the formula [Al3(m3–O)(H2O)2(OH)(PET–2)] [80]. The
compound exhibits 6-c acs topology, and have one type of open hexagonal channel with a
pore size of ~2.2 nm (see Figure 6).
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4. Current Approaches to Increasing Hydrogen Adsorption in MOFs

Unfortunately, no MOFs currently satisfy the proposed DoE target under ambient
conditions. The porous MOFs adsorb molecular hydrogen physically; therefore, H2 adsorp-
tion capacity sharply decreases at higher temperatures. To predict hydrogen adsorption
isotherms, GCMC simulations over a wide range of pressures at 77 K have been performed
for a series of IRMOFs [81]. The obtained theoretical results suggest the existence of three
adsorption modes at 77 K: (1) at low pressure (~1 bar of H2), the na value is proportional
to the value of Qst; (2) at ~30 bar of H2, the na value is proportional to As; and (3) at
~120 bar of H2, the na value is proportional to Va. Due to the very weak adsorption energy
between MOFs and H2 molecules, the correlations obtained for the total adsorbed amount
of hydrogen at 77 K [81] could not be similarly exploited for those at 298 K [82]. Even at
low P(H2) at 298 K, the na value mainly correlates with the Va value, whereas the nσ value
again correlates well with Qst. At high pressure, the na value correlates better with As than
with Va. The authors of [81,82] predicted that a reasonable value of H2 adsorption capacity,
such as 9 wt% of H2, could be obtained with MOFs that can provide the value of Qst within
the range of 15–25 kJ·mol–1 with the Va value of ~2.5 cm3·g–1 and porosity of ~85%.
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For MOF-5, the measured adsorption isotherm at 77 K showed type I behavior [59]
with H2 adsorption capacity of 4.7 wt% of H2 at P(H2) = 50 bar [83]. The experimentally
observed fast hydrogen adsorption at low hydrogen pressure indicates favorable sorption
interactions between the MOF-5 and H2 molecules [28]. The hydrogen adsorption isotherm
at 298 K was approximately linear because the MOF-5 framework was under-saturated with
gas within the range of 5–20 bar of H2. Recently, it was found that the ultramicroporous
MOF, NU-1501-Al, exhibits high values for both gravimetric and volumetric BET areas
(7310 m2·g–1 and 2060 m2·cm−3, respectively [80]). These were considered the main
reasons for the high value of hydrogen storage capacity (14.0 wt% and 46.2 g·dm−3) under
a combined T and P(H2) change from 77 K and 100 bar to 160 K and 5 bar.

4.1. Factor of the Surface Area and Pore Volume

A linear relationship between the H2 adsorption capacity at 77 K and the As value
has been confirmed in numerous publications [40]. As a result of the Va value being
proportional to As, higher values of both Va and As are recommended to improve hydrogen
adsorption in MOF at 77 K. The adsorption capacity at 77 K and 1 bar of H2 is related to the
As values within the range of 100–2000 m2·g–1 and is not correlated in the case of higher As
values. This may be because the sorbent surface cannot be fully covered by H2 molecules
at these high As and low P(H2) values. In addition, it is most likely that the H2 molecules
will preferentially bind on the most thermodynamically favorable sites in MOFs with the
largest affinity to hydrogen. In the porous MOFs at a low pressure of 77 K, H2 adsorption
may be affected by ligand functionalization, catenation, open metal sites, and pore size,
whereas high-pressure H2 adsorption is directly proportional to the As value.

The scaffolding-like nature of MOF-5 and IRMOFs results in remarkably high values
of As (2500–3000 m2·g–1 [28]). The crystal structure of MOF-5 serves as an ideal 3D location
to adsorb hydrogen gas because the organic linkers are isolated from each other and acces-
sible from all sides to adsorb the H2 molecules. MOF-5 samples prepared with different
characteristics (low crystallinity, high crystallinity, interwoven, and interwoven with in-
corporated MWCNTs) have been studied to evaluate their effects on pore characteristics
(determined by the BET approach for N2 adsorption at 77 K and p/po value of 0.98) and
H2 adsorption (measured at 77 K and 1 bar of H2) [84]. The obtained results confirmed
that higher crystallinity in MOF-5 leads to higher As and Va values, in addition to higher
H2 adsorption capacity and thermal stability (Table 1). The interwoven MOF-5 samples
showed an ultramicroporous structure and reached 1.7 and 2.0 H2 wt%, and an increase in
the decomposition temperature, Tdec, to 773 and 783 K, respectively.

Table 1. Specific surface area, pore volume, and H2 adsorption for structurally modified MOF-5.
Adapted with permission from [84]. Copyright © 2012, Elsevier. B.V. All rights reserved.

MOF-5 Sample As,
m2·g–1

Va,
cm3·g–1

Pore Size,
Å

wt% of
H2

Tdec,
K

Low-crystalline 2050 0.88 ~6 and ~13 1.2 711
High-crystalline 3400 1.42 ~7 and ~14 1.3 755

Interwoven 1010 0.51 ~6 1.7 773
Interwoven with

incorporated MWCNTs 1170 0.57 ~6 2.0 783

The factors of surface area and pore volume are well recognized to have an impact
on hydrogen adsorption. MOFs with very large surface areas usually show the highest
hydrogen adsorption capacities. Typically, MOF materials with high BET areas, e.g., MOF-
210 [82] and DUT-60 [85], show very high gravimetric adsorption capacities. Alternatively,
as reported recently, balancing volumetric and gravimetric uptake must be considered for
the development of ideal hydrogen adsorbents [80].
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4.1.1. Length of Organic Linkers

Previous research has shown that, for a given crystal structure of MOFs, the As
value can be increased using longer ligands (linkers). For example, BBC (4,4′,4′′-[benzene-
1,3,5-trilytris(benzene-4,1-diyl)]tribenzoate) may be considered to a longer model of BTB
(4,4′,4′′-benzene-1,3,5-triyl-tribenzoate). MOF-200, which comprises the BBC linker, demon-
strates an As value of 4520 m2·g–1, and MOF-177 with the BTB linker has an As value of
4750 m2·g–1 (both using the BET method) [86]. A thorough comparison of isostructural
UiO-66 and UiO-67 was made in [87]. These MOFs are constructed from Zr6O4(OH)4
nodes, and organic linkers 1,4-benzene-dicarboxylate and 4,4′-biphenyldicarboxylate for
UiO-66 and UiO-67, respectively. Resulting from of the longer linker in the case of UiO-67,
the value of As (Langmuir) was 2483 m2·g–1, which is higher than that value of 1281 m2·g–1

in the case of UiO-66. A similar effect was observed for the Va value (0.85 vs. 0.43 cm3·g–1).
As a consequence, the hydrogen adsorption capacity measured at 77 K and 38 bar of H2 was
almost twice as high for UiO-67 (4.6 wt%) as for UiO-66 (2.4 wt%). A “ligand-truncation”
strategy was studied in [88]. The idea was to reduce the C3-symmetry of the H6PHB linker
(3,3′,3′′,5,5′,5′′-pyridyl-1,3,5-triylhexabenzoic acid) to the C2-symmetry of H4L (2,6-di(3′,5′-
dicarboxylphenyl)pyridine) in GDMU-2. Therefore, this MOF changed the chemical com-
position from [Cu4(µ2–O)(PHB)1.5(H2O)2]·(DMF)5(H2O)4 to {[Cu2(L)(H2O)6]n·4nDMF}.
The new MOF with the H4L linker preserved the paddle wheel cluster, and the alignment of
open metal sites and functional sites, similar to those observed in the GDMU-2. Hydrogen
adsorption measured at 77 K and 1 bar of H2 for GDMU-2 was higher than that for the new
MOF (240.7 vs. 193.0 cm3·g–1).

