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Abstract

Various HIV-1 env genetic and biochemical features impact the elicitation of cross-reactive

neutralizing antibodies in natural infections. Thus, we aimed to investigate cross-neutraliz-

ing antibodies in individuals infected with HIV-1 env subtypes B, F1, C or the B/Bbr variant

as well as env characteristics. Therefore, plasma samples from Brazilian chronically HIV-1

infected individuals were submitted to the TZM-bl neutralization assay. We also analyzed

putative N-glycosylation sites (PNGLs) and the size of gp120 variable domains in the con-

text of HIV-1 subtypes prevalent in Brazil. We observed a greater breadth and potency of

the anti-Env neutralizing response in individuals infected with the F1 or B HIV-1 subtypes

compared with the C subtype and the variant B/Bbr. We observed greater V1 B/Bbr and

smaller V4 F1 than those of other subtypes (p<0.005), however neither was there a correla-

tion verified between the variable region length and neutralization potency, nor between

PNLG and HIV-1 subtypes. The enrichment of W at top of V3 loop in weak neutralizing

response viruses and the P in viruses with higher neutralization susceptibility was statisti-

cally significant (p = 0.013). Some other signatures sites were associated to HIV-1 subtype-

specific F1 and B/Bbr samples might influence in the distinct neutralizing response. These

results indicate that a single amino acid substitution may lead to a distinct conformational

exposure or load in the association domain of the trimer of gp120 and interfere with the

induction power of the neutralizing response, which affects the sensitivity of the neutralizing

antibody and has significant implications for vaccine design.

PLOS ONE | DOI:10.1371/journal.pone.0167690 December 9, 2016 1 / 16

a11111

OPENACCESS

Citation: de Almeida DV, Macieira KV, Grinsztejn

BGJ, Veloso dos Santos VG, Guimarães ML (2016)

Cross-Neutralizing Antibodies in HIV-1 Individuals

Infected by Subtypes B, F1, C or the B/Bbr Variant

in Relation to the Genetics and Biochemical

Characteristics of the env Gene. PLoS ONE 11(12):

e0167690. doi:10.1371/journal.pone.0167690

Editor: Yuxian He, China Academy of Chinese

Medical Sciences, CHINA

Received: June 26, 2016

Accepted: October 21, 2016

Published: December 9, 2016

Copyright: © 2016 de Almeida et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The 51 HIV-1

sequences obtained in the present study are

available in the GenBank database (accession

numbers KX181891-KX181941).

Funding: This work was supported by the

Collaboration for AIDS Vaccine Discovery (CAVD)

funded by the Bill & Melinda Gates Foundation

(Grant # 38619) Global HIV Vaccine Enterprise

(GHVE) Central Service Facilities (CSFs), especially

Dr D Montefiori’s Vaccine Immune Monitoring

Center (VIMC) (Grant # 383-0920). This work was

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167690&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

A vaccine that aims to elicit strong HIV neutralizing antibodies (nAb) must overcome their

genetic variability at least at the antigenic level. The neutralizing activity induced by HIV-1

should aid in the understanding of the immune response elicited by vaccine candidates [1–3].

Several studies have reported that antibodies from plasma obtained during chronic HIV-1

infection could potently neutralize primary isolates of HIV-1 and were able to neutralize

genetically diverse and distinct HIV-1 strains [4–8]. These nAb primarily recognize five differ-

ent epitopes on Env, including the CD4 biding site (CD4bs), V1/V2 loop, V3 loop, interface

gp120/gp41 and the membrane-proximal external region (MPER) on gp41 [9–12].

In response to the constant HIV-1 genetic evolution, the epitope specificity of the nAb that

is gradually developed during infection also influences the breadth of the nAb responses

[13,14]. Some viral features, such as variable loop lengths and the number of glycosylation

motifs, are associated with the neutralization breadth [3,15–17]. Therefore, the characteriza-

tion of neutralization specificities for distinct subtypes is a difficult but critical process to accu-

mulate knowledge and develop a successful vaccine.

