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Abstract

A brief overview is provided of cosinor-based techniques for the analysis of time
series in chronobiology. Conceived as a regression problem, the method is applicable
to non-equidistant data, a major advantage. Another dividend is the feasibility of
deriving confidence intervals for parameters of rhythmic components of known
periods, readily drawn from the least squares procedure, stressing the importance of
prior (external) information. Originally developed for the analysis of short and sparse
data series, the extended cosinor has been further developed for the analysis of long
time series, focusing both on rhythm detection and parameter estimation. Attention
is given to the assumptions underlying the use of the cosinor and ways to determine
whether they are satisfied. In particular, ways of dealing with non-stationary data
are presented. Examples illustrate the use of the different cosinor-based methods,
extending their application from the study of circadian rhythms to the mapping of
broad time structures (chronomes).

Keywords: Chronobiology, Chronome, Circadian, Cosinor, External information,
Regression, Rhythm parameters, Stationarity
Introduction
Non-random variations are found as a function of time at the cellular level, in tissue cul-

ture, as well as in multi-cellular organisms at different levels of physiologic organization

[1]. Multi-frequency rhythms usually account for a sizeable portion of the variability [2].

While there is presently much interest in studying circadian rhythms, the biological time

structure covers many different ranges of periods beyond the 24-hour day, from fractions

of seconds in single neurons to seconds in the cardiac and respiratory cycles, and a few

hours in certain endocrine functions. Cycles with periods of about a week, about a

month, and about a year are also ubiquitous, as are some other newly discovered cycles

with periods of about 5 and 16 months, and much longer periods [3].

The partly built-in nature of circadian rhythms [4,5] is now widely accepted, as is the

fact that they are amenable to synchronization by cycles in the environment (e.g., light-

ing and feeding schedules) [6]. More generally, environmental geophysical cycles such

as the day-light cycle, the tides, the phases of the moon, the seasons, as well as a host

of other cycles shared between living organisms and the environment in which they

evolved, all serve as synchronizers for partly endogenous rhythms [7,8].

The application of chronobiology and its concepts to biology and medicine depends

upon the quantitative evaluation of data collected as a function of time. The inclusion

of time as a primordial factor in chronobiological investigations broadens the scope of

methods for data analysis. The methods presented herein serve the purposes of rhythm
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detection and parameter estimation, with applications in the early diagnosis of altered

rhythm characteristics indicative of a heightened risk, the optimization of treatment

by timing, and a wider understanding of how our physiology is influenced by our

environment.

Data collection and study design

Before turning to the methodology itself, it is important to consider aspects of data col-

lection and study design [9] bearing on the choice of analytical tools used for data ana-

lysis. Biological data (Yi, i = 1, 2, …, N) are typically obtained by having a clock trigger

the system (instrument, sensor) to measure a biological variable, yielding a set of data

at discrete sampling times (ti, i = 1, 2, …, N). Whether the variable examined is discrete

(e.g., mitotic counts) or continuous (e.g., oral temperature), the numerical values attrib-

uted to Yi are limited in accuracy and precision by the instrumentation used. Any finite

variation of a biological system takes place during a non-zero time interval rather than

instantaneously. In terms of data analysis, this means that there is a cut-off frequency fS
beyond which the spectrum of the biological variations is practically zero [10]. Whether

the transducer used to measure a given biological variable is analog or digital, it takes a

certain time for it to respond and deliver a reading, so that rhythms with periods

shorter than this response time cannot be assessed, and rhythms with a period close to

it will be distorted [10]. In other words, a cut-off frequency fT can be defined as the

minimal frequency such that for f > fT the output signal remains practically constant

(no variation in the data can be assessed). This means that too dense measurements

are redundant and do not bring additional information. In the case of equidistant data

obtained at Δt intervals, it has been recommended to choose Δt ≤ 1/4fT to assure a

good approximation of Y(t) [11].

For chronobiological applications, this sampling requirement (to be able to recon-

struct changes as a function of time in the context of the theory of signal processing) is

often difficult to meet. Instead, sampling is used in its statistical meaning, where it

refers to the selection of a few items from a population to draw inferences for that

population. In terms of a data series, the selection of a sampling interval Δt > 1/fT al-

lows only some features of the biological variations to be assessed. In the absence of ex-

ternal information, for data collected over an observation span T, only oscillations with

periods in the range of T up to 2Δt can be assessed. The resolution with which a sig-

nal’s period can be determined also depends on T: in frequency terms, the smallest

difference in frequency between two distinct signals is 1/T. The highest (no longer as-

sessable) frequency, 1/2Δt, is called the Nyquist frequency, fN. Within the field of infor-

mation theory, this is known as the Nyquist-Shannon theorem, which states that if a

function Y(t) contains no frequencies higher than fN, it is completely determined by

sampling Y(t) at intervals of 1/2fN.

Ostle [12] defines the design of an experiment as the complete sequence of steps

taken ahead of time to ensure that the appropriate data are obtained in a way which

allows for an objective analysis leading to valid inferences with respect to the stated

problem. These steps include the statement of objectives, the formulation of hypoth-

eses, and the choice of design and experimental procedure and of the statistical

methods to be used. Principles underlying experimental designs rely on replication,

randomization and control. Replication relates to repeated measurements to obtain an
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estimate of uncertainty (experimental error or noise) used to derive statistical signifi-

cance (P-values) and confidence intervals. Noise originates from variations in the bio-

logical system considered not to be part of the deterministic portion of the signal, from

errors external to the system (errors of experimentation, of observation, and/or of

measurement), and from the transducer and sampler (instrumentation error). Reducing

the experimental error increases the precision of experiments. Randomization is an

important aspect of study design that allows researchers to proceed as though the as-

sumption of independence of the observation errors is true, which is critical in applying

a test of significance. Although randomization cannot guarantee independence, it re-

duces the correlation that tend to characterize errors associated with experimental

material (experimental unit or data) adjacent in space or time, while also improving ac-

curacy. Control relates to the amount of balancing, blocking and grouping of the ex-

perimental units [12].

