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G R A P H I C A L A B S T R A C T

A noisy image of fluorescently-labeled mRNA transcripts can be analyzed by Cell-by-Cell Relative Integrated
Transcript (CCRIT) Quantification to automatically identify cells and cell clusters and quantify each cell’s mRNA
expression level.

A B S T R A C T

Advanced molecular probing techniques such as single molecule fluorescence in situ hybridization (smFISH) or
RNAscope can be used to assess the quantity and spatial location of mRNA transcripts within cells. Quantifying
mRNA expression in large image sets usually involves automated counting of fluorescent spots. Though
conventional spot counting algorithms may suffice, they often lack high-throughput capacity and accuracy in
cases of crowded signal or excessive noise. Automatic identification of cells and processing of many images is still
a challenge. We have developed a method to perform automatic cell boundary identification while providing
quantitative data about mRNA transcript levels across many images. Comparisons of mRNA transcript levels
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dentified by the method highly correlate to qPCR measurements of mRNA expression in Drosophila genotypes
ith different levels of Rhodopsin 1 transcript. We also introduce a graphical user interface to facilitate analysis of

arge data sets. We expect these methods to translate to model systems where automated image processing can
e harnessed to obtain single-cell data.
The described method:
Provides relative intensity measurements that scale directly with the number of labeled transcript probes
within individual cells.
Allows quantitative assessment of single molecule data from images with crowded signal and moderate signal
to noise ratios.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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ethod details

Precise descriptions of the spatial and temporal expression of genes via mRNA probing methods
ave become a valuable tool in developmental and disease biology. Understanding gene regulation
vents relevant to embryonic development, aging and disease pathology at the sub-cellular level
equires more detailed analysis of transcriptome regulation than can be obtained by simple (e.g.
iotin-labeled) in situ hybridization techniques [1–3]. Indeed, typical fluorescent probes for mRNA
ranscripts may exhibit poor sensitivity and non-specific binding [4]. Advances in probe technologies
uch as single molecule fluorescent in situ hybridization (smFISH) and RNAscope improve on
onventional probing methods by requiring many molecular probes to bind a single target, improving
electivity and signal-to-noise ratio of the fluorescent measurements [5–7]. smFISH probes are small
nd specific for a range of sites along target mRNA transcripts, allowing many probes to
imultaneously bind [4]. While binding of many smFISH probes increases the fluorescent signal
rom each target transcript, non-specific binding of these probes may lead to considerable background
oise distributed uniformly within cells. In contrast to smFISH, RNAscope probes target mRNA
ranscripts with a sequence of pre-amplifier and amplifier molecules to which many probes can
imultaneously bind [6].
smFISH and RNAscope are distinct methods, and both can provide individual mRNA counts when

nalyzed with image processing software. mRNA transcripts appear in images as small clusters of
ixels with intensities greater than background noise. The transcripts appear as unresolved clusters
ecause of the imaging system’s impulse response, characterized by a pointspread function.
uantification of the number and spatial distribution of individual mRNA transcripts can be obtained
sing confocal microscopy imaging in combination with spot counting algorithms [8–14]. Typically,
ranscripts are quantified by: (1) Image masking/segmentation, (2) Laplacian of Gaussian (LoG)
ltering, (3) intensity thresholding, and (4) spot counting [4]. Widely used tools for analysis include
ISH-QUANT, which is freely available software packages [8]. These packages greatly streamline image
nalysis and mRNA spot identification. In analysis, image masking is optional but often desirable to
educe background noise by imaging DAPI or similar stain in a separate channel, thereby visualizing
uclei boundaries. Nuclei boundaries can be readily identified using the Moore-Neighbor tracing
lgorithm modified by Jacob’s stopping criteria implemented in Matlab using the bwboundaries
unction [15]. Additional user input is needed when identifying the appropriate filter and pixel
ntensity threshold parameters. The advantage is that individual spot count data are obtained. But,
uantification of mRNA transcript levels can be challenging and time consuming when analyzing large
ets of data with crowded signal or with low signal to noise ratios. Automated quantification is
ttractive, because confocal microscopy often leads to large data sets. Therefore there is a need to
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develop methods to automatically identify individual cells and provide quantitative mRNA transcript
level data.