In Brazil, HIV-1 subtypes B, their B/Bbr variants, F1 and C, as well as diverse recombinants

evolving these subtypes are prevalent [18,19]. The B/Bbr variant, which represents 37 to 57% of

HIV-1 subtype B strains in the country, differs from the pandemic subtype B by the substitution

of the amino acid proline by a tryptophan at the top of the V3 loop of gp120 (GWGR instead of

the classical GPGR) [18,20–22] and its antigenic characteristics [20,23,24]. HIV-1 subtype C is

the most prevalent worldwide and is involved in 20 to 80% of HIV-1 infections in Southern Bra-

zil [25]. This subtype is spreading in other Brazilian geographic regions, and most of these

sequences formed a monophyletic cluster [26]. The F1 subtype has a prevalence of 8.4 to 24.4%

in the Southeastern region of Brazil [27]. The F1 subtype is also highly prevalent in Romania

[28] and Galicia [29] despite its reduced prevalence worldwide. In this context, the present

study aimed to investigate possible env genetic characteristics related to broad and potent neu-

tralization in plasma from individuals infected with HIV-1 predominant subtypes in Brazil.

Materials and Methods

Study group

HIV-1-infected patients undergoing clinical follow-up at the Evandro Chagas Nacional Insti-

tute of Infectious Diseases from the Oswaldo Cruz Foundation (INI-FIOCRUZ) were invited

to participate in this study and selected for enrollment. The main criteria for inclusion were:

having at least 6 months of HIV-1 infection, and plasma samples representing the following

HIV-1 Brazilian subtypes (B, B/Bbr, F1 and C), which have been previously classified in other

studies from our group, based on C2-V3 env region subtyping. All protocols in the present

study were performed in accordance with institutional guidelines and resolutions and were

approved by the Oswaldo Cruz Institute Ethics Committee (CAAE: 01080112.4.0000.5248).

However, we were not able to obtain informed consent for all participants included in this

study, but plasma samples have been de-identified prior to analysis in order to maintain partic-

ipant confidentiality. Moreover, a confidentiality letter was signed by the research team

responsible for the experiments, thus ensuring the patients anonymity.

Full-length env Sequencing

The env gene was amplified from PBMC by touchdown PCR [30] under the following condi-

tions: 94˚C×2’ for one cycle; 94˚C×30”, 64˚C×45” (decreasing 0.2˚C per cycle) and 68˚C×2’

for 20 cycles; 94˚C×30”, 60˚C×45”, 68˚Cx2’ for 20 cycles and a final extension cycle of
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68˚Cx10’. The outer primers were BC1s (AGAAATGGAGCCAGTAGATC)/envM, and the inner

primers were envAtopo and envM [31]. Sequences were generated using the BigDye Termina-

tor v.3.1 Cycle Sequencing Ready Reaction Kit with an automated ABI 3100 Genetic Analyzer

(Applied Biosystems, CA, USA).

Sequence analysis

Sequences were assembled and edited using the SeqMan software from the package DNAS-

TAR Lasergene (MA, USA). Nucleotide and deduced amino acid sequences were initially

aligned using ClustalW on Mega 6 [32] and then re-aligned with HXB2 on Gene Cutter tools

of the HIV sequence database from Los Alamos National Laboratory (LANL). HIV-1 subtyp-

ing was obtained via the REGA HIV-1 subtyping tool [33] and confirmed using neighbor-join-

ing phylogenetic trees from the env region. We also used the programs Variable Region

Characteristics, N-linked glycosylation sites (PNLG) [34], and CATNAP (Compile, Analyze

and Tally NAb Panels) [35]. For the analysis of HIV-1-specific signatures, VESPA (viral epide-

miology signature pattern analysis) was used. All programs were available from LANL. For the

analysis of HIV-1 subtype-specific and neutralization potency signatures, thresholds of 1.0 and

0.6 were used, respectively.

Sequence data

The 51 HIV-1 sequences obtained in the present study are available in the GenBank database

(accession numbers KX181891-KX181941).