The number of replications needed for a given probability of detecting a given differ-

ence with statistical significance depends on the standard error per experimental unit

[13]. This means that small sample sizes can easily detect large differences, whereas

small differences require larger sample sizes. When dealing with rhythmic variables, a

sizeable portion of the variance stems from the rhythmic variation. Assessing the

rhythmic behavior is thus important to reduce the error term. One important feature

of chronobiological study designs is that rhythm stage is often the primary factor, as

when assessing the relative efficacy or toxicity of a given treatment administered at dif-

ferent stages of the circadian rhythm. The power of testing for a time effect is usually

only slightly affected by the number of timepoints considered when results are ana-

lyzed by cosinor, but not when performing an analysis of variance. This difference in

approach accounts in part for the controversy between classical designs advocating

fewer test groups [14] and chronobiological designs recommending at least 6 time-

points per cycle [15-17].

In the framework of chronobiological study designs, three kinds of data can be distin-

guished, which determine the choice of method for their analysis and how the results

can be interpreted. Longitudinal sampling corresponds to obtaining data on the same

individual (experimental unit) as a function of time. One example is the around-the-

clock monitoring of blood pressure at about 30-minute intervals for 7 days. Results

apply to this particular individual. Transverse (cross-sectional) sampling consists of

obtaining only one value per individual (experimental unit), different individuals pro-

viding data at the same or different sampling times. Time series of survival times are

one example of transverse data. When individuals represent a random sample of a

given population, results can be generalized for that population. Hybrid (linked cross-

sectional) sampling consists of taking a few serial measurements from several individ-

uals (experimental units). For instance, circulating prolactin is determined at 20-minute

intervals for 24 hours in women at low or high familial risk of developing breast cancer

later in life. The circadian rhythm can be determined for each woman and summarized

across all women in each group for assessing any difference as a function of breast can-

cer risk [18]. When individuals represent a random sample of their respective popula-

tions, results can be generalized to these populations.

Quite generally, but particularly when sampling is performed on more than a single

individual, it is important that they are synchronized. Synchronizers (environmental
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periodicities determining the temporal placement of biological rhythms) serve this

purpose. The rest-activity schedule or the light–dark regimen are effective synchro-

nizers and can be used to determine a reference time (such as time of awakening or

light onset in preference to clock hours such as local midnight). Staggered lighting reg-

imens have been used to facilitate data collection in the experimental laboratory [19],

making it possible to collect data over several days [20]. Marker rhythms [21] are a

useful check of whether synchronization has been achieved, further providing an

internal reference. Activity, temperature, heart rate and blood pressure are some useful

marker variables that can easily be monitored longitudinally. For instance, blood

pressure has been used to guide the timing of administration of anti-hypertensive

medication while also providing information regarding the patient’s response to

treatment [22].

Summary statistics

Before proceeding with any data analysis, it is recommended to first plot the data

as a function of time. Such a chronogram can be informative in several ways. The

presence of obvious rhythmicity may be recognized and its relative prominence as

compared to the noise may be qualitatively (macroscopically) assessed. When sam-

pling covers several cycles, some measure of the cycle-to-cycle variability can be

gained. The presence of any increasing or decreasing trends can be observed, as is

the existence of any outliers. After curve fitting, a chronogram of residuals can also

provide valuable information regarding the adequacy of the model, and the need

for data transformation.

A histogram should also be prepared to obtain an estimate of the mean value with its

standard deviation, and to check on the assumption of normality. For instance, a long-

tailed distribution is indicative of the need for data transformation. Alternatively, the

use of robust methods (such as those based on ranks; [23]) may be indicated.

When prior information suggests the presence of a rhythm with known period, stack-

ing the data over a single cycle reduces the noise and reveals the rhythm’s waveform.

Historically, this approach was used by Franz Halberg to resolve confusing variability in

blood eosinophil counts [24-26]. It was also instrumental in showing that the circadian

rhythm in core temperature of Fischer rats persisted after the bilateral lesioning of the

suprachiasmatic nuclei, albeit with a reduced amplitude and a phase advance [27,28]. It

should be noted, however, that stacking the data over an assumed period may yield

spurious results if the signal’s period differs from its assumed value. For this reason, it

is highly recommended to analyze the original data first before proceeding with any

stacking. For instance, it is not uncommon to present data by calendar month, even

when the data have been collected over several years. This procedure limits the ability

to resolve any periodic signal with a period different from precisely 1 year or its

harmonic terms (6, 4, 3 months, …). Stacking the data over a period that has been vali-

dated can be complemented by an analysis of variance testing for a time effect when

data are binned into a given number of classes of equal duration covering the full cycle

(e.g., six 4-hourly classes covering 24 hours). An F-test then serves for testing the

equality of class means. While this procedure remains applicable for non-equidistant

data, the result depends on the choice of the number of classes used for binning and

on the choice of the reference time [29].
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Single cosinor

Historically, the single cosinor was developed to analyze short and sparse data series

[2,30-32]. Periodograms and classical spectra originally used in chronobiology [33,34]

required the data to be equidistant and to cover more than a single cycle. Whereas

some spectral analysis techniques are now available to analyze non-equidistant data

[35-37], algorithms available in most software packages remain limited to the case of

equidistant data.

Least squares procedures do not have this limitation. They are thus useful in curve-

fitting problems, where it is desirable to obtain a functional form that best fits a given set

of measurements. Although periodic regression presents its own limitations, being sensitive

to outliers and not having any constraint to conserve the variance in the data, it possesses

two important features: first, when data are equidistant, results at Fourier frequencies are

identical to those of the discrete Fourier transform [38]; and second, it advantageously uses

prior information. Thus, after the existence of ubiquitous circadian rhythms was demon-

strated, it was possible to apply the single cosinor method in many experiments aimed at

determining the times of highest efficacy and lowest toxicity in response to a variety of

drugs and other stimuli by fitting a 24-hour cosine curve to 6 values, 4 hours apart, each

value representing the number of experimental animals that survived a given intervention

applied at one of the 6 timepoints when overall about 50% of the animals had died. These

results led to the fields of chronopharmacy and chronotherapy [39-42].