Developing an automated workflow to count transcripts within a multi-stack of confocal images is
essential to rapidly analyze large data sets. Problematically, the signal-noise ratio from confocal
microscopy can decrease with imaging depth, often requiring that during image processing, filtering
parameters be adjusted for each successive slice in a multi-stack. To account for this, automated
workflows must intelligently choose and iterate the filtering parameters. Such parameters include
masking tolerance, Gaussian scaling factor, requisite pixel connectivity for spot identification, and
intensity threshold selection criteria. Especially in noisy data, subtle parameter shifts can drastically
influence the reported transcript spot count. One solution for mitigating large shifts in reported spot
counts between consecutive z-slices is to design a processing algorithm to iteratively re-assess images
using an expanded parameter space. However, iterative parameter optimization is not ideal as it can
add greatly to computing time and analytical uncertainty.

These challenges apply to conventional, Laplacian of Gaussian (LoG) filtering programs built in-
house and currently available software packages that involve LoG filtering such as FISH-QUANT [8]. To
address these challenges we have developed a new algorithm that uses automatic segmentation to
identify and assign cell regions and reports an integrated intensity metric for comparing mRNA
expression in individual cells [10]. Total integrated intensity should directly scale with the number of
transcripts because single molecule imaging methods rely on a finite number of labeled probes [6,11].
We present data that supports using integrated intensity from the single molecule probes as a viable
quantitative output, even when individual transcripts are not resolvable. Herein, we refer to it as CCRIT
(Cell-by-Cell Relative Integrated Transcript quantification) and document the development and
validation of the approach.

Automated conventional spot counting method

We built an in-house algorithm in Matlab to perform automated spot counting according to the
conventional image processing steps. To validate the method, the image processing steps of the
algorithm were applied to cross-sectional images of zebrafish embryos labeled with RNAscope probes
for the bmp2b gene (Fig. 1A). The 2-dimensional Gaussian filter convolved the data with a Gaussian
function to smooth the data while the Laplacian function served to exaggerate rapid shifts in signal
intensity, making greater pixel intensity regions even more distinct from the background. Intensity
thresholding served to differentiate background signal from regions of high pixel intensity. This
threshold was determined by calculating the distribution of spots identified in a LoG-filtered image as
a function of pixel intensity (Fig. 1B). The distribution should exhibit a non-zero plateau region

Fig. 1. Conventional Spot Counting Analysis using in-house software on Matlab. A) Window of original image of zebrafish
embryo cross-section labeled for bmp2b by RNAscope, obtained by confocal microscopy. B) Spot-Intensity distribution following
LoG filtering. Note the non-zero plateau domain and log-scale on the vertical axis. Red point denotes the automatically-selected
reference intensity. C) Processed (binary) image, thresholded at the reference intensity. Counted spots are shown in white. Scale
bars denote 10 mm.
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enoting pixel intensities that are most resilient to noise. A threshold from within this plateau domain
as automatically selected using the minimum discrete derivative and used for the final reported spot
putative transcript) count (Fig. 1C).

Ideally this automated algorithm would accurately identify mRNA transcripts for data acquired
sing either smFISH or RNAscope labeling methods. While we first implemented this algorithm to
nalyze images of cross sections of zebrafish embryos labeled by RNAscope for the bmp2b gene, we
ound that the results in Fig. 1 represent a best-case result. We observed that for images exhibiting
on-noisy signal, such as these RNAscope images, this automated LoG spot counting algorithm is
ffective. In particular, the non-negative plateau region, used for selection of the reference intensity
indicated in red in Fig.1B), was robust for many specimens and across a considerable range of filtering
arameters.