Pseudovirus (psV)

The psVB (plasmid Rhpa42597) [16] and psVC (plasmid Cap210.08) [15] from the NIH neu-

tralization panel were selected based on minor genetic env distances to the Brazilian HIV-1

subtype B and C consensus 0.24 and 0.19 of divergence, respectively. Two pseudoviruses

(psVGWGR and psVF1) were produced based on the consensus sequence obtained from

Dambe software (http://dambe.bio.uottawa.ca/dambe.asp) using HIV-1 Env B/Bbr (n = 15)

and F1 (n = 11) sequences. The psVGPGR was produced by site-directed mutagenesis of the

tryptophan from the B/Bbr consensus sequence to the proline on the top of the V3 loop of

gp120. All three consensus pseudovirus sequences were synthesized by GenScript ™ (NJ, USA),

and amplicons were cloned into the expression vector pcDNA3.1DV5-His TOPO TA

(Thermo-Fisher Scientific, MA, USA). The plasmids were expanded in E. coli Top10, extracted

using Wizard Plus Miniprep DNA Purification Systems (Promega, WI, USA) and quantified

in a Nanodrop (Wilmington, USA) spectrophotometer. The viral stocks of single round HIV-1

env psVs infection were produced by co-transfecting 293T/17 cells (ATCC, VA, USA) (70% of

confluent cells in T75) with 4 μg of an HIV-1 rev/env expression plasmid and 10 μg of

pSG3ΔEnv. For transfections, 50 μL P3000 reagent and 35 μL Lipofectamine 3000 (Lipofecta-

mine1 3000 reagent, Thermo-Fischer Scientific, MA, USA) were used in 715 μL of Opti-

MEM1 Reduce Serum Medium for each mix. After optimization, we followed proceedings

according to the manufacturer’s recommendation. Using env amplification, the psVs were

sequenced to confirm that they exactly matched the initial sequences.

Neutralization Assay

The 50% tissue culture infectious dose (TCID50) for each pseudovirus preparation was deter-

mined by infection of TZM-bl cells as previously described [16]. To determine the capacity of

the assay to discriminate between neutralizing antibodies and possible plasma artifacts, we

Cross-Neutralizing Antibodies Anti-HIV-1 in Brazilian Individuals

PLOS ONE | DOI:10.1371/journal.pone.0167690 December 9, 2016 3 / 16

http://dambe.bio.uottawa.ca/dambe.asp


used normal human plasma samples and the plasmid murine leukemia virus (MuLV) env as

controls. Plasma was inactivated after the neutralization assay at 56˚C x 60’. TZM-bl cells were

expanded and stored following the instructions provided at http://www.hiv.lanl.gov/content/

nab-reference-strains/html/home.htm. TZM-bl is a HeLa cell that was engineered to express

CD4 and CCR5 [36] and contains integrated reporter genes for firefly luciferase and Escheri-
chia coli β-galactosidase under the control of an HIV-1 LTR [37], permitting sensitive and

accurate measurements of the HIV-1 infection. The psVs (200 TCID50) were incubated with

plasma in triplicate and added to TZM-bl cells in the presence of DEAE-dextran 20 μg/mL.

Neutralizing antibodies titers were expressed by the reciprocal of plasma dilutions. The 50%

inhibitory concentration (IC50) of the monoclonal antibodies (mAbs) 2F5, 2G12, 447-D, and

CH01 and soluble CD4 inhibitor were used at a given range of dilutions (final concentration:

10 μg/mL), this experiment was repeated three times to generate the mean value. These values

were measured and analyzed with Excel-based Macro [38]. The mAbs and sCD4 were obtained

from the AIDS Research and Reference Program, Division of AIDS (DAIDS), National Insti-

tute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH).

Statistics

The statistical analysis was performed using GraphPad Prism (V-5.01-GraphPad, USA). One-

away ANOVA followed by Bonferroni’s multiple comparisons test for correction were used to

analyze significant differences between the means of geometric media sensibility (GMS)

according to the psV and the nAb titers of the different plasma samples grouped by subtype

and neutralization potency. Additionally, one-way ANOVA followed by Dunnett’s multiple

comparison tests was used to evaluate the differences in the length of variable regions and the

PNLG of gp160. To indicate that there might be significant associations between amino acids

in particular positions in the alignment and the neutralization susceptibility of a given Env,

contingency tables and respective statistics were used (i.e. chi-square or Fisher’s exact test for

categorical variables). P-values less than 0.05 were considered statistically significant.

Results

HIV-1 env diversity and phylogeny

Based on the REGA HIV subtyping tool and in the phylogenetic analyses of the 60 full-length

env sequences (2.5 kb) from HIV-1 participants, 26 were reclassified as HIV-1 subtype B (12

HIV-1 B pandemic and 14 HIV-1 B/Bbr), 14 C subtype and 11 subtype F1 (Fig 1). In addition,

nine subtypes, which were classified as HIV-1 unique recombinant forms (8 BF1 and 1 BC)

were excluded from subsequent analysis. The following genetic divergence intersubypes/vari-

ants were observed: B and B/Bbr was 0.19, B-F1 = 0.31, B-C = 0.33, F1-C = 0.32, F1-B/

Bbr = 0.32 and C-B/Bbr = 0.34.