It was recommended that the increase in the na value could be anticipated because
IRMOFs have similar but larger organic linkers [28]. For comparison of such an organic
linker function in IRMOFs, experimental data on pore characteristics and H2 adsorption
collected in [40] are shown in Table 2.

Table 2. Surface area (BET), pore volume, and H2 adsorption capacity at 77 K and 1 bar of H2 for IRMOFs.

MOF Sample Organic Linker
Pore Characteristics H2

Adsorption,
wt%

As,
m2·g–1

Va,
cm3·g–1

IRMOF-1 1,4-benzenedicarboxylate 3362 —- 1.32
IRMOF-2 2-bromobenzene-1,4-dicarboxylate 1722 0.88 1.21
IRMOF-3 2-aminobenzene-1,4-dicarboxylate 2446 1.07 1.42
IRMOF-6 1,2-dihydrocyclobutabenzene-3,6-dicarboxylate 2476 1.14 1.48
IRMOF-8 Naphthalenedicarboxylate 890 0.45 1.45
IRMOF-9 4,4′-biphenyldicarboxylate 1904 0.9 1.17
IRMOF-11 4,5,9,10-tetrahydropyrene-2,7-dicarboxylate —- —- 1.62
IRMOF-13 pyrene-2,7-dicarboxylate 1551 0.73 1.73
IRMOF-16 p-terphenyl-4,4′-dicarboxylate —- —- —-
IRMOF-18 2,3,5,6-tetramethylbenzene-1,4-dicarboxylate 1501 —- 0.89
IRMOF-20 thieno[3,2-b]thiophen-2,5-dicarboxylate 3409 1.53 1.35

The number of aromatic benzene rings may also influence the hydrogen sorption,
as determined from the study of IRMOFs, in which the Zn4O(CO2)6 cluster is linked by
chemically diverse organic linkers with a different number of benzene rings in the linker.
The hydrogen sorption changed within the range of 0.89–1.73 wt% H2 [89]. In the case
of MOF-177, which has a mixed (3,6)-connectivity due to the tritopic linkage of BTB, the
hydrogen adsorption capacity was estimated to be 1.25 wt% H2. A crucial role of the
organic linker was inconsistent with the model in which the metal oxide units dominate the
sorption behavior in MOFs [90]. For example, IRMOF-20 and MOF-177 have a relatively
low proportion of metal oxide to organic linker but, within the range of 70–80 bar H2, they
demonstrated hydrogen adsorption of 6.7 and 7.5 wt%, respectively.
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The results obtained for IRMOFs confirmed that the organic linker geometry, particu-
larly the length, has a direct influence on the pore size, and hence the surface area of MOFs.
In addition, when the As values correlate with the na values, the H2 adsorption capacity
should depend on the length of the organic linkers. Therefore, the values of hydrogen
adsorption capacity for IRMOF-6, IRMOF-8, IRMOF-11, and IRMOF-13 is considerably
higher than that for IRMOF-1, IRMOF-2, IRMOF-9, and IRMOF-20 (Table 2). The elon-
gation of the organic linker is limited, and may be collapsed in the case of the flexible
MOF porous structure formed with long linkers. This behavior often leads to framework
interpenetration, which results in a considerably reduced As value.

4.1.2. Catenation Process

From a thermodynamic perspective, the value of surface energy must be as low as
possible to form a compact structure of the material. Therefore, when large pores in an
MOF from a long organic linker are anticipated using only the geometrical calculation, an
interweaving or interpenetration of the MOF framework may occur in practice. Interweav-
ing and interpenetration are considered to be two types of the catenation process (bonding
of atoms of the same element into a chain) where, respectively, a minimal and maximal dis-
placement occurs between the catenated frameworks [91,92]. In an experimental work [93],
it was proposed that catenation of MOFs may be controlled by adding a template dur-
ing the solvothermal MOF synthesis (e.g., the oxalic acid used as a template promotes
a non-catenated MOF framework). Using a brominated and non-brominated ligand, in
which a non-catenated and catenated MOF framework was produced, the authors of [94]
concluded that catenation may be controlled by the organic linker design. As a result of
the synthesis of organic linkers and their organization in the MOF structure depending
on the reaction parameters (e.g., the precursor concentration, temperature, and time of
stirring), the catenation process in a different form is strongly guided by the MOF synthesis
conditions [95,96].

It is obvious that catenation directly affects the H2 adsorption in MOFs. The copper
paddle wheel node and the TATB linker (4,4′,4′′-s-triazine2,4,6-triyltribenzoate) are the
building units for both porous coordination networks (PCNs), catenated PCN-6 and non-
catenated PCN-60, and their general formula is Cu3(TATB)2 [93]. After sample activation
at 323 K, the hydrogen adsorption capacity at 77 K and 1 bar of H2 was 1.74 and 1.35 wt%
for PCN-6 and PCN-60, whereas after activation at 423 K, these values increased to 1.9 and
1.62 wt%, respectively. The larger improvement in H2 adsorption for the non-catenated
PCN-60 was explained by the open metal sites, which were blocked in the catenated
PCN-6. Inelastic neutron scattering (INS) experiments suggested that in these MOFs, the
open metal sites are most favorable for the H2 molecules, and at higher P values, the
interaction between the H2 molecules and the organic linkers becomes stronger in the
catenated PCN-6. The INS results were in good agreement with the high pressure H2
adsorption measurements at 77 or 298 K and 50 bar of H2 (Table 3). The experimental
na and nσ values confirmed higher H2 adsorption for the catenated PCN-6 than the non-
catenated PCN-60. In addition to PCN-6 and PCN-60, high adsorption capacities were
determined for the compound PCN-610/NU-100. Ahmed et al. [48] undertook a systematic
assessment of published databases of real and hypothetical MOFs, and screened nearly
half a million metal–organic frameworks, which were examined computationally. The
most promising materials identified computationally were subsequently synthesized and
characterized experimentally. For these three compounds, the authors reported hydrogen
usable capacities for the pressure range of 5–100 bar. Of these compounds, the highest
hydrogen usable gravimetric capacity was found for PCN-610/NU-100, with a value of
10.1 wt% [48].
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Table 3. Values of surface excess and the total adsorbed amount of hydrogen (experimentally
obtained at 77 or 298 K and 50 bar of H2) for catenated PCN-6 and non-catenated PCN-60.