Single-component cosinor

Notably in studies of circadian rhythms, it is indeed possible to assume that the period

is known, being synchronized to the external 24-hour cycle. The regression model for a

single component can be written as

Y tð Þ ¼ Mþ Acos 2πt=τþ ϕð Þ þ e tð Þ ð1Þ

where M is the MESOR (Midline Statistic Of Rhythm, a rhythm-adjusted mean), A is

the amplitude (a measure of half the extent of predictable variation within a cycle), ϕ is

the acrophase (a measure of the time of overall high values recurring in each cycle), τ

is the period (duration of one cycle), and e(t) is the error term (Figure 1).

When τ can be assumed known, using well-known trigonometric angle sum identity,

the model can be rewritten as

Y tð Þ ¼ Mþ βxþ γzþ e tð Þ ð2Þ

where

β ¼ Acosϕ; γ ¼ ‐Asinϕ; x ¼ cos 2πt=τð Þ; z ¼ sin 2πt=τð Þ:

The principle underlying the least squares method is the minimization of the residual
sum of squares (RSS), that is the sum of squared differences between measurements Yi

(obtained at times ti, i = 1, 2, …, N) and the values estimated from the model at corre-

sponding times

RSS ¼
X

i
½Yi−ðM̂ þ β̂xi þ γ̂ziÞ�2 ð3Þ

This approach is valid when all individual standard deviations are equal, as is often
the case.



Figure 1 Definition of rhythm characteristics. The MESOR is a rhythm-adjusted mean; the double
amplitude (2A) is a measure of the extent of predictable change within a cycle; the acrophase is a measure
of the timing of overall high values recurring in each cycle, expressed in (negative) degrees in relation to a
reference time set to 0°, with 360° equated to the period; and the period is the duration of one cycle.
© Halberg Chronobiology Center.
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Estimates for M, β, and γ are obtained by solving the normal equations, obtained by

expressing that RSS is minimal when its first-order derivatives with respect to each

parameter are zero.

The normal equations areX
Yi ¼ MNþ β

X
xiþγ

X
ziX

Yixi ¼ M
X

xi þ β
X

xi
2 þ γ

X
xiziX

Yizi ¼ M
X

zi þ β
X

xizi þ γ
X

zi
2

ð4Þ

or in matrix formX
YiX
YixiX
Yizi

0
B@

1
CA ¼

N
X

xi
X

ziX
xi

X
xi

2
X

xiziX
zi

X
xizi

X
zi
2

0
BB@

1
CCA

M
β
γ

0
@

1
A or d ¼ Su ð5Þ

Estimates of M, β and γ (or vectorially, u) are thus obtained as

û ¼ S‐1d ð6Þ

Estimates for the amplitude and acrophase can be derived from the estimates of β

and γ by the following relations

Â ¼ β̂2 þ γ̂ 2
� �1=2

ϕ̂ ¼ arctan ‐γ̂=β̂
� �

þ Kπ where K is an integer
ð7Þ

The correct value of ϕ̂ is determined by taking into account the signs of β̂ and γ̂ .

For rhythm detection, the total sum of squares (TSS) is partitioned into the sum of

squares due to the regression model (MSS) and the residual sum of squares (RSS). TSS

is the sum of squared differences between the data and the arithmetic mean. MSS is
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the sum of squared differences between the estimated values based on the fitted model

and the arithmetic mean. As noted above, RSS is the sum of squared differences be-

tween the data and the estimated values from the fitted model.

TSS ¼ MSSþ RSS or
X

Yi‐�Yð Þ2 ¼
X

Ŷi‐�Y
� �2 þX Yi‐Ŷi

� �2 ð8Þ

The model is statistically significant when the model sum of squares is large relative

to the residual sum of squares, as determined by the F test

F ¼ MSS=2ð Þ= RSS= N‐3ð Þð Þ ð9Þ
where 2 and N-3 are the numbers of degrees of freedom attributed to the model (k = 3

parameters – 1) and to the error term (N – k). The null hypothesis (H0) that there is

no rhythm (the amplitude is zero) is rejected when F > F1-α(2, N-3), where α relates to

the chosen probability level for testing H0.

For parameter estimation, it seems reasonable to consider the MESOR (M) separately

and (β, γ) together. The 1-α confidence interval for M̂ is then given by

M̂ � t1‐α=2 N‐3ð Þ σ̂
ffiffiffiffiffiffi
s‐111

q
ð10Þ

where s‐1ij are the elements of S-1,

σ̂ ¼ RSS= N−3ð Þ½ �1=2 ð11Þ
and tp(f ) denotes the pth probability point of Student’s t on f degrees of freedom. The

covariance matrix for β̂; γ̂
� �

is given by

σ̂ 2 s‐122 s‐123
s‐132 s‐133

� �
;

from which a 1-α confidence region for β̂; γ̂
� �

, or equivalently for Â; ϕ̂
� �

can be derived.

It is based on the F-statistic used for rhythm detection, being evaluated at the estimated

value of Â instead of at A = 0. The resulting equation is that of an ellipse (Figure 2):

X
xi‐�xð Þ2 β−β̂

� �2
þ 2
X

xi‐�xð Þ zi‐�zð Þ β‐β̂
� �

γ‐γ̂ð Þ þ
X

zi‐�zð Þ2 γ‐γ̂ð Þ2 ≤ 2σ̂ 2F1‐α 2;N‐3ð Þ
ð12Þ

where

�X ¼
X
i

Xi

 !
=N

and

�Z ¼
X
i

Zi

 !
=N

The region delineated by this ellipse represents the confidence region for the rhythm
parameters. Conservative confidence intervals for Â and ϕ̂ are obtained by computing

the minimal and maximal distances from the pole (zero) to the error ellipse and by

drawing tangents from the pole to the error ellipse, respectively [31]. These confidence

limits are conservative in the sense that the area they delineate is larger than the confi-

dence ellipse. Limits closer to those corresponding to the α-level chosen for testing can

also be computed [43].