Neutralization phenotype

To characterize the neutralization phenotypes of HIV-1 Env-pseudoviruses (psVGWGR,

psVGPGR and psVF1) obtained from Brazilian consensus sequences and those selected from

the neutralization panel psVB (Rhpa) and psVC (Cap210), we characterized their phenotypes

using mAbs and sCD4. The Brazilian psVs were inhibited by all mAbs and presented reduced

IC50 geometric means when compared to psVB and psVC (Table 1). sCD4 neutralized all of the

studied psVs, and mAbs 2F5, and CH01 were able to neutralize almost all of the psVs with the

exception of the psVC and psVB, respectively. The mAbs 2G12 and 447-D inhibited only Brazil-

ian psVs. Furthermore, the psVF1 had the strongest neutralization sensitivity for all mAbs.

Cross-Neutralizing Antibodies Anti-HIV-1 in Brazilian Individuals

PLOS ONE | DOI:10.1371/journal.pone.0167690 December 9, 2016 4 / 16

http://www.hiv.lanl.gov/content/nab-reference-strains/html/home.htm
http://www.hiv.lanl.gov/content/nab-reference-strains/html/home.htm


The results were plotted on CATNAP (http://hiv.lanl.gov/catnap). The cell color indicates

the following categories: white, no neutralization (IC50>10 μg/mL); green, weak neutraliza-

tion; orange and yellow, moderate neutralization; and red, strong neutralization. The psV

MuLV was tested together as a negative control, and the IC50 was undetected.

Association of breadth of neutralizing antibody potency to HIV-1 ENV

subtypes

The potential of the HIV-1 plasma samples to neutralize the psVs was displayed in magnitude

sorting and grouped according to the geometric mean titer (GMT) ID50 values. Samples were

grouped as with low neutralization potential (GMT 20–99), moderate potential (GMT 100–

999) or high neutralization potential (GMT>1000) (S1 Table). Taken together, almost all of

our 51 subjects exhibited nAb response; however, 18 (35%) of them had no nAb response for

Fig 1. Phylogenetic tree of env gene (nt-2574) was generated by the Neighbor-Joining method using HIV-1

reference sequences (Ref). The bootstrap analysis was performed with 1000 replicates. The branches in red

represent the recombinant samples.

doi:10.1371/journal.pone.0167690.g001
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one or two psVs. Of the 51 plasma samples analyzed, 16 (31.4%) were classified as low poten-

tial, 19 (37.2%) as moderate potential and 16 (31.4%) as high neutralization potential (S1

Table). According to this analysis, plasma samples from all studied individuals infected with

HIV-1 subtypes B and F1 presented high or moderate neutralization potency ID50 values, and

most individuals from the B/Bbr variant and subtype C exhibited low and moderate neutraliza-

tion potency, respectively (Fig 2). Additionally, the GMT of variant B/Bbr (144) was 11-fold

Table 1. Mean inhibitory concentration (IC) 50 values (μg/mL) for triplicate assays with pseudoviruses (psVs) and the geometric mean (GM) as

indicated.

Mean IC50 in TZM-bl (μg/mL)

2F5 2G12 447_D CH01 sCD4

psVF1 0.10 0.06 0.01 0.05 1.09

psVGPGR 3.50 6.70 2.15 8.70 1.24

psVGWGR 4.00 3.05 8.72 3.30 0.15

psVB(Rhpa) 9.90 >10 >10 >10 3.70

psVC(Cap210) >10 >10 >10 3.20 1.90

GM of detected 1.92 1.07 0.57 1.46 1.04

GM of all 4.24 6.57 4.51 3.40 1.04

% detected 80% 60% 60% 80% 100%

Red�0.625 (1st Quartile), orange�3.000 (2nd), yellow�3.750 (3rd), green >3.750, white Undetected.

doi:10.1371/journal.pone.0167690.t001

Fig 2. Neutralization range according to HIV-1 subtypes. The bars represent the percentage of potential neutralizing antibody for

each plasma group, according to HIV-1 subtype.

doi:10.1371/journal.pone.0167690.g002
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smaller (p<0.001) than the GTM of subtype B samples (1605). This result reveals distinct

immunogenic properties between HIV-1 subtypes. No significant nAb activity was observed

when plasmas were tested against a negative control (psV MuLV).