Temperature, K
Catenated PCN-6 Non-Catenated PCN-60

na, wt% of H2 nσ , wt% of H2 na, wt% of H2 nσ , wt% of H2

77 8.7 6.7 5.5 4.0
298 1.5 0.9 0.8 0.4

Similar results were obtained for the catenated Zn4O(dcdEt)3 and Zn4O(dcbBn)3
(dcdEt=6,6′-dichloro-2,2′-diethoxy-1,1′-binaphthyl-4,4′-dibenzoate; dcbBn=6,6′-dichloro-
2,2′-dibenzyloxy-1,1′-binaphthyl-4,4′-dibenzoate) [97]. Their four-fold interpenetrated
frameworks adsorbed about 1.0 wt% of H2 at 298 K and P(H2) = 48 bar. This was explained
by a smaller pore size, which increased the “guest–host” interactions. When MOFs are
catenated too much, they show very low H2 adsorption. For example, the three-fold inter-
penetrated frameworks of [Cu3(4,4′-bpy)1.5(2,6-NDC)3]n ((bpy = bipyridine); NDC = naph-
thalenedicarboxylate)) and {[Cu(bpe)0.5(2,6-NDC)]·0.5H2O}n (bpe = 1,2-bis(4-pyridyl)ethane)
showed low H2 adsorption capacities at 77 K and 15 bar of H2 (0.88 and 0.96 wt%, re-
spectively) [98]. This may be due to negligible As values estimated by the Langmuir
method, i.e., 113 and 337.5 m2·g–1, for [Cu3(4,4′-bpy)1.5(2,6-NDC)3]n and {[Cu(bpe)0.5(2,6-
NDC)]·0.5H2O}n, respectively.

Therefore, using the catenation process, the pore characteristics may be altered, and
hence the hydrogen adsorption capacity of MOFs can be changed. The authors of [99]
concluded that the positive effect of catenation on H2 adsorption in MOFs is due to a
strengthened framework and a smaller pore size.

4.1.3. Different Organic Linkers

A combination of two types of organic linker within the same MOF structure could be
another approach to increase the pore characteristics of MOFs. For example, the SNU-6
framework was constructed from the BPnDC (4,4′-benzophenone dicarboxylate) ligand
and the bpy (4,4′-bipyridine) ligand, together with Cu2+ nodes [100]. This MOF was
characterized by large pores (the pore diameter of 18.2 Å), and the As values obtained by
the BET and Langmuir methods were 2590 and 2910 m2·g–1, respectively. The hydrogen
adsorption capacity at 77 K and 1 bar of H2 was relatively low (1.68 wt%); however, at high
pressure (77 K and 70 bar of H2), the na and nσ values were 10.0 and 4.87 wt%, respectively.
The authors of the work [101] used coordination copolymerization of organic linkers with
identical functional coordination but different topologies. BET and Langmuir As values
of 5200 and 6060 m2·g–1, respectively, were obtained for the UMCM-2 framework with
the [Zn4O(T2DC)(BTB)4/3] formula (T2DC = thieno[3,2-b]thiophene-2,5-dicarboxylate). It
should be noted that these high As values originated from the novel framework topologies
that were hard to obtain using only one type of organic linker. The experimentally obtained
nσ value was around 6.9 wt% at 77 K and 46 bar of H2. In [102], the mixed BTB/NDC
and BTE/BPnDC linkers (BTB = 4,4′,4′′-benzene-1,3,5-triyl-tribenzoate; BTE = 4,4′,4′′-
[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate) were used to obtain MOF-205 and
MOF-210, respectively. These MOFs were characterized by high BET/Langmuir As values
(4460/6170 m2·g–1 and 6240/10,400 m2·g–1 for MOF-205 and MOF-210, respectively),
which positively reflected on the H2 adsorption. For example, for MOF-210, the hydrogen
adsorption capacity at 77 K was 8.6 wt% at 56 bar of H2 and 17.6 wt% at 80 bar of H2.

Approaches using different organic linkers have recently been developed with a
mixed-matrix hybrid strategy to provide a tool for facile characterization of molecular
transport in MOFs. For example, in [103], incorporation of the MOF crystals into polymers
resulted in hybrid membranes with excellent molecular sieving properties. The improved
membrane performance resulted from precise control of the organic linkers in the MOF,
which delimited the entrance to the pores.
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4.1.4. Flexible Organic Linkers

Since 2003, significant interest has been directed towards dynamic MOFs with flexible
organic linkers [104–110]. Dynamic MOFs can respond to external conditions (e.g., T, P,
electric or magnetic fields, and chemical insertion) and reversibly change their channels by
a large magnitude while maintaining the same or similar topologies. Therefore, this type
of MOF is often associated with reversible transformations between the expansion and the
contraction states [105–107], which are called the “breathing” [108] or “sponge” [109] effect.
For 3D dynamic MOFs, three situations have been distinguished (Figure 7) [111]. As a result
of the interlayer extension and shortening, reversible transformations may occur using
suitable flexible pillars (class a, Figure 7a). Class b corresponds to sponge-like dynamic
behavior (Figure 7b). Finally, when interpenetrated high-packed frameworks occur (class
c), the introduction of guest molecules promotes the sliding of one framework (Figure 7c).
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In the case of pillaring the layer using flexible linkers (class a), reversible extension
and shortening of the pillars in the interlayers result in two stable MOF states. For exam-
ple, in the layered γ–ZrPO4[O2P(OH)2]·2H2O frameworks, the [O2P(OH)2] groups can
be substituted with different alkane diphosphonate ligands. The ZrPO4[O2P(OH)2]1−x
(O2POH–(CH2)nHOPO2)x/2·mH2O (n = 4–16; 0 < x < 1) materials, in which the degree of
pillaring (x) was tuned by the reaction time, were synthesized in [106,109]. The reversible
transformations were observed for low x values, where two different alkanediphosphonic
chains were separated by the [O2P(OH)2] groups in the direction parallel to the layer.
For example, fully hydrated 1,10-decanediphosphonate chains were extended (Figure 8a),
whereas the dehydrated chains were shortened (Figure 8b). In practice, these transforma-
tions were reversible because the originally expanded framework could be prepared again
via the chemical insertion of solvent molecules.

A pillared-layer {[Co2(epda)2(etbipy)(H2O)2]·3H2O}n framework synthesized from
H2epda (5-ethyl-pyridine-2,3-dicarboxylic acid) and etbipy (1,2-Bi(4-pyridyl)ethane) was
introduced as a dynamic MOF in [111]. The framework formation was perfected by
employing the rigid H2epda linker and Co2+ cations to form 2D networks, and the flexible
etbipy linkers as pillaring ligands. The reversible extension and shortening of pillars
were estimated to result in a 9% difference in the cell volume, while the crystal structure
of expansion and contraction states remained unchanged (Figure 9). The decrease in
the interlayer distance between the 2D Co-carboxylate layers from 15.77 to 14.35 Å was
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attributed to the rotation of the C–C single bonds of the flexible etbipy ligands, resulting in
the relative gliding between the neighboring layers. The two pyridyl rings in the etbipy
linker are almost perpendicular to each other in the expansion state, whereas they are
almost coplanar in the contraction state.
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A systemic synthesis and characterization of a series of MOFs with the pillared layer
structure was carried out in [112]. The [Zn4(bpta)2(H2O)2] (H4bpta = 1,1′-biphenyl-2,2′,6,6′-
tetracarboxylic acid) layers were connected by length-controllable bipyridine pillars. The
authors developed a synthetic strategy that allowed systematic variation of the pillar to
construct open frameworks with a similar structure. It was concluded that pore design
could be adjusted by the selection of pillar ligands, hence leading to different hydrogen
adsorption properties. The results obtained indicated that the activation process of these
MOFs could affect the Qst value.
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The hydrogen adsorption analysis of three flexible sulfur-containing MOF materials
named M-URJC-n (M = Co, Cu, Zn) based on the 5,5′-thiodiisophthalic acid linker (H4TBTC)
showed that these compounds display a gate-opening type adsorption mechanism at low
pressures, attributed to the flexible nature of the ligand [113]. The hydrogen adsorption
capacities of the compounds were not high, with levels of 2.81, 2.21, and 1.99 wt%, for Co–,
Cu–, and Zn modification, respectively, at 77 K and up to 18 bar, and 0.12, 0.14, and 0.13 wt%,
at 298 K and 170 bar, due to the presence of flexible ligands. These compounds showed an
interesting gate-opening type adsorption mechanism. Considering the flexibility and the
dynamic nature of the new structures, these compounds are candidates for applications
such as hydrogen selective adsorption and gas separation processes, including hydrogen
purification in precombustion mixtures of H2/CO2 [113].