Time (clock hours)

Figure 2 Single-component single cosinor: hypothesis testing and parameter estimation. A cosine
curve with a given period is fitted to the data (top) by least squares. This approach consists of minimizing
the sum of squared deviations between the data and the fitted cosine curve. The larger this residual sum of
squares is, the greater the uncertainty of the estimated parameters is. This is illustrated by the elliptical 95%
confidence region for the amplitude-acrophase pair (bottom). When the error ellipse does not cover the
pole, the zero-amplitude (no-rhythm) test is rejected and the alternative hypothesis holds that a rhythm
with the given period is present in the data (left). Conservative 95% confidence limits for the amplitude
and acrophase can then be obtained by drawing concentric circles and radii tangent to the error ellipse,
respectively. When the error ellipse covers the pole, the null hypothesis of no-rhythm (zero amplitude) is
accepted (right). Results (P-value from the zero-amplitude test, percentage rhythm or proportion of the
overall variance accounted for by the fitted model, MESOR ± SE, amplitude and 95% confidence limits,
acrophase and 95% confidence limits) are listed in each case. © Halberg Chronobiology Center.
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Standard errors (SEs) for Â and ϕ̂ can also be derived from the covariance matrix for

β̂; γ̂
� �

, by using Taylor’s series expansion:

SE Â
� � ¼ σ̂ s‐122 cos

2ϕ̂ ‐2s‐123 sinϕ̂ cosϕ̂ þ s‐133 sin
2ϕ̂

	 

1=2

SE ϕ̂
� � ¼ σ̂ s‐122 sin

2ϕ̂ þ 2s‐123 sinϕ̂ cosϕ̂ þ s‐133 cos
2ϕ̂

	 

1=2=Â

ð13Þ
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Regression diagnostic tests

It should be noted that the P-value obtained from the F-test and the corresponding confi-

dence limits derived for M̂; β̂ and γ̂ are valid only if assumptions underlying the use of

the least squares procedure are satisfied. These assumptions are (1) the model fits the data

well, (2) the residuals are normally distributed, (3) the variance is homogeneous, (4) the

residuals are independent, and (5) the parameters do not change over time.

Model adequacy:

Goodness of fit can be examined when replicates are available, either from multiple

data collection at different timepoints or from data covering multiple cycles. RSS can

then be further partitioned into the “pure error” and the “lack of fit”. An F-test compar-

ing the pure error and lack of fit sums of squares provides a test of the model adequacy

[44]. The pure error sum of squares (SSPE) is defined as the sum of squared differences

(across all timepoints) between the data collected at a given timepoint and their re-

spective arithmetic mean, whereas the sum of squares ascribed to lack of fit (SSLOF) is

obtained by subtracting SSPE from RSS

SSLOF ¼ RSS‐SSPE
SSPE ¼

X
i

X
l
Yil–�Yið Þ2 ð14Þ

with �Yi ¼
X

l
Yil

� �
=ni where ni is the number of data collected at time ti.

The appropriateness of the model is rejected if

F ¼ SSLOF= m‐1‐2pð Þ½ �= SSPE= N‐mð Þ½ � > F1‐α m‐1‐2p;N‐mð Þ ð15Þ

where m is the number of timepoints and p is the number of (cosine) components in

the model (p = 1 for the single-component cosinor).

In the presence of lack of fit, adding components in the model may be considered

(Figure 3).

Normality of residuals:

The rankit plot provides an attractive visual technique to test normality [44,45]. In

this test, the errors (ei) are sorted by increasing order and expected values of a normal

sample of size N with zero mean (rankits, zi) are calculated. If the residuals are nor-

mally distributed, the regression of ei on zi is a straight line. The Shapiro-Wilk test of

normality can be applied for small sample sizes (N ≤ 50) [46]. For larger sample sizes, a

chi-square test of goodness of fit can be used [23] by comparing expected and observed

frequencies of residuals grouped in classes.

Homogeneity of variance:

The variance of the error term sometimes depends on the expected level of the vari-

able examined. This can be the case of hormonal data such as melatonin that assumes

large values by night but only very low values during the day. All day-time values being

very small, the variance is also small. But as night-time data can vary greatly, their vari-

ance is also inflated. Deviation from variance homogeneity can be revealed by a plot of

residuals as a function of the fitted values [47]. A horizontal band around zero in such

a plot indicates that the assumption is valid. If it is violated, data can be transformed,

for instance by taking their square root or their logarithm. A numerical test can also be



Figure 3 Multiple-component single cosinor. Systolic blood pressure data collected over 7 days by a
45-year old woman fitted with a 24-hour cosine curve indicate the presence of lack of fit, departure from
normality of residuals, and inhomogeneity of variance (left). The addition of a 12-hour component (middle) to
the model (right) yields a better fit for which underlying assumptions are validated. © Halberg Chronobiology
Center.
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performed by fitting the model to the square of the estimated values instead of the data

in order to obtain residuals rei. If

F ¼ N‐2p‐2ð Þr2= 1‐r2
� �

> F1‐α 1;N‐2p‐2ð Þ ð16Þ

where r denotes the regression coefficient of rei on ei, the assumption of homogeneity

of variance is rejected.

Independence of residuals:

While violation of independence usually does not affect the estimate of the parameter

themselves, their confidence intervals tend to be under-estimated [48]. When residuals

are positively correlated, they tend to assume the same sign for long sequences. The

runs test is a non-parametric test that allows to test whether sequences (runs) of posi-

tive and negative residuals occur randomly. Specifically, if successive errors are inde-

pendent, there cannot be any regular sequences, either too long or too short. In other

words, the number of runs cannot be too small or too large, respectively. For a given

sample size, tables list limits for acceptable numbers of runs compatible with the as-

sumption of independence [23,49,50].

When residuals are correlated, the data can either be low-passed filtered by averaging

or decimation (using only one every k values, thereby lengthening the sampling interval

from Δt to kΔt). A slightly different model can also be considered wherein the error

term is replaced by an autoregressive error term [10,51,52].