onventional spot counting applied to crowded data

To further extend the utility of our automated spot counting algorithm, we applied the method to
dentify mRNA transcript expression for Rhodopsin 1 (Rh1) (ninaE gene) in the adult Drosophila
elanogaster eye imaged using smFISH probes. Each ommatidium in the compound eye of Drosophila
ontains a mixture of eight different photoreceptor neurons together with several accessory cells [16].
h1 is highly expressed in a subset of photoreceptor cells (R cells, R1–R6) in wild type flies (w1118) [17–
9]. The ninaEo117 allele of Rh1 lacks all detectable transcript, providing us with an appropriate
egative control in whole-mount preparations of adult retina [18]. To examine Rh1 transcript levels in
ndividual photoreceptor cells in an intact compound eye, smFISH was performed on whole-mount
etina preparations from adult flies with probes designed against Rh1 mRNA; images were obtained by
onfocal microscopy using a LSM710 (Zeiss) confocal microscope with a 63� lens and 4� zoom. The
inhole size was set to 90 mm with a numerical aperture of 1.4. For each eye, z-stack images of 0.65 mm
lices for 20 mm total depth were collected at pixel resolutions of 1024 �1024 (see Supplemental
aterial for more details of the experimental methods and imaging parameters). First, we examined
hite-eyed flies that are otherwise wild-type for Rhodopsin 1 (w1118) with Rh1 smFISH probes. As
xpected we observed fluorescently-labeled spots only in the appropriate photoreceptors R1-R6 and
ot in R7 and R8, nor in other regions of the brain (Fig. 2A). This expression pattern was consistent with
he known expression of Rh1 and indicated that our smFISH probes are specific for this gene. To test if
mFISH could be used to accurately quantify Rh1 transcript levels in this tissue, we next examined
h1 transcript levels in homozygous mutant flies that lack detectable Rh1 transcription (ninaEo117)
17]. We did not visually observe any fluorescent spots in the homozygous ninaEoI17 mutant eyes
tained with smFISH probes against Rh1, supporting the specificity of the probes for this gene (Fig. 2D).
We analyzed smFISH confocal microscopy images from each Drosophila genotype using the

utomated conventional spot counting method described in the previous section, at a consistent
maging depth for each specimen. Although our conventional method did not identify any mRNA spots
or the homozygous ninaEo117 mutant (Fig. 2F) as expected, analysis of the wild type specimen yields
on-intuitive results (Fig. 2C). As seen in Fig. 2C, the algorithm failed to identify spots in locations
here they clearly existed as seen by visual inspection of the original image (Fig. 2A).

omparison of our automated spot counting to FISH-QUANT

We further analyzed our in-house automated spot counting algorithm, comparing it against the
idely used and verified open-source image processing software FISH-QUANT [8]. In order to
ompare the results of our conventional spot counting algorithm and to those of FISH-QUANT, we
tilized identical FISH-QUANT parameter settings to those used in our automated spot counting
lgorithm. In particular, we used LoG filter settings hsize = 8 and sigma = 0.8. Starting with our
imple-article genotype smFISH images, we performed FISH-QUANT pre-detection and selected an
ntensity threshold at the plateau region on the spot-intensity curve. We then selected a
onservative spot “quality” score (see the FISH-QUANT user manual for a discussion of this metric)
o threshold out all but the most likely transcript spots. Having used the simple-article genotype
ata to determine the intensity and quality thresholds, we proceeded to analyze the heterozygous
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and wild type smFISH data using the same threshold values and other FISH-QUANT settings. As
expected, FISH-QUANT reliably identified spots in the expected cell regions (see representative
images in Fig. S3) and spot counts agreed with expectations for mRNA transcript levels in WT
(w1118), heterozygous (w1118/ninaE0117), and homozygous knockouts (ninaE0117 mutant) (Fig. 3).

We attributed the difference in output from our in-house automated spot counting algorithm and
the FISH-QUANT analysis to our algorithm’s lack of a spot quality threshold parameter. Because FISH-
QUANT features a quality thresholding parameter, the program accommodated possibly non-optimal
choices for LoG filtering parameters. That is, because our spot counting algorithm’s output depended
primarily on pre-selected LoG filtering parameters, even subtle adjustments to these parameters may

Fig. 3. FISH-QUANT transcript counts for each Drosophila specimen genotype. FISH-QUANT utilizes settings chosen to
recapitulate our conventional (LoG) spot counting algorithm. n = 3.