A series of dynamic MOFs with ditopic organic linkers, which are the ligands capable
of coordination at two separate sites and allow the creation of well-ordered extended com-
plexes containing different cations, was prepared in [114–119]. The sponge-like dynamic
mechanism is activated by rotation around the O–O axis of the carboxylate linker, which
acts as a “kneecap” for the dynamic MOFs, either through a twisting or a bending mode. In
combination with the integration of the “kneecap” into the interface between the metallic
node and the organic linker, this approach may be used directly for the linkers themselves
while keeping the MOF skeleton stable. In a recent review [120], synthesis of MOFs with
flexible organic linkers was considered to be a promising means to shift H2 adsorption
to higher pressures. Preparation of MOFs with the “breathing” effect, which gradually
adsorb hydrogen gas with an increase in P(H2), can transfer physical sorption of H2 in
MOFs significantly closer to the general requirements of hydrogen storage material.

4.2. Factor of Isosteric Enthalpy of Hydrogen Adsorption

Among MOFs with high As values, some of the MOF examples have high values of
hydrogen adsorption capacity, but only at cryogenic temperature. In practice, the hydrogen
adsorption capacity at moderate temperatures designed by DoE falls to less than 1/10 of
the value obtained at 77 K, and the Qst values in most porous MOFs is within the range
of 5–10 kJ·mol–1 [121,122]. As a result of physical sorption of H2 molecules, van der
Waals interaction between H2 molecules and the pore surface of MOFs is very weak. To
increase the interaction at the ambient temperature, two recommendations have been made:
(1) strong adsorption sites incorporated into the pores; and (2) optimization of the internal
surface of MOF. In practice, creation of open metal sites, introduction of cations generating
a strong electrostatic field within the cavities, doping with metal ions, infiltration of metal
nanoparticles, and organic linker functionalization have been used to increase molecular
hydrogen affinity to MOFs. In [123], it was concluded that MOFs can reach approximately
6 wt% H2 when they are characterized by a Qst value of 10–15 kJ·mol–1 and a free volume
within the range of 1.6–2.4 cm3·g–1, or Qst > 20 kJ·mol–1 and a free volume smaller than
1.5 cm3·g–1. The authors of [124] studied H2 adsorption in an MOF at 298 K and 1.5 or
120 bar of H2, and measured deliverable capacity as the difference between the na value
at the high and the low hydrogen pressure. Their GCMC calculations suggested that for
the maximum H2 delivery at 298 K, the optimal Qst value must be around ~20 kJ·mol–1.
Other calculations [122] using the same strategy reached the conclusion that at 131 K and
1.5–100 bar of H2, the optimal Qst value should be ~6 kJ·mol–1. In [40], it was concluded
that, even when the Qst values are increased by several units, they did not increase the high
pressure H2 adsorption at 77 K, whereas at 298 K there is a tendency to form a proportional
relationship between the Qst and the nσ values.

4.2.1. Open Metal Sites at Secondary Building Units and Organic Linkers

It was shown that metal centers unsaturated in coordination, often called “open” or
“accessible” metal sites, may increase the Qst value [125–127]. In practice, the H2 adsorption
values measured at 298 K for MOFs with open metal sites are higher than those for MOFs
without open metal sites. In addition, this tendency is pronounced for MOFs with a high
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As value (>3000 m2·g–1). Based on experiments involving the introduction of open metal
sites in MOFs, several possible approaches have been highlighted: (1) metal nodes with
open metal sites; (2) metal clusters coordinating solvent molecules, in which the solvent is
removable; (3) organometallic complexes connected with the aromatic organic linkers [126];
(4) metal complexes intercalated through electrostatic forces [126]; and (5) metal cations in
the anionic frameworks [127].

Open metal sites in MOFs may be constructed of metal cluster SBUs coordinating
solvent molecules, followed by removal of the solvent using thermal treatment. In this
case, the SBUs are very often the bimetallic paddle wheel units of M2(O2CR)4 (M = Cu2+,
Zn2+, Cd2+), in which solvent molecules are coordinated at the axial sites. The fluorite-like
structure of the [CoII

4(µ–OH2)4(MTB)2(H2O)4]n·13nDMF·11nH2O framework (SNU-15)
promotes 3D channels in which every Co2+ ion coordinates the aqua ligand, and the Co-Co
distances are 3.550 and 3.428 Å. When the coordinated H2O molecules are removed, the
vacant coordination sites are created on the Co2+ ions. Due to the values of the Co–Co
distance, H2 molecules can be bonded in a side-on manner that results in the Qst value of
15 kJ·mol−1 at zero coverage [124]. The same high Qst value was found for the [CoII

4(µ-
OH2)4(MTB)2]n (MTB = methanetetrabenzoate) framework (SNU-150′) prepared by heating
the SNU-15 at 493 K under a vacuum for 24 h [128]. The synthesis of MOFs with entatic
metal centers, in which it is possible to bind the substrate without ligand removal, may
be considered another method to create the open metal sites via the coordination of the
solvent molecules by the metal clusters. For example, PCN-9 with the H2[Co4O(TATB)8/3]
formula (TATB = 4,4′,4”-s-triazine-2,4,6-triyltribenzoate) holds the square-planar SBU that
is Co4(µ4-O) [129]. The Co atoms in the SBU are five-fold-coordinated with a square-
pyramidal geometry, and the position below the square plane formed of the four O atoms
is in an entatic state and ready to bind a molecule to achieve octahedral coordination.
This square planar µ4-oxo bridge found in PCN-9 is a unique phenomenon in MOFs.
The As value, obtained by the Langmuir method, of 1355 m2·g–1, and the Va value of
0.51 cm3·g–1 were found for the desolvated PCN-9. Hydrogen adsorption at 77 K and
1 bar of H2 and the Qst values for the PCN-9 were 1.53 wt% and 10.1 kJ·mol–1, respectively.
In a recent work [130], the MOFs M2(m-dobdc) and the isomeric frameworks M2(dobdc)
(M = Co or Ni; m-dobdc4−=4,6-dioxido-1,3-benzenedicarboxylate) were evaluated for their
volumetric hydrogen capacity. At 298 K, hydrogen storage of 11.0 g H2·L–1 and 23.0 g/L
with a temperature change between 198 and 298 K were experimentally confirmed for
Ni2(m-dobdc) within the range of 5–100 bar of H2, whereas the DoE target in 2020 was
30 g H2·L–1. These results were explained by the presence of open metal cation sites (highly
polarizing Ni2+), which strongly interacted with H2 molecules, thus providing their dense
packing within Ni2(m-dobdc).