Stationarity:

The problem of stationarity arises primarily in long time series, when the MESOR,

amplitude, acrophase and/or period can change as a function of time. This may occur,

for instance, when a person being monitored travels across time zones (e.g., from the

USA to Europe). A head cold or pain can also bring about transient changes in circa-

dian rhythm characteristics of variables such as body temperature, blood pressure or

heart rate. Changes in period can be anticipated when time clues (environmental syn-

chronizers) are removed. They are also present in the case of components with no

strong environmental synchronizer. This concerns primarily non-photic cycles such as

the about 1.3-year transyear and the about 5-month cis-half-year found in solar wind

speed and solar flares, respectively. These components are wobbly by nature, even in
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the environment. Counterparts in biology have been found, as discussed elsewhere

[3,53-56]. There are several approaches available to analyze non-stationary time series,

such as wavelets, short-term Fourier transforms, and gliding spectral windows comple-

mented by chronobiologic serial sections, as discussed below.

For short and sparse time series, for which the cosinor method was originally devel-

oped, underlying assumptions are usually valid (or at least statistical power is not suffi-

cient to invalidate them). With longer and denser data, the likelihood of violating one

or several underlying assumptions increases. Violation of one assumption can also re-

sult in violating one or several other assumptions. For instance, when there is lack of

fit, residuals tend not to be independent and may not follow a normal distribution.

Confidence intervals and P-values tend to be affected more than the estimation of pa-

rameters. Even when one or several underlying assumptions are violated, the informa-

tion from the cosinor analysis may be of value as long as results are properly qualified.

Many of the conventional methods of data analysis depend on similar assumptions,

with the exception of robust non-parametric techniques [10,57-61].

Multiple-component cosinor

The single-component cosinor is easily extended to a multiple-component model

(Figure 3)

Y tð Þ ¼ Mþ
X

j
Aj cosð2πt=τj þ ϕ jÞ þ e tð Þ; j ¼ 1; 2;…; p ð17Þ

Instead of solving a system of 3 equations in 3 unknowns, there are 2p + 1 normal
equations to estimate M and p pairs of (βj, γj) or (Aj, ϕj) when τj are assumed known.

Generally, in the normal equations d = Su

d ¼
X

i
xivYi and Su ¼

X
j
uj
X

i
xivxij for i ¼ 1; 2;…;N;

j ¼ 1; 2;…; 2pþ 1; andv ¼ 1; 2;…; 2pþ 1

ð18Þ

where {xij} are the cos(2πti/τj) and sin(2πti/τj).

Estimates of u (M, β1, γ1, β2, γ2, …, βp, γp) are obtained as

û ¼ S‐1X’Y where S ¼ X’X ¼
X

i
xijxik

��� ���:
A confidence ellipsoid can be determined [43] from which approximate confidence
intervals can be derived for each component’s amplitude and acrophase, as outlined

above. Computations are greatly simplified in the case of equidistant data covering an

integer number of cycles [45].

A multiple-component model is useful to obtain a better approximation of the sig-

nal’s waveform when it deviates from sinusoidality. For instance, a 2-component

model consisting of cosine curves with periods of 24 and 12 hours has been exten-

sively used to analyze ambulatory blood pressure data (Figure 3) [62-64]. On the

average, these two components account for the larger overall variance in this case

[65]. This model is usually well-suited to approximate the nightly drop in blood

pressure that reaches a nadir around mid-sleep [66], the slight increase thereafter

and a sharper increase after awakening, the post-prandial dip seen more prominently
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in the elderly [67], and a slow decline in the evening. Whereas better-fitting models

can be obtained for each individual patient, the choice of a given model used as a

reference standard makes it possible to derive reference values (such as 90% predic-

tion limits) for the model’s parameters for specified populations, usually clinically

healthy men or women in several age groups [62]. Deviations from these norms can

then be viewed as indicative of rhythm alteration. In addition to the well-known car-

diovascular disease risk associated with an elevated blood pressure MESOR, out-

come studies [68-72] have determined that certain other rhythm alterations affecting

the circadian amplitude and acrophase are also associated with an increase in car-

diovascular disease risk [64].

Population-mean cosinor

When data are collected as a function of time on 3 or more individuals, the

population-mean cosinor procedure renders it possible to make inferences concerning

a population rhythm, provided the k individuals represent a random sample from that

population. Each individual series is analyzed by the single- or multiple-component

single cosinor to yield estimates of û ¼ M̂i; β̂1i; γ̂ 1i; β̂2i; γ̂ 2i;…; β̂pi; γ̂pi; i ¼ 1; 2;…; k
n o

.

The goal is to make inferences concerning the population averages of the parameters,

u*. The “*” indicates that the expectations are population averages and not averages

over the k individuals sampled. Individual vectors ui are assumed to represent a

random sample from a (2p + 1)-variate, normal population with mean u*. The within-

individual variances are also assumed to be equal, so that the pooled estimate of vari-

ance can be estimated as

σ̂2 ¼
X

j
nj‐ 2pþ 1ð Þ� �

σ̂2
j = N‐ 2pþ 1ð Þkð Þ ð19Þ

When the sample sizes for all individuals are the same or almost the same, as is often
the case in hybrid designs, the population estimates are unweighted averages of the in-

dividual parameters

û� ¼
X

j
ûjn=k for j ¼ 1; 2;…; k and

n ¼ 1; 2;…; 2pþ 1 ûn ¼ M̂; β̂1; γ̂1; β̂2; γ̂2;…; β̂p; γ̂p

n o� � ð20Þ

and the population amplitudes and acrophases can be estimated using the relations

β̂� ¼ Â� cosϕ̂�; γ̂� ¼ ‐Â� sinϕ̂�

In the above conditions and assuming normality of errors and individual parameters,
sample variances can be computed as

σ̂ 2
M ¼ Σj M̂j−M̂�� �2

= k‐1ð Þ; σ̂ 2
βn ¼ Σjðβ̂nj−β̂�Þ

2
= k‐1ð Þ;

σ̂ γn2 ¼ Σj γ̂nj‐γ̂�
� �2

= k‐1ð Þ; σ̂ 2
Mβ1 ¼ Σj M̂j‐M̂�� �ðβ̂1j‐β̂1

�Þ= k‐1ð Þ;
and similarly for the other cross‐products

ð21Þ

where

j ¼ 1; 2;…; k and n ¼ 1; 2;…; p



Cornelissen Theoretical Biology and Medical Modelling 2014, 11:16 Page 13 of 24
http://www.tbiomed.com/content/11/1/16
In the case when the population-mean cosinor can be applied separately for each trial

period (p = 1), a confidence interval for M* is given by

M̂� � t1‐α=2 k‐1ð Þσ̂M=k
1=2 ð22Þ

and a joint 1-α confidence ellipse for ðβ̂�; γ̂�Þ consists of all points (βz*,γz*) satisfying