Cross neutralize reactive response to env psV

The psVGWGR had the strongest reactive response between analyzed psVs, with a geometric

mean of sensibility (GMS) of 886, indicating similar sensitivity as psV tier 1. In addition, only

one nAb B/Bbr plasma sample did not neutralize this psV. Interestingly, the GMS of

psVGWGR is 3.7–fold higher compared with psVGPGR (p<0.01), even though they differ in

only one single amino acid (W to P) (S1 Table). Following the sequence of susceptibility, the

psVC (tier 2) exhibited a GMS of 572, which is approximately double the susceptibility of

psVF1 (258), psVGPGR (238) and psVB (185) (S1 Table).

In addition to the potent nAb detected in subtype B (GMT 1605) and F1 plasma samples

(GMT 777), broad cross neutralization to the psV was noted. Although subtype C plasma sam-

ples exhibited low neutralization antibody titers, the antibodies were more specific for the V3

GWGR epitope, and the GMT values from psVGWGR and psVC were 771 and 238, respec-

tively (Table 2).

To assess the impact of the tryptophan to proline substitution, we compared the disagree-

ment in the neutralization ranges between psVGWGR and psVGPGR in each plasma subtype

group. From this analysis, we note that the disagreement in neutralization ranges were as fol-

lows: 28% of discordance in plasma samples from subtype F1, 34% for B, 50% for B/Bbr and

86% for C (Fig 3).

Analysis of the PNLG sites and variable regions of HIV-1 in plasma

samples

Here, we analyzed the Env protein characteristics described to influence HIV-1 neutralization

sensitivity, such as the number of PNLG and length of gp120 variable regions in HIV-1 plasma

samples grouped by subtypes. Our results showed that the size of each gp120 variable region

among HIV-1 subtypes had a statistically significant difference. We observed greater V1 B/Bbr

and smaller V4 F1 than those of other subtypes (p< 0.005) (Fig 4). However, neither was a

correlation verified between variable region length and neutralization magnitude, nor between

PNLG and HIV-1 subtypes (Table 3).

Table 2. Geometric mean titer of nAb from HIV-1 plasma samples B, B/Bbr, C and F1 against psVs.

Plasma Samples

GMT B GMT F GMT C GMT B/Bbr

psVGWGR 2833 1025 771 335

psVC 1577 1338 238 296

psVB 1977 631 25 68

psVF1 914 772 136 70

psVGPGR 1320 424 63 132

GMT 1605 777 180 144

Data from the neutralization assay of all psV evidenced by GMT of subtype plasma samples. (psV:

pseudovirus; GMT: geometric mean titer).

doi:10.1371/journal.pone.0167690.t002
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Fig 3. Dissonance of neutralization range between psVGWGR and psVGPGR. The bars represent the percentage of

dissonance in neutralization range for each HIV-1 subtype.

doi:10.1371/journal.pone.0167690.g003

Fig 4. Comparison of variable region lengths among Brazilian HIV-1 (B, B/Bbr, F1 and C) subtypes. One-way ANOVA p-values in

subsequent Dunnett’s multiple comparison tests indicating statistically significant difference (p<0.005) are marked with an asterisk. The

horizontal bars at the top of each column indicate the means of length for each variable region.

doi:10.1371/journal.pone.0167690.g004
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Neutralization signature patterns

Some authors have proposed that some Env features that elicit strong antibodies in natural

infection might be useful to integrate vaccine design immunogens [39,40]. Thus, we verified

possible association of some Env signatures patterns with neutralization potency and HIV-1

subtypes in an alignment of 937 amino acids sites containing all 51 ENV sequences (S2 Fig).

In order to verify the potential signatures related to neutralization susceptibility 16 Env

sequences that presented a high neutralization range were compared with 16 sequences with

lower neutralization ranges. From this analysis, three signatures were suggested to be enrich-

ment, (68.8%) L14W (56.2%), (81.2%) P360W (68.8%), and (56.2%) R843H (62.5%). Here, the

first amino acid represents high neutralization and the second amino acid represents low neu-

tralization potency. The results of signature analyses were combined on contingency table

(Chi-square or Fisher’s exact tests) and only one statistically significant signature was identi-

fied, the site P360W (p = 0.013), position 313 in relation to HXB2.