The open metal sites at organic linkers are also a highly popular approach used to
increase the Qst value. For example, the structures of MOFs constructed from various types
of porphyrin complexes are very well known [131–134]. They contain open metal sites
with respect to the square-planar coordination plane, therefore the porphyrin-based MOFs
may be recommended for effective H2 adsorption [135–138]. The MOFs constructed from
the Schiff base complexes are also characterized by open metal sites. A series of isorectic-
ular chiral MOFs (IRCMOFs) from the chiral Mn-salen-derived dicarboxylate linker and
[OZn4]6+ nodes containing the Mn3+ open metal sites were synthesized in [139]. As a
result of the collapse of the framework during the activation process, the As value of the
IRCMOFs was very small, which most likely explains why data on H2 adsorption are
lacking [140–146]. The approach in which metal fragments are attached to the organic
linkers involves covalent functionalization, followed by metalation and attachment of
organometallic complexes to the aromatic components of the linkers. The authors of [147]
synthesized the metalated ligand [4,7-bis(4carboxylphenyl)-1,3-dimethylbenzimidazol-2-
ylidene](pyridyl)Pd(II) iodide and then integrated it into an IRMOF, which was denoted
IRMOF-77 within the [Zn4O(C28H21I2N3O4Pd)3] framework. From the H2bpydc linkers
(2,2′-bipyridine-5,5′-dicarboxylic acid), they synthesized the [Al(OH)(bpydc)] framework,
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namely MOF-253, with open 2,2′-bpy coordination sites [148]. As a result of the accessibility
of the chelating bpy units, PdCl2 and Cu(BF4)2 were impregnated inside the MOF from
the solutions of PdCl2 and Cu(BF4)2 in acetonitrile. Therefore, MOF-253·xPdCl2 (x = 0.08;
0.83) and MOF-253·0.97 Cu(BF4)2 were prepared. In conjunction with the covalent and
coordinate covalent postsynthetic modification, the MOF was covalently connected to a
chelating group, and then the metalated group. The Zn-pillared paddle wheel MOF with
Zn2(TCPB)(DPG) (TCPB = 1, 2, 4, 5-tetrakis(4-carboxyphenyl)-benzene; DPG = meso1,2-
bis(4-pyridyl)-1,2-ethanediol) framework was synthesized and then reacted with the suc-
cinic anhydride in [149]. During the chemical reaction between diols in the MOF and
succinic anhydride, a product with opened ring and free carboxylic acid groups was ob-
tained. Post-synthetic modification of these carboxylic groups was carried out through the
solution impregnation of CuCl2 from its aqueous solution. In [150], the metal-complexed
MOF (Zn4O)3(BDC–C6H5N2PdCl2)3(BTB)4 was obtained by chemical reaction between the
covalently bound iminopyridine chelate derivative (Zn4O)3(BDC–C6H5N2)3(BTB)4 and
PdCl(CH3CN)2. In [151], Zn4O[(bdc)Cr(CO)3]3 was prepared through chemical interac-
tion between the benzenoid phenyl rings of MOF-5 and the Cr(CO)3 groups. Then, the
decarbonylated framework with three open coordination sites per metal was prepared by
heat treatment at 473 K. As a result of the aggregation of Cr atoms, the low-pressure H2
adsorption at 298 K was lower than the 0.2 H2 molecules per formula unit of the MOF.
Using the photodecomposition reaction, substitution of a single CO ligand per metal by
the H2 molecule to give Zn4O[(bdc)Cr(CO)2(H2)]3 may be possible. Taking into account
the hydrogen binding energy for [(C6H6)Cr(CO)2(H2)] and [(C6H5Me)Cr(CO)2(H2)], a Qst
value of 60–70 kJ·mol–1 was calculated for Zn4O[(bdc)Cr(CO)2(H2)]3 [152]. MOFs with
open metal sites at secondary building units and organic linkers are capable of binding
several H2 molecules at a given binding site. This MOF strategy was considered one of the
most effective means to increase H2 volumetric capacity in adsorbers of hydrogen gas [153].

4.2.2. Metal Ions for an Electrostatic Field within the Cavities

Another approach to increasing the Qst value is to exchange the cations integrated
in the anionic framework with metal ions that have higher affinity to H2 molecules. For
example, in the Mn3[(Mn4Cl)3(BTT)8]2, (BTT = 1, 3, 5-benzenetristetrazolate) framework,
Mn2+ ions can be exchanged with Li+, Cu+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+ ions [126].
Chemical compositions based on the relative ratio of Mn+/Mn2+ showed that the total
number of extra framework cations is not higher than five. The Qst values, calculated using
a virial fit to the H2 adsorption isotherms at 77 and 87 K, demonstrate a relatively large
variation, but they deviate in almost the same region as those for the Mn3[(Mn4Cl)3(BTT)8]2
framework. The values of hydrogen adsorption capacity measured at 77 K and 1.2 bar of
H2 for the ion-exchange frameworks and the original Mn3[(Mn4Cl)3(BTT)8]2 were within
2.00–2.29 wt%.

The authors of [154] declared that MOF-5 was partially doped with the Co2+ ions dur-
ing crystallization in the solvothermal synthesis. Based on inductively coupled plasma (ICP)
analysis, the prepared materials were considered to be Co8-MOF-5 with the composition
of the Zn3.68Co0.32O(BDC)3(DEF)0.75 (DEF = diethylformamide) framework containing 8%
Co and 92% Zn, and Co21-MOF-5 with the composition of Zn3.16Co0.84O(BDC)3(DEF)0.47
containing 21% Co and 79% Zn. The ICP results showed that for these Co-MOF-5 materials,
the substitution of more than one Co2+ ion in [OZn4]6+ nodes was difficult. In addition, the
XRD results confirmed that the crystal structure of both undoped and Co-doped MOF-5
was identical. In practice, during the removal of solvent, the coordination geometry around
Co2+ changed from octahedral to tetrahedral due to the loss of two DEF molecules. The
values of the hydrogen adsorption capacity at 77 K and 10 bar of H2 were in the order of
Co21-MOF-5 > Co8-MOF-5 > MOF-5. A small increase in the Qst value was experimentally
found for Co21-MOF-5 (∼7 kJ·mol–1 vs. 5.5 kJ·mol–1 for MOF-5). The results obtained
suggested that the Co2+ ions incorporated into MOF-5 played an important role in the
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hydrogen adsorption process, even being incorporated into the “protected” metal sites that
were less accessible to H2 molecules.