ðβz�‐β̂�Þ
2
=σ̂2

β‐2rðβz‐β̂�Þ γz�‐γ̂�ð Þ=σ̂βσ̂γ þ γz�‐γ̂�ð Þ2=σ̂2
γ ≤

2 1‐r2
� �

k‐1ð ÞF1‐α 2; k‐2ð Þ= k k‐2ð Þð Þ
ð23Þ

where

r ¼ σ̂ βγ= σ̂ βσ̂ γ

� �
The null hypothesis of A* = 0 is rejected if
h

k k‐2ð Þð Þ= 2 k‐1ð Þð Þ
ih
1= 1‐r2
� �i

β̂�2=σ̂2
β‐2rβ̂�γ̂�=σ̂βσ̂γ þ γ̂�2=σ̂2

γ

h i
> F1‐α 2; k‐2ð Þ ð24Þ

and approximate confidence intervals for Â� and ϕ̂� can be obtained by computing the

minimal and maximal distances from the pole (zero) to the error ellipse and by drawing

tangents from the pole to the error ellipse, respectively (Figure 4). As for the single

cosinor, closer approximate limits can also be computed [43].

Parameter tests

Test statistics have been developed to test the equality of MESORs, amplitudes and

acrophases considered jointly or separately for the case of the single cosinor and the

population-mean cosinor [43]. These tests can allow for a clearer interpretation of the

results, for instance in a circadian experiment involving 6 timepoints 4 hours apart:

Student t-tests are sometimes applied at each separate timepoint without adjustment of
Figure 4 Elliptical confidence limits. The outer ellipse delineates the 95% confidence region for the joint
estimation of the amplitude and acrophase (as a pair). Distances and tangents drawn from the pole to this
outer ellipse yield conservative 95% confidence limits for the amplitude and acrophase considered
separately as the area thus delineated is larger than the area of the outer ellipse. In order to obtain separate
95% confidence limits for the amplitude and acrophase, distances and tangents need to be drawn to a
somewhat smaller (inner) ellipse. For further details, see [43]. © Halberg Chronobiology Center.
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the P-values for multiple testing; when differences in opposite directions are found,

parameter tests may reveal a difference in the circadian amplitude in the absence of a

difference in MESOR or in the circadian acrophase [73].

Least squares spectra and population-mean cosinor spectra

The circadian rhythm is often prominent. It is also ubiquitous. These features enabled

the single cosinor procedure to be applied to many short data series covering no more

than a single cycle in order to yield valuable information regarding the organization of

the circadian system in different species. Computationally, estimates of the MESOR,

amplitude and acrophase can be obtained for any trial period. This procedure, however,

is valid only if there is sufficient evidence for considering this particular trial period. In

the absence of such evidence, results can no longer be taken at their face value.

It has become much easier for chronobiologists to collect data over much longer

spans and/or at much shorter intervals, but it has been more difficult to obtain series

of equidistant data. Even for variables that are obtained with automated instrumenta-

tion (such as telemetry or ambulatory blood pressure monitors), it is not uncommon to

have missing data or to have additional data collected manually at times different from

the scheduled times. Investigations have also extended outside the circadian realm. For

these reasons, a least squares approach to time series analysis remains attractive, as

long as caution is properly taken in interpreting the results.

Just as a chronogram provides useful information prior to quantitative data analysis,

a view of the time structure of the data in the frequency domain can also be inform-

ative. For this purpose, using the cosinor at Fourier frequencies in the range of 1/T

(where T is the length of the data series) up to 1/2Δt (where Δt is the sampling inter-

val) can be viewed as no more than another macroscopic view of the data. A plot of

amplitudes as a function of frequency (least squares spectrum) is equivalent to a discrete

Fourier transform when data are equidistant [38].

– Large spectral peaks indicate the presence of signals and provide an approximate

estimate of their periods. This information can be used to validate anticipated

components while also revealing the presence of other cycles. For rhythms that are

anticipated, rhythm detection and parameter estimation can proceed as outlined

above as long as P-values are adjusted for multiple testing [74]. Caution needs to be

taken regarding non-anticipated cycles. The information thus gained can be used to

design the next study or to examine other similar data series that could serve as

replications. Additional analyses can be performed to determine the extent of

stability of the unanticipated component, for instance by means of applying a

chronobiologic serial section [21] or a gliding spectral window [75].

– Plotting log-amplitudes versus log-frequency provides useful information regarding

the noise structure [65]. White noise corresponds to about the same background

amplitudes across the entire frequency range. Larger background amplitudes at

lower than at higher frequencies represents colored (or correlated) noise, indicating

that underlying assumptions are not met, resulting in under-estimated P-values and

too-liberal confidence intervals of rhythm parameters. The noise structure can in

itself be valuable. It is used for instance in assessing the 1/f behavior of heart rate

variability [76].
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– Single spectral peaks are found only if the data cover an integer number of cycles. If

this is not the case, the signal spreads over several spectral lines [10]. When this

happens and the underlying signal was anticipated, it is possible to determine the

period (frequency) corresponding to the maximal amplitude by applying the single

cosinor procedure not only at the Fourier frequencies but at additional

intermediary frequencies as well. Whereas this may provide a clearer picture of the

signal, it should be realized that the resolution in frequency (1/T) remains the

same, being determined by the series length, T. Tapers such as a Hanning window

[77] can be used to reduce sidelobes associated with the finite observation span, but

this procedure also affects the estimation of the rhythm parameters. While a

Hanning taper does not affect the location of spectral peaks in a spectrum, the

width of the peak is wider and the amplitude is reduced (Figure 5). It remains

useful, however, for a macroscopic view of the time structure of the data.