Fig. 2. Analysis of Drosophila images by Conventional Spot Counting. Top row: (A) Original image of wild type (w1118) Drosophila
photoreceptor neurons. (B) LoG-filtered spot-intensity distribution. (C) Processed (binary) image, thresholded at the reference
intensity. Counted spots are shown in white. Bottom row: (D–F) ninaE0117 homozygous mutant. (D) Processed image of ninaE0117

photoreceptor neurons. (E) Spot intensity distribution and (F) processed (binary) image, thresholded at the reference intensity.
Lack of white spots indicate no Rh1 transcripts are found as expected in this homozygous knockout. Scale bars denote 2 mm.
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esult in dramatic shifts in reported spot counts. In an automated algorithm such as ours, systematic
ptimization of LoG filtering parameters is computationally limiting. Thus, we determined that our
utomated conventional spot counting methodology as-implemented does not consistently and
ccurately reflect levels of gene expression, at least in this complex Drosophila tissue specimen.
Our main goal was to develop an automated algorithm with which to analyze large image sets.

aving identified that conventional LoG imaging analysis may not be the optimal method, we
eveloped an alternative approach to conventional automated spot counting, discussed in the next
ection.

ell-by-Cell relative integrated transcript (CCRIT) quantification

To identify individual photoreceptor neurons among distinct ommatidia and then quantify mRNA
xpression levels in each neuron, we have developed a set of algorithms that we designate Cell-by-Cell
elative Integrated Transcript (CCRIT) Quantification. CCRIT quantification is accomplished by the
ollowing process (summarized schematically in Fig. 4): (1) Maximum intensity projection, (2) Mask
onstruction, (3) Gaussian filtering, (4) Photoreceptor identification and assignment, and (5) Intensity
ntegration for each photoreceptor [9].

asking
Because masking should be consistent across all images in a stack, our new algorithm first assigned

 maximum intensity projection (MIP) from a z-stack of images in the DAPI (blue) channel. Each pixel
n the MIP image received the maximum intensity observed for that pixel among the ensemble z-
tack. The MIP is used to create two distinct masks: the (photoreceptor) nucleus mask and a
ackground mask. The nucleus mask is used to identify individual photoreceptor neurons, and the
ackground mask provides a digital noise subtraction.
We constructed the nucleus mask by first grouping the MIP’s pixel intensity range into 100 equally-

ized bins. Each bin constituted a candidate masking threshold, chosen to be the maximum intensity
alue of that bin. For the nucleus mask, we found that selecting the central bin’s intensity threshold is
onsistently adequate. That central threshold was applied to the MIP: pixels above the threshold were
ssigned a value of 1, any below the threshold were assigned a value of 0. This binary nucleus mask was
pplied to each image in the stack, primarily to identify individual photoreceptor neurons.
We constructed the background mask by investigating the MIP for contiguous areas. First the MIP’s

ixel intensity range was binned into 100 equally-sized bins to generate 100 candidate masks each

ig. 4. CCRIT uses a maximum intensity projection (1) to develop a nuclear and background mask (2) that identifies
hotoreceptor neuron clusters (3). After assigning photoreceptors to separate ommatidia (4), the algorithm averages the
ntegrated smFISH signal intensities across all images in the multi-stack and reports the data for each ommatidium (5).
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with a masking threshold, again chosen to be the maximum intensity value of each bin. For each
candidate mask a value of 1 was applied to all pixels in the MIP that were less than the candidate
masking threshold value, and a value of 0 was applied to all pixels that were greater than the threshold
value. For each candidate mask, thresholding resulted in many connected binary pixels (Binary Large
Objects, or “blobs”). Blob area and “solidity” were readily calculated to assess each masking candidate.
Solidity was defined as the ratio of a blob’s area to its convex area, which was determined using convex
hulls—equivalent to stretching an elastic band around a blob’s boundary (in Matlab, refer to the
convhull() command). The average blob solidity for each candidate mask was weighted proportionally
to total blob area. Upon ranking each mask’s average weighted solidity as a function of candidate
threshold intensity, we found that the smallest weighted solidity consistently corresponded to the
most appropriate and robust background threshold intensity. The chosen background mask was then
refined with a series of filters: opening, erosion, and infill filters, which all have distinct Matlab
commands (imopen, imrode, and imfill). For each filter we used parameter values determined to be
appropriate for the photoreceptor neuron, but that may need to be validated for other cell types. The
opening filter removed small blobs (opening size = 50), defined with a structural element that also has
a unique Matlab command (strel(‘disk’,5);). The erosion filter reduced overall blob size (erosion
size = 10). Finally, the infill filter filled in holes within the remaining blobs (opening size = 1500). This
final background mask is used to 1) assign photoreceptors to separate ommatidia and 2) inform a
digital noise subtraction from each smFISH image.