Recently, a theoretical assumption of a “regional dynamic electric field effect” was
proposed in [155] to explain a selective adsorption of CO2 over N2, O2, and CH4 in the
[Co(tipb)(adc)](DMF)3(H2O)1.5 (tipb = 1,3,5-tris(p-imidazolylphenyl)benzene;
adc = 9,10-anthracenedicarboxylate) framework. It was concluded that regional dynamic
electric fields do exist in MOFs, and their polarizability and quadruple moment might be
considered the crucial factors for gas adsorption. According to the proposed effect, the gas
adsorption capacity and selectivity can be enhanced by intensifying the electric field and
potential gradient of the effective adsorption space in the MOF through structure modifi-
cation. This cobalt-based MOF with tipb and adc linkers is a good example of making a
connection between peculiarities in the crystal structure, the level of H2 adsorption, and the
Qst value. In practice, the metal doped MOFs demonstrated a positive impact on hydrogen
adsorption at 298 K, which might be explained by a higher interaction between metal ions
and H2 molecules.

4.3. Catalytic Effect and Pore Design

Due to their high affinity to hydrogen, the platinum group metals were the first cat-
alysts used in various hydrogenation reactions and processes related to H2 molecules.
Subsequently, a hydrogen spill-over effect was defined as dissociative chemical sorption
(i.e., H2→2H) on the catalyst surface and the later migration of H atoms onto the sur-
face of support. The catalytic effect was also used for MOFs in an attempt to accelerate
the hydrogen adsorption process. In addition, the morphology of pores and their extra
functionalization were taken into consideration. In the case of microporous MOFs, the
morphology of the pores represents their main characteristics, including the geometrical
shape (pore width and pore volume) and roughness of the pore walls. A small pore diame-
ter was found to be an important factor for the achievement of a high value of hydrogen
adsorption capacity at room temperature.

4.3.1. Incorporated Metal Nanoparticles

Recently, the idea of the hydrogen spillover effect has been transferred to MOFs, and
the introduction of several types of metal nanoparticles (NPs) to MOFs has been considered
(Figure 10) [156–159]. The simplest method involves preparing a coating made of the NP
metal on the MOF surface, but without completely wrapping the MOF in a metal thin
film (Figure 10a). Using a solid grinding approach, Au NPs were attached to the surface
of the well-known MOF examples, including MOF-5 [160]. The solution impregnation
method was reported to be a convenient tool for preparing metal NPs infiltrated inside
MOFs (Figure 10b). Typically, the metal precursor solution fills the MOF pores by capillary
force, and the chemical reduction (e.g., with H2, NaBH4) then produces the NPs settled in
the body of the MOF. This method was successfully used to prepare mono- and bimetallic
NPs inside MOFs (e.g., Pt NPs [161–164] and Pt/Ni NPs [165]). In addition, the chemical
vapor deposition (CVD) technique was found to be advantageous in the deposition of
metal nanoparticles in MOFs because, during the CVD vapor phase, the precursor is loaded
in MOFs, and the precursor is then decomposed or reduced to obtain nanoparticles inside
the MOF pores. Using the CVD method, MOF-5 was first infiltrated with Cu, Pd, and Au
NPs in 2005 [166]. Ten years later, a new method of NP incorporation inside MOFs was
developed based on encapsulation (that is, not infiltration) of the pre-synthesized NPs
by growing MOF around them (Figure 10c) [167,168]. It is very important that the MOF
cavities remain unharmed, and this kind of material can provide a synergistic function
that is derived from both NPs and MOFs [169]. In this case, the metal NPs are completely
enclosed in the so-called “metal@MOF” [170]. The interfacial region between MOFs and
metal NPs plays an important catalytic role in the improvement of gas adsorption. In
addition, because of a special core/shell design, MOFs can act as a partition between the
NPs to prevent their sintering during the reaction, resulting in high durability.
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Palladium was among the first examples of metal NPs inside MOFs. For example,
Pd NPs (with an average size of 2.5 nm) were successfully infiltrated in MIL-100(Al)
with a high metal content (10 wt%) without degradation of MOF [171]. As a result of
Pd impregnation, the reduction in the nσ value at 77 K and 40 bar of H2 was directly
related to the decrease in the As and Va values (from 380 to 1200 m2·g–1, and from 0.33 to
0.65 cm3·g–1, respectively), whereas at 298 K, the nσ value increased, most probably because
of the Pd hydride formation. Formation of PdH0.6 was experimentally confirmed for the
Pd NPs incorporated in MIL-100(Al), although the spill-over effect was also considered.
As a result of the spill-over effect, faster kinetics was experimentally observed for Pd
NPs encapsulated in HKUST-1 (Cu(II) 1,3,5-benzenetricarboxylate) [169]. A lower field
shift in solid state 2H NMR suggested that relatively large amounts of hydrogen were
located in the Pd lattice of Pd@HKUST-1 than those of the pure Pd NPs. Additionally,
XPS measurements showed that Pd 3d binding energies of Pd@HKUST-1 were shifted to
higher energy, suggesting that Pd was in a partial oxidization state. In contrast, the Cu
2p binding energies of Pd@HKUST-1 were shifted to lower energy, suggesting a partial
reduction in Cu2+. Based on XPS data, it was concluded that the electrons in the Pd NPs
were slightly transferred to HKUST-1, and this electron transfer may be accountable for the
increased number of holes in the 4d band of Pd NPs encapsulated in HKUST-1, resulting
in a higher amount of H2 adsorption. Pd NPs with a size of 1 nm were successfully
infiltrated inside MIL-101 up to 20 wt% [172]. Experimentally, it was confirmed that during
H2 absorption Pd NPs with a size of 2–3 nm formed a hydride phase (as in the case of
bulk Pd), whereas Pd NPs with a size of 1 nm created solid solutions under ambient
conditions. Additionally, it was concluded that because of the size effect, a decrease
in the critical temperature of the two-phase region below room temperature occurred,
and the Ea value of H2 desorption for Pd NPs was lower than that of bulk Pd. The
authors of [173] attempted to introduce Pd NPs inside the [Al(OH)BPDC] (BPDC = 4,
4′-biphenyldicarboxylic acid) framework, which is well known as DUT-5, using a solution
impregnation procedure, as in [171]. The structure of DUT-5 was partially destroyed
because of acid treatment during Pd NP infiltration, and this was the main reason for
lower H2 adsorption compared with pristine DUT-5. Nevertheless, the higher content of
Pd NPs (from 1% to 5%) promoted enhanced H2 adsorption at 298 K and 50 bar of H2,
which was explained by the spill-over effect. Using theoretical predictions, the authors
of [174] infiltrated Pd NPs in the pores of Br-UiO-66 and confirmed the strong host–guest
interactions that keep Pd NP inside MOF. It was concluded that only monofunctionalized
linkers (e.g., 2-bromoterephthalate or 2-aminoterephthalate) allowed intercalation of Pd
NPs in the MOF pores, which was in contrast to the unfunctionalized (terephthalate)
or biofunctionalized (2,5-dichloroterephthalate and 2,5-dihydroxylterephthalate) linkers.
Additionally, it was summarized that the Pd NPs were maintained in the pores of MOFs
with different functionalities, and accordingly had different degrees of interaction with the
frameworks. This approach was proposed as a means of altering the catalytic activity of
the metal NPs.
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Platinum is another attractive example of the incorporation of metal NPs in MOFs.
In 2010, two independent research groups studied MOF-5 doped with Pt NPs [175,176].
They prepared composites as physical mixtures and connected MOF-5 with Pt catalysts
(5 and 10 wt%) via carbon bridges. The authors experimentally found a correlation between
hydrogen adsorption and BET surface area, suggesting a typical physisorption process [175]
and that the structure of the composites was similar to that of pristine MOF-5 [176]. The
measured H2 adsorption of the carbon-bridged MOF-5 with Pt NPs was even less than that
of Pt NPs on activated carbon [175]. A decrease in H2 uptake for the composites compared
to pure MOF-5 was found in [176] and attributed to degradation of the textural properties.
Moreover, no hydrogen spillover effects were found in [175,176]. On the contrary, due to the
incorporation of Pt NPs in IRMOF-8 [177] and MOF-177 [178], an increase in H2 adsorption
was experimentally observed. For Pt-modified IRMOF-8 prepared by CVD, the dependence
of hydrogen adsorption capacity on the size of Pt NPs was indicated as Pt/IRMOF-8-1 >
Pt/IRMOF-8-2 > Pt/IRMOF-8-3, where the incorporated Pt NPs had sizes of 2.2, 3.9, and
9.1 nm, respectively. This indicates that, depending on the pore’s size in MOFs, surface
decoration or bulk infiltration with NPs may be possible; therefore, the geometry of both
NPs and MOFs should be taken into account. Additionally, it was concluded that the Pt
NPs embedded in MOFs may adsorb and absorb H atoms to hydrogenate Pt to a stable
metal hydride. This happened, for example, for Pt@MOF-177 [178]. The encapsulated Pt
NPs in MOF-177 showed H2 adsorption of 2.5 wt% at 298 K and 144 bar of H2 in the first
adsorption cycle, but only 0.5 wt% in the second cycle, which was similar to the value of
pure MOF-177. Therefore, to avoid direct hydrogenation of the metal NPs incorporated in
MOFs, the platinum group metals should be changed to transition metals to ensure they
do not react readily with atomic hydrogen.