Least squares spectra can be very helpful in exploratory analyses, but it should be re-

alized that assumptions underlying the use of the single cosinor (notably independence

and normality) are violated more often than not. Population-mean cosinor spectra are

a useful complementary approach not prone to this limitation. This method is similar

to the power spectrum obtained by smoothing the periodogram, which is more reliable

for testing unknown periodicities [78], with the important difference, however, of retain-

ing the phase information. The averaging (smoothing) can be done either in the frequency

domain by averaging across consecutive Fourier frequencies, or in the time domain. The
Original data Data tapered with Hanning window

Partial least squares spectra
Time

Frequency

Figure 5 Effect of applying a Hanning taper on the least squares spectrum. A simulated signal
consisting of a fundamental and second harmonic of equal amplitudes sampled over 10 cycles (top left)
is tapered with a Hanning window (top right). Corresponding least squares spectra (bottom) indicate that
while the spectral location of the two peaks remains the same, the amplitudes are reduced and the
bandwidths are wider. Sidelobes are also greatly diminished. Simulation and original drawings from C.
Lee-Gierke. © Halberg Chronobiology Center.
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population-mean cosinor spectrum uses averaging in the time domain. The method

consists of subdividing the observation span T into several (e.g., k) subsections (or inter-

vals, I) of equal length (I = T/k). A least squares spectrum is computed for each interval,

using the same common reference time. The population-mean cosinor procedure is then

applied at each trial frequency to summarize results across the k intervals. The procedure

can be repeated by using different values of k. Unknown signals consistently detected by

this approach may thus be viewed with added confidence.
Extended linear-nonlinear cosinor

When the period is unknown, the single cosinor model (Equations 1 and 12) can no

longer be linearized in its parameters as the period is in the argument of the cosine

function. Starting from an initial (guess) estimate for the period, all parameters can be

estimated using iterations aimed at minimizing the residual sum of squares. Marquardt

[79] developed an algorithm which performs an optimum interpolation between the

Taylor series and gradient methods. He also derived a way to approximate confidence

intervals for all parameters, including the period [80]. For the particular case of single-

component models, Bingham offers an easily understood approach [81].

For low-frequency signals, simulated annealing [82] is another suitable method that

has the advantage of not requiring the specification of initial values for the periods.

This approach does not perform well, however, for very sharp signals in the higher fre-

quency range of the spectrum. Both simulated annealing and Marquardt’s nonlinear ap-

proach performed best in distinguishing two signals with close periods sampled over

less than a beat cycle, when compared to other approaches [83].

For signals with a symmetrical waveform, the nonlinear procedure can yield an ac-

ceptable estimate of the fundamental period on the basis of very short records not even

covering a full cycle [84]. This is not the case, however, when the waveform is asym-

metrical. Simulations indicate that about 5 cycles are needed to obtain a reasonable es-

timate of the period in this case, when the model fitted includes only the fundamental

component. Including additional harmonic terms in the model allows the nonlinear

procedure to correctly estimate the fundamental period with data covering no more

than 2 cycles [84].
Analysis of non-stationary data

When data are equidistant or rendered equidistant by averaging and filling data gaps by

interpolation, wavelets can be performed [85]. This approach has been useful to un-

cover components not detected earlier [86]. Short-term Fourier transforms can be used

to visualize changes in the spectral structure of the data as a function of time [87].

Alternatively, gliding spectral windows [75] can be computed. The method consists of

defining an interval (I) that is progressively displaced by a given increment (δt)

throughout the data series. A least squares spectrum is computed over each interval

over a specified frequency range. Both a fractional harmonic increment (δh < 1) and

overlapping intervals (δt < I) are chosen to help visualize the time course of changes in

frequency and/or amplitude occurring as a function of time in a 3D graph and/or a sur-

face chart. In such a display, time and frequency are the two horizontal axes and ampli-

tude is shown on the vertical axis in a 3D plot or as different shadings in a surface
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chart. One example relates to competing about 24.0- and 24.8-hour components coex-

isting in the physiology of an apparently seleno-sensitive woman with adynamic epi-

sodes recurring twice a year and lasting 2–3 months, as illustrated for systolic blood

pressure in Figure 6. Another example illustrates the changing prominence of the

about-weekly and about-daily rhythms in blood pressure and heart rate during the first

40 days of life of a clinically healthy boy [88]. Whereas the procedure can be performed

on non-equidistant data, the interpretation of results is greatly helped when data are

equidistant, as changes in sampling rate are also associated with changes in spectral

structure appearing on the graph. A judicious choice of I and of the frequency range

examined is important in order to minimize sidelobes. The use of a Hanning taper [77]

is also helpful in this kind of exploratory analysis.

Whenever focus can be placed on a specified component with a given trial period, a

chronobiologic serial section [21] can be performed. As for the gliding spectral window,

an interval I is selected that is progressively displaced throughout the time series by δt

increments. To data in each interval, the single-component single cosinor procedure is

applied. To visualize the results, a chronogram is shown on top, followed by the se-

quence of MESORs, amplitudes and acrophases as they change as a function of time,

provided with a measure of uncertainty. Corresponding P-values from the zero-

amplitude test and the number of data per interval are also displayed to help interpret

any change in the results. This procedure has been extensively used in studies of phase

shifts associated with transmeridian flights [89], as illustrated in Figure 7, and in cases

when the circadian rhythm is desynchronized from 24 hours [90,91].
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Competing Solar-Societal vs. Lunar Pulls *

* Systolic blood pressure of JF (F, 62y). Alternating 24.0-hour synchronization and
desynchronization, the latter not quite a free-run.
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Figure 6 Gliding spectral window (surface chart). Systolic blood pressure was automatically measured
around the clock by a 62-year old woman with recurring episodes of adynamic depression occurring twice
a year and lasting 2–3 months. Complementary nonlinear analyses (not shown) indicate the coexistence of
about 24.0- and 24.8-hour components, their relative prominence alternating between wellness and adynamic
depression. Changes in the most prominent circadian period as a function of time are apparent from the
changes in amplitude (shading) and location along the vertical scale. © Halberg Chronobiology Center.