Concerning HIV-1 subtype signatures, we verified seven to twelve signatures (substitution

or insertions) in a pair-to-pair comparison. These signatures were localized in the signal pep-

tide, C1, V2, C2, V3, and V4, with the majority located in gp41 (Fig 5 and S1 Fig). From this

analysis, comparing HIV-1 subtype F1 samples (GMT 777), which showed better neutralizing

response than B/Bbr samples (GMT 144), we verified subtype-specific signatures located in

regions C2, V3 and gp41, which might influence in the distinct neutralizing response.

Discussion

We evaluated the neutralization breadth and potency of plasma samples from HIV-1-infected

Brazilian individuals using a representative panel of psVs and attempted to correlate the anti-

body response to the genetic and biochemical characteristics of HIV-1 subtypes. Comparing

the neutralizing phenotype of psVs, we verified that psVF1 and psVGPGR were the most

cross-susceptible to the inhibitors. The resistance of psVC and psVB to some mAbs were also

verified in others studies [39,41–44], and in the present study this resistance could be associ-

ated with escape mutations. In the mAb 2F5, which recognizes the ELDKWA epitope [45]

from gp41, we verified a change from an alanine to a glutamine in psVC. For the 2G12 mAb,

which recognizes the mannose residues N295, N332, N339, and N392 and the V4 loop in rela-

tion to HXB2 positions [46], we observed that some asparagine residues are absent in psVC

and psVB, leading to a phenotypical resistant profile (S2 Fig, alignment residues: N321, N359,

N366, and N419) [41,47–51]. Given that mAb 447-D is specific for viruses that carry the

GPGR motif at the top of V3 loop [52], a strong neutralization of psVGPGR, psVB (Rhpa) and

psV F1 was expected. However, the psVB (Rhpa) was not inhibited at 10 μg/mL (IC50), but in

Table 3. Number of potential N-linked glycosylation (PNLG) sites of HIV-1 Env sequences according to the range of neutralization potency and

HIV-1 subtypes.

Group Number of PNLG

Gp120 Gp41 Gp160

Min-Max Mean Min-Max Mean Min-Max Mean

High nAb 21–30 25.5 3–6 4.5 25–36 30.5

Low nAb 22–30 26.0 4–5 4.0 27–35 31.0

F1 21–31 26.0 4–7 5.5 25–38 31.5

B 22–30 26.0 3–5 4.0 26–35 30.5

B/Bbr 23–30 26.5 3–5 4.0 27–35 31.0

C 20–29 24.5 4–5 4.5 24–32 28.0

doi:10.1371/journal.pone.0167690.t003
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previous studies in concentrations of 48.9 μg/mL [52] and 46.2 μg/mL [53] a susceptibility was

observed, indicating that this relevant epitope on the V3 loop was not easily exposed in this

psV. The CH01 is a broad nAb used to target the second Env site of vulnerability by covering

amino acid residues in V1V2 loops and sugar moieties at N160 (S2 Fig, N173 on V2) [53].

Given that this asparagine was present in all psVs, we suggested that the distinct neutralization

susceptibility verified to CH01 could be associated with the V1V2 length [49–51]. All psVs

Fig 5. Scheme of viral envelope gene (gp120 and gp41) and representation of HIV-1 subtype-specific signatures. The asterisk

indicates insertions or deletions. The numbers represent the position of each HIV-1 subtype-specific signatures in reference to amino

acid alignment.

doi:10.1371/journal.pone.0167690.g005
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were sensitive to sCD4, which causes irreversible shedding of gp120 from and subsequently

inactivates Env [54]. Therefore, our results are in full agreement with previous studies, con-

firming the reliability and accuracy of the assay. We also emphasize that the use of broadly

neutralization panel including psVs based on local HIV consensus sequences is of paramount

importance to better characterize HIV humoral immune response.

Screening the neutralizing activity of a panel of 51 HIV-1 plasmas samples against the five

psV, we observed nAbs in 31.4% of the analyzed samples, which is consistent with the 10 to

30% values detected in recent studies [55,56]. Herein, nAbs were detected in most of the sam-

ples from HIV-1 subtypes F1 and B (GPGR). Although these subtypes are genetically distant,

they are correlated immunologically as verified by V3 peptide seroreactivity [57] and IFN-γ
ELISpot response to Gag and Nef [58].