Scandium and titanium may be considered as promising candidates for their incor-
poration as NPs in MOFs. In the theoretical work [179], the effect of these light transition
metals on the hydrogen adsorption in MOF-5 was calculated using the ab initio density
functional theory (DFT). The calculations predicted that Ti atoms may undergo cluster-
ing (Figure 11), whereas Sc atoms preferred the full metal decoration of MOF-5. Both
Sc- and Ti-decorated MOF-5 may adsorb the 5H2 molecules per metal atom, resulting
in a theoretical hydrogen adsorption capacity of 5.81 and 5.72 wt%, respectively. The
calculated Qst value was predicted within the range of 20–40 kJ·mol–1 and additional
improvement in the interaction energy between the metals and MOF-5 may be achieved
with boron substitution.
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Successful preparation of Ni NPs in Ni-MOF-74 was carried out with a partial thermal
decomposition of the same MOF [180]. The Ni2(dhtp) (H4dhtp = 2,5-dihydroxyterephthalic
acid) framework is characterized by pores with a size of ~11 Å and integrated from the
Ni2+ nodes, which can be chemically reduced by organic linkers (hydroqinone). In this
thermal method, the size of the intercalated Ni NPs can be altered with temperature values.
Surface decoration with the NiNPs was made for MIL-100, and the resulting material
showed a high catalytic activity for hydrogen evolution reaction (HER) [181]. Then, the
NiMo alloy was introduced into MIL-101 and the prepared NiMo@MIL-101 demonstrated
greater HER catalytic activity than that of Ni@MIL-101 [182]. Ni NP intercalation in MOF-5
was carried out in [183] and the synthesized Ni@MOF-5 was tested as a catalyst in the
production of H2 from water splitting under visible light irradiation. The Ni-modified
MOFs were widely investigated in terms of their catalytic and optical properties [184] but
were not considered to be an effective porous material for H2 adsorption. Development of
the preparation methods to incorporate metal NPs in MOFs began several years ago, but
the isosteric enthalpy of their hydrogen adsorption and hydrogen adsorption capacity has
not been fully examined. In addition, the origin of the enhanced H2 adsorption, and the
mechanism of interactions between metal NPs and MOFs, remain unclear.

4.3.2. Morphology of Pores and Their Functionalization

The effect of the pore size may be explained by the fact that the small diameter
of pores enables energy potentials to overlap between the opposing walls, resulting in
higher interaction energy with H2 molecules [185]. For example, MOFs of M(HBTC)
(4,4′-bpy)·3DMF (M = Ni, Co; HBTC = 1,3,5-benzenetricarboxylic acid; 4,4′-bipy = 4,4′-
bipyridine; DMF = N,N′-dimethylformamide) showed H2 adsorption of 3.42 and 2.05 wt%
at 77 K and 1 bar of H2, and 1.20 and 0.96 wt% at 298 K and 70 bar of H2, respectively [186].
The As values measured by the BET method were 1590 and 887 m2·g–1, respectively, but it
was noted that these two frameworks had nonlinear rectangular channels with an average
size of 7 × 6 Å. Another [Co3(NDC)3(dabco)] (dabco = 1,4-diazabicyclo[2.2.2]octane)
framework with a primitive cubic structure demonstrated 0.89 wt% of H2 at 298 K and
P(H2) = 17.2 bar, which was explained by both the As value (1502 m2·g−1) and the average
pore diameter (4.5 Å) [187]. The four-fold interpenetrating networks based on the [OZn4]6+

nodes with 3D channels (<5 Å) might also be considered. These examples indicate that,
even with a small As value, hydrogen adsorption can be significant and, most importantly,
controlled by pore size (5–7 Å).

It is clear that the morphology of pores, in addition to the chemical environment
of all of the pore walls, can be adjusted with functionalization of the internal surface of
MOFs. The value of this functionalization has also been considered to be a possible impact
on H2 adsorption. The authors of [188] attempted to change the pore morphology of
MOFs to improve the Qst value and hydrogen adsorption capacity. They reacted IRMOF-3,
DMOF-1-NH2, and UMCM-1-NH2 with anhydrides or isocyanates to obtain IRMOF-
3-AM5, IRMOF-3-AMPh, IRMOF-3-URPh, DMOF-1-AMPh, and UMCM-1-AMPh with
pore functionalization by amide groups (Figure 12). It was experimentally confirmed
that the post-synthetic modification resulted in higher H2 adsorption, especially when
pore functionalization was undertaken with phenyl ring substituents. This supports the
suggested role of aromatic rings on hydrogen adsorption presented in Section 4.1.1.