Figure 7 Chronobiologic serial section. Peak expiratory flow was self-measured several times a day by a
53-year old man. The data covering a 14-month span are shown in row 1. They are analyzed in a 20-day
interval progressively displaced by 2 days. Data in each interval are fitted with a 24-hour cosine curve.
From the P-values shown in row 2, it can be seen that the circadian rhythm was detected with statistical
significance most of the time, except for two short spans, one coinciding with a transmeridian flight (when
fewer data were collected, row 5) and the other with influenza. Whereas the 24-hour acrophase remains
relatively stable throughout the record (row 4), the MESOR (row 3, lower curve) and to a lesser extent the
circadian amplitude (row 3, distance between the two curves) undergo sharp changes, notably in association
with the influenza and earlier with a change in treatment timing. © Halberg Chronobiology Center.
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The procedure has been extended in two ways. First, a multiple-component instead

of a single-component single cosinor model can be fitted in each interval. This proced-

ure has been used for instance to illustrate that the prominence of an about 5-month

component of heart rate self-measured over 4 decades by a clinically healthy man

follows the about 11-year change in solar flares in which this component had been doc-

umented [92]. In this analysis, the 5-month component was fitted together with 1.0-

and 0.5-year components over a 4-year interval displaced by 0.2-year increments [93].

Figure 8 illustrates the changing prominence of the three components as a function of

time. An about 11-year cycle in the prominence of the about 5-month component is

highlighted. Second, a nonlinear model can be fitted in each interval and the period

displayed as a function of time with its 95% confidence interval. This approach was



Figure 8 Multiple-component serial section. Heart rate, self-measured a few times each day by a healthy
man over several decades, was averaged over consecutive weeks. The weekly averages are fitted with a
3-component model consisting of cosine curves with periods of 1.0, 0.5, and 0.41 year in a 4-year interval
moved by 0.2 year throughout the entire record. The time course of amplitudes of the 3 components is
shown on top. Solid-filled, light-filled and empty symbols correspond to P-values <0.05, 0.05 < P < 0.10,
and >0.10 from the zero-amplitude tests, respectively. Results for the 0.41-year component are reproduced
below, where they are compared with the solar flare index that had been reported by physicists to be
characterized by an about 5-month (0.41-year) component. The prominence of the about 5-month
component in human heart rate follows an about 11-year cycle, which is similar to that characterizing solar
flares. © Halberg Chronobiology Center.
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used to illustrate the great variability in the length of the about 11-year solar activity

cycle, Figure 9 [94].

Discussion and conclusion
There are, of course, other important tools for the analysis of time series [95-103].

Most of them, however, require that the data be equidistant. This overview focused spe-

cifically on the use of the cosinor and its different extensions. The method is fairly sim-

ple and its results lead to meaningful interpretations. Despite its several shortcomings

related primarily to the difficulty of satisfying all assumptions underlying the use of

regression techniques, its wide-ranging applications have played an important role in

the development of chronobiology as a quantitative scientific discipline. Used with cau-

tion, results based on a combination of exploratory analyses with the different cosinor

routines and other conventional statistical tests, progress has also been made in the



Figure 9 Nonlinear serial section. The period of the about 11-year cycle in solar activity is estimated by
nonlinear least squares applied to yearly Wolf numbers analyzed in a 35-year interval progressively moved
by 5 years throughout the time series. The solar activity cycle has a period that can vary from about 9 to
15 years, shown here with its 95% confidence interval and compared with the official cycle length.
© Halberg Chronobiology Center.
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field of chronomics which aims at mapping broad time structures from the high-

frequency brain waves to the multi-decadal cycles characterizing space-terrestrial wea-

ther influencing human physiology and pathology [3,104].

Despite its simplicity, some reluctance remains for some investigators to use the cosi-

nor for estimating rhythm parameters or for considering more than a single test time

in designing experiments. Too many studies still rely on testing only at a fixed time of

day (to control for the circadian variation) or at most at two times 12 hours apart, ig-

noring the possibility that the two selected timepoints may be at the midline crossings

rather than at the peak and trough where differences are maximal. As discussed else-

where, such practice can be misleading in missing an existing difference or even in

finding a difference in mean when none exists [15-17]. Computing day-night differ-

ences in lieu of an amplitude and acrophase is also widely done to interpret ambula-

tory blood pressure monitoring records in terms of “dipping” [105], despite the

documentation in several outcome studies of the superiority of a chronobiological

approach [106,107].

To some extent, this status quo may be accounted for by the lack of dissemination of

computer software offering chronobiologists tools for time series analysis applicable to

non-equidistant data. This situation is slowly changing, however. Personal computers

have become more powerful and statistical packages have become more readily avail-

able for relatively easy use by investigators not necessarily versed in all statistical details

underlying the programs included in the software packages. While professional statis-

tical software packages remain somewhat expensive for individual users, several open-

source packages (such as Octave and R) offer an attractive alternative, notably since
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some are platform-independent, running on PCs, Macs or Linux systems [108]. Pro-

grammers have taken advantage of the tools available in these packages to write code

to perform analytical tasks of interest to chronobiologists. Perhaps the most compre-

hensive package is that developed by Oehlert and Bingham [109], offering a large array of

procedures that can be applied by writing minimal coding instructions to call the different

macros. Selected programs used in chronobiology have long been offered on the website

of Refinetti [110], with clear instructions on how to run the programs. While not open-

source, the Expert Soft Technologie website [111] also offers an array of cosinor-based

and other procedures, including techniques for the study of non-stationary signals. These

programs have been used in the study of shift-workers [112].

In summary, selected methods for the study of biologic time series have been reviewed

and their relative merits have been discussed in the light of underlying assumptions. Some

illustrative applications have also been mentioned. When the choice of a model is justified,

and it is functional and explicative, quantitative methods of data analysis are extremely

valuable to specify the model and obtain estimates of its parameters. Even when under-

lying assumptions are not fully met, point estimates of the parameters can be very useful.

More caution is needed, however, in deciding whether P-values and confidence intervals

are trustworthy, since violation of underlying assumptions tends to yield results that

are too liberal. Once this limitation is taken into consideration, data analysis methods

as described herein constitute extremely valuable tools for research in chronobiology

and chronomics.
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