We have not determined whether the serum neutralization breadth observed here is specifi-

cally prevalent in the plasma samples using assays. However, by dissonance analysis, we

observed that subtype C plasma samples exhibited a specific response to GWGR that is

increased when compared with GPGR or GPGQ motifs present in V3 of the psVs. Thus, we

suggest that the conformational change deriving from amino acid substitution (GWGR) could

result in a better accessibility of the epitope. As previously described, the influence of the mod-

ified variable regions on the adjacent protomers results in altered access to nAbs [12,59,60].

Additionally, in general, broad serum neutralization is characterized by the presence of one or

very few antibody specificities [10,45].

We detected an increased amount of N-glycosylation sites in plasma sample sequences of

low neutralization range and psVs with minor GMS, however it was not statistically signifi-

cant. This finding suggests a masking of the nAb epitope by glycans on the surface of Env,

forming a ‘‘glycan shield” that reduces access to protein epitopes and nAb induction. Accord-

ing to van Gils et al., [60] an increase in the length of the V1V2 loop and the number of PNLG

on the glycoprotein is directly associated with the protection of HIV-1 against HIV-specific

neutralizing antibodies. In relation to the psVs, we observed that psVGWGR and psVGPGR

had the same number of PNLG but discordant GMS to plasma samples, and we assume that

nAb in the plasma samples were more directional to the top of the V3 loop.

Of the 937 amino acids compared between the 51 sequences, only three (L14W, P360W

and R843H) amino acids positions were more frequent in a particular neutralizing response

groups. The amino acid position 14, which is part of the signal peptide, plays a role in the effi-

ciency of the protein secretion, in the orientation of Env protein to the membrane, impacting

folding and the exit from the endoplasmic reticulum [61]. The amino acid change of proline to

tryptophan at 360 position can directly interfere with the formation of bridging sheet and adja-

cent surfaces from the outer domain of gp120, and this also impact to V3-loop antibodies that

block the binding of gp120–CD4 complexes [62]. Therefore, we observed that virus with

W360 were more sensitive to neutralization and induced weak anti-Env response. The other

signature pattern was observed on the cytoplasmic tail (R843H). The substitutions in this

region can lead to effects on the binding of antibodies to the V1-V2 region, the V3 loop, or the

C5 domain of gp120 [63]. This might suggest that alterations of amino acids composition in

these regions (signal peptide, V3 loop and cytoplasmic tail) are an important determining fac-

tor in the induction of nAb, at least in our study population. Such changes could be influenc-

ing the expression or binding to antibodies in exposed regions of each protomer.

Currently, little is known about antibody affinity maturation in relation to the presented

antigen. In this process, antibody-antigen interactions are of great importance for the selection

of B cell characteristics, such as structural peptide size and charge of the amino acids surround-

ing the electrostatic forces (hydrogen bridges, hydrophobic interactions and Van der Waals

force) [64]. Recently, Doria-Rose and Gordon report about the possibility of the recruitment
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of specific viral sequences to activate a "correct" BCR and facilitate the development of particu-

lar powerful antibodies [65].

The limitations of our study are the same shared by most authors working with neutralizing

antibodies. In fact, studies addressing nAb could be influenced by host genetic characteristics,

disease progression profile, HIV-1 viral load, and studies with small sample size due to the

high costs of the experiments, especially in resource-limited settings. In our analysis, we con-

sidered only chronic HIV-1 infected individuals and explored viral characteristics such as

HIV-1 subtypes, length of the variable regions, and differences on N-linked glycosylation sites

(PNLG) that have been described to be implicated in the potency and breadth of nAb. We

were able to observe that some individuals especially infected with HIV-1 subtypes B and F1

produce high titers of broadly reactive neutralizing antibodies, which are of particular interest

for vaccine design. The presence of tryptophan instead of proline on the top of the V3 loop

facilitates the exposure of the trimeric structural domain, contributing to viral neutralization.

Therefore, it is important to highlight that these kinds of studies are able to increase under-

standing and add to the growing body of evidence that the antigenic and immunogenic prop-

erties of Env should facilitate the development of an effective HIV-1 vaccine.
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