The authors of [189] constructed functional porous MOFs via the reaction of Ni2+ ions
with 2,4,6-tri(4-pyridinyl)-1,3,5-triazine (tpt) and o-phthalic acid as a co-ligand. It was
concluded that the decoration of the pores’ surface and tuning of adsorption properties
could be achieved by introducing different functional groups on the o-phthalic acid ligand;
therefore, a new class of TKL frameworks (TKL = Tianjin Key Lab of Metal and Molecule
Based Materials) with different functionalized (–NH2, –NO2, and –F) o-phthalic acid
was studied. It was determined experimentally that all of the fluorinated MOFs with
different numbers and positions of substituted F-atoms demonstrated high values of As
and H2 adsorption. At 65 bar of H2 and 77 K, hydrogen adsorption for TKL-106 and
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TKL-107 was estimated to be 6.24 and 4.00 wt%, respectively. Due to pore functionalization,
greater interaction between H2 molecules and the fluorinated MOFs was explained by the
micropore diameter (approximately 6.0 Å), which is very close to the approximate size of
two H2 molecules (2 × 2.8 Å).
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In the experimental work [190], the effect of solvent used in MOF-5 preparation on
pore morphology was studied. Narrow slit-like pores with internal irregular voids were
observed in the synthesized MOF-5 with coexisting micro-, meso-, and macropores. For
meso- and macroporous regions, the values of hydrogen Qst were calculated as 3.68 and
12.45 kJ·mol–1, respectively. The higher value was explained by the presence of a residual
solvent in macropores, which increased interactions between H2 molecules and pore walls.

5. Prospective Views and Outlooks

MOFs are unique chemical compounds that can be used in numerous scientific appli-
cations, including hydrogen adsorption; however, adapting a pure MOF to the DoE target
to be used as an effective hydrogen storage material remains a significant challenge. The
factors of surface area and pore volume remain the most critical issue, because at 298 K,
the na value correlates mainly with the Va value at low P(H2) and the As value at high
P(H2). Organic linkers have a direct influence on the pore morphology, and therefore, on
the surface area of MOFs, their length, chemical composition, and flexibility may explain
the catenation and sponge-like dynamic mechanism in MOFs. These effects may change
the hydrogen adsorption in pure MOFs, but their absolute quantity of adsorbed hydrogen
does not meet the DoE requirements at 298 K, or at 100 bar of H2. The value of Qst may be
considered to be a reasonable indicator of the applicability of pure MOFs as a hydrogen
storage material. At 298 K, a tendency exists to form a proportional relationship between
the Qst and the nσ values, and using the approach of open metal sites or an electrostatic
field, isosteric enthalpy of hydrogen adsorption increases slightly in pure MOFs. Numer-
ous calculations suggest with values of Qst within the range of 15–25 kJ·mol–1, with a Va
value of ~2.5 cm3·g–1 and porosity of ~85%, would be desirable for an MOF as a successful
candidate for hydrogen storage with 9 wt% of H2.

Nanoscaffolding materials based on MOFs, sometimes generalized to “hybrid” or
“functional” composites, may combine properties of their components. In practice, isos-
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teric enthalpy of hydrogen adsorption and hydrogen adsorption capacity has not been
fully examined for this kind of material, and is not reproducible for the same examples.
The main reasons for these discrepancies may lie in the morphology of pores and their
functionalization, which is highly sensitive to the synthesis procedure and post-synthetic
modification of MOFs. Another approach to nanoscaffolding materials based on MOFs
may be nanoconfinement of metal hydrides inside the frameworks, in which MOFs are con-
sidered to be nanoscaffolds rather than H2 sorbents. The main advantages of nanoconfined
hydrides relate to their faster kinetics, higher reversibility, and the change in the mechanism
of hydrogen interaction. The additional weight of nanoscaffolds leads to lower gravimet-
ric hydrogen sorption capacity in the composite material. Recently, MOFs characterized
by the morphology of their pores and functionalization were considered to be suitable
microporous scaffolds. For example, the Ti-modified NaAlH4 infiltrated in MOF-74(Mg)
was successfully synthesized by melt infiltration, achieving loadings up to 21 wt% [191].
MOF-74(Mg) characterized by pores with a diameter of 12 Å and lined with Mg atoms
have open coordination sites, which were considered to be sites for TiCl4 stabilization. In
practice, nanoconfinement of NaAlH4 has indicated advantages with respect to the bulk
analogue (Table 4) [191]. The first, typical decomposition pathway for bulk NaAlH4 was
simplified by avoiding the stable Na3AlH6 intermediate production. Secondly, kinetics of
decomposition for nanoconfined NaAlH4 was higher, as confirmed by lowered values of
the Tdec(NaAlH4) and decreased values of activation energy (Ea). Titanium modification
considerably increased the reversibility of the NaAlH4 decomposition-formation. These
obtained results were explained by chemical and structural features of MOF-74(Mg), which
was used as an effective nanoscaffold for NaAlH4. Micropores of MOF-74(Mg) allow
NaAlH4 to be in close contact with the pore walls; hence, the chemical environment of all
of the pore walls can stabilize the final decomposition products (including H2 molecules),
avoiding their diffusion and agglomeration.

Table 4. Hydrogen adsorption capacity and activation energy of decomposition for nanoconfined
and bulk NaAlH4. Hydrogen adsorption capacity was measured at 433 K and 105 bar of H2, and the
mass of MOF-74(Mg) was excluded from the determination of the hydrogen amount. Reprinted with
permission from [191]. Copyright © 2012, American Chemical Society. All rights reserved.

NaAlH4 Amount of Ti, mol% Ea,
kJ·mol–1

H2 Adsorption,
wt%

Bulk 0 118.1 5.12
Bulk 2 79.5 4.25

Infiltrated in
MOF-74(Mg) 3 57.4 4.20

In another example, highly reactive gaseous Ti(BH4)3 molecules at 298 K were infil-
trated into UiO-66 [192]. The nanoconfined hydride was stabilized in the porous MOF up
to 350 K under vacuum and reached approximately double gas density. After Ti(BH4)3
infiltration, the value of UiO-66 obtained by the BET method decreased from 1200 to
770 m2·g−1. The nanoconfined Ti(BH4)3 demonstrated another mechanism of decompo-
sition, including the production of pentaborane rather than diborane in the case of pure
Ti(BH4)3. These experimental results encourage the development of other examples of
nanoconfinement, including solid hydrides with a high hydrogen content and stable MOFs
with pore characteristics suitable for effective nanoscaffolding.

To optimize the hydrogen adsorption process, data are required regarding the physic-
ochemical characteristics of MOFs to better understand their interaction with H2 molecules.
To obtain such important information, vibrational spectroscopy plays a crucial role and
is often notable in many cases. At present, IR and Raman spectroscopies are considered
to be powerful tools for initial characterization of MOFs and their composites, including
in situ measurements under hydrogen adsorption, in addition to their combinations with
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other techniques to study crystal structure and morphology, and physical and chemical
properties of MOFs [193].

6. Conclusions

Hydrogen sorption is a complex physical and chemical process, which includes both
adsorption at the surface and absorption into the bulk. Different hydrogen storage material
MOFs may represent an opportunity to study the molecular hydrogen interaction with
microporous crystalline materials made of metal nodes and organic linkers. The main
benefit of MOFs relates to their reversible and high-rate hydrogen adsorption process,
whereas their biggest disadvantage is their operation at very low temperatures. Using
the factors of surface area, pore volume, and isosteric enthalpy of hydrogen adsorption,
storage of hydrogen gas in MOFs may be increased. The catalytic effect and pore design are
anticipated to be additional influences on hydrogen adsorption because of the incorporated
catalyst inside the MOFs and their pore functionalization. Nanoscaffolding materials,
in which MOFs are considered to be nanoscaffolds, rather than H2 adsorbents, may be
considered to be a suitable nanotechnology to achieve DoE conditions when this approach
can be used to reduce the gravimetric hydrogen storage capacity.
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