Assigning cells
With masking completed, the resulting blobs (putative photoreceptor neurons) were automatically

grouped into separate ommatidia based on the distances between each blob’s centroid. To that end,
centroids are calculated for each blob from both the nucleus and background masks using Matlab’s
centroid calculation function. Then the distances from each background blob centroid to every nucleus
blob centroid was calculated. Using each background blob centroid as the reference, these distances
were sorted into a distribution from least to greatest. A peak finder function was applied to the
derivative of this distribution to identify an inflection point that distinguishes nucleus centroid
distances that are close to a given background blob centroid and those that are distal. The nucleus
blobs closest to each background blob were assigned to the same ommatidium. Photoreceptors within
each ommatidium were numbered from 1 up to 7 arbitrarily in a counter-clockwise fashion about the
ommatidium’s background blob.

mRNA transcript quantification
Noise subtraction on each smFISH image in the stack was performed to filter out signal that did not

come from within the identified cells. First, the background mask was used as a sampling space in which
an average intensity of pixels across the masked image was determined. This average “noise” intensity
was subtracted from all pixels on each image in the multi-stack. Second, each digitally subtracted image
was dot-multiplied with the nucleus mask, eliminating any extracellular signal. As a third and optional
step, a 2D Gaussian filter smoothed the remaining smFISH signal. The filtered images were then ready for
intensity quantification. mRNA transcript levels of each cell in each filtered image were quantified by
calculating the integrated pixel intensity within each identified photoreceptor, and the data was
organized by ommatidium. The data was reported in three ways: (a) averaged integrated intensity across
all images in the stack, (b) integrated intensities averaged across the center 80% of images within the
stack, and (c) from maximum intensities slice in across the stack.

Validating the CCRIT method

To validate that the CCRIT method provides reliable and quantitative data relative to standard
measures we compared the CCRIT results against qRT-PCR data for each of three Drosophila genotypes
(WT, heterozygous ninaEoI17, and homozygous ninaEo117). Quantitative reverse-transcription
polymerase chain reactions (qRT-PCR) of wild-type and ninaE mutant adult heads was conducted
with probes against Rh1 transcripts. We observed that approximately 70% of wild-type Rh1 transcript
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evels in heterozygous ninaEoI17 flies and no detectable Rh1 transcripts in the homozygous mutants
Fig. 5A).

We assessed Rh1 transcript expression by quantifying smFISH data for five specimens of each
enotype (WT, heterozygous ninaEoI17, and homozygous ninaEoI17) using CCRIT. Drosophila photo-
eceptors are organized in radially symmetric clusters. As expected, six of the radial cells, R1–R6, were
ositive for the Rh1 smFISH probes. To facilitate CCRIT identification of individual cells, MIP-based
asks were used to identify the positions of individual cells and assign them to ommatidia. The CCRIT
UI then non-discriminately labeled up to seven cells per identified ommatidium (note that R8 nuclei
re not visible in the planes used for these analyses). Total smFISH pixel intensities were reported for
ach cell. We assume that the Rh1 negative cells (i.e. R7) do not contribute to the overall pixel
ntensity. For comparison against the qPCR data, the CCRIT integrated intensity values were averaged
cross all photoreceptors and all ommatidia identified in a stack of confocal microscopy data.
Plotting the integrated intensity values against the relative Rh1 expression level quantified by qRT-

CR (Fig. 5B) we found a strong linear correlation between both quantification methods (R2 = 0.993).
omparing the CCRIT results of the three genotypes, we found that the CCRIT integrated intensity values
or thehomozygousninaEo117mutant were significantlydifferentthan the integrated intensity values for
he heterozygous ninaEo117 mutant (p-value < 0.01). CCRIT integrated intensity values for the WT and
eterozygous mutant were also significantly different (p-value < 0.01). This is true despite considerable
iological variability as well as our assumption that Rh1 negative cells do not contribute to the overall
ignal. Taken together, we conclude that CCRIT is an effective method for quantifying smFISH-labeled
NA expression in such crowded, noisy environments as the Drosophila photoreceptor.

CRIT graphical user interface

To make the CCRIT method widely available to collaborators and the wider scientific community,
e developed an easy to use graphical user interface (GUI) (Fig. 5) with which to implement the CCRIT
ethod. The CCRIT GUI was designed to be applicable for a variety of data needs. At the top left of the

nterface window, the user can open the microscopy data file of interest, modify filtering parameters,
elect figures for output, and ultimately run the program. A false color image of a MIP for Drosophila
ye photoreceptor neurons is shown in the left window, with yellow indicating pixels that have the
trongest summed intensity values (nuclei stained with DAPI) and blue indicating the lowest intensity
alues. The right window shows an smFISH image where each photoreceptor centroid is marked by a

ig. 5. A) Relative transcript levels of Rh1 in wild-type and ninaE mutant adult heads. qRT-PCR analysis of Rh1 transcript levels
n cDNA from wild-type (w1118) and ninaEo117 homozygous and heterozygous adult flies. Mean transcript levels for each gene
ere normalized to Rpl32 and plotted relative to the wild type, which was set to one. Error bars denote standard deviation for
hree biological replicates. B) Analysis of CCRIT against qPCR of Drosophila Rh1 mutants. qPCR data is normalized against the WT
ase. Error bars denote standard deviation from n = 5 specimens.
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colored octagon and labeled by a letter (denoting its parent ommatidium) and number (denoting its
position with that ommatidium, ranging from 1 to 7 and assigned in an arbitrarily counter-clockwise
fashion). We number cells from 1 to 7 because, as noted, ommatidium cell R8 does not appear in the
analyzed microscopy planes. At the top right of the GUI window, descriptive statistics of each of the
cells (averaged across all ommatidia and then through the entire multi-stack) are reported. The user
may adjust the reported distributions to describe either “All slices”, the “max-intensity slice”, or “near
the max intensity slice”, as set using the checkbox section (Fig. 6).

Summary

Overall the workflow of the CCRIT method can be summarized as follows: 1) Create MIP, 2) Group
MIP intensities into 100 groups, 3) Construct nucleus mask and identify photoreceptors, 4) Construct
background mask and assign cells, 5) Apply masks to smFISH multi-stack, 6) Gaussian filter the
remaining smFISH signal, 7) Report integrated smFISH signal intensity in each cell. Key distinctions of
CCRIT to conventional spot counting techniques include: exclusion of Laplacian filtering, summation
of the raw multi-stack for consistent image masking, ommatidium identification, and quantification
by pixel intensity integration. Exclusion of a Laplacian filter accounts for data of uniformly-low pixel
intensity, such as that for smFISH images of Drosophila that lack Rh1 transcripts (ninaEo117). Indeed,
Laplacian filtering frequently exaggerates noise, perhaps accounting for the unexpected result shown
in Fig. 2F. In future editions, our CCRIT algorithm will intelligently identify the Rh1-negative
photoreceptors for use as internal baselines of RNA expression within each ommatidium
(prohibitively, the position of the Rh1-negative cell is different for each of the many ommatidia
visible in a given image slice because ommatidia in each half of the compound eye mirror each other).

We find that our in-house automated spot counting algorithm, though employing conventional
methods, was not appropriate for analyzing large microscopy image data sets. Parameter optimization
was computationally restrictive, especially for images containing crowded or signal or having

Fig. 6. Representative display of our CCRIT user interface. At top left, raw microscopy data and user settings are entered. The
desired result output data is also selected. At lower left a false-colored image of MIP, the DAPI-stained channel summed across
all slices. Yellow denotes high intensity values and blue indicates the lowest intensity values. At lower right is a representative
smFISH image with putative cells labeled by letters (denoting parent ommatidium) and numbers (denoting position within that
ommatidium). At top right user selected output are graphically displayed (mean integrated intensity values with standard
deviation).
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oderate signal-noise ratios. Widely available spot counting algorithms such as FISH-QUANT, while
obust and reliable, require significant user input and are not ammenable to automated high-
hroughput analysis of large data sets. CCRIT overcomes these problems by automatically identifying
egions of interest in an image (i.e. cells) and integrating pixel intensities. Moreover, CCRIT
ccommodates noise by forgoing Laplacian filtering. We have shown that CCRIT can be effectively
pplied to large confocal microscopy data sets to accurately assess RNA transcript expression levels of
h1 transcripts in a set of Drosophila mutants. Our GUI implementation of CCRIT constitutes a
owerful and translatable tool for studying single-cell transcriptomes. We expect CCRIT to be readily
ranslatable to single cell mRNA transcript quantification in a variety of contexts including complex
ellular geometries and large confocal image sets across various model systems.
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