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Abstract: Forensic crash investigation often requires developing detailed profiles showing the
location and extent of vehicle damage to identify impact areas, impact direction, deformation, and
estimated vehicle speeds at impact. Traditional damage profiling techniques require extended and
comprehensive setups for mapping and measurement that are quite labor- and time-intensive. Due
to the time involved, this damage profiling is usually done in a remote holding area after the crash
scene is cleared. Light detection and ranging (LiDAR) scanning technology in consumer handheld
electronic devices, such as smartphones and tablets, holds significant potential for conducting this
damage profile mapping in just a few minutes, allowing the mapping to be conducted at the scene
before the vehicle(s) are moved. However, there is limited research and even scarcer published
literature on field procedures and/or accuracy for these emerging smartphones and tablets with
LiDAR. This paper proposes a methodology and subsequent measurement accuracy comparisons
for survey-grade terrestrial laser scanning (TLS) and handheld alternatives. The maximum root
mean square error (RMSE) obtained for profile distance between handheld (iPad) and survey-grade
TLS LiDAR scans for a damaged vehicle was observed to be 3 cm, a level of accuracy that is likely
sufficient and acceptable for most forensic studies.

Keywords: LiDAR; crash scene reconstruction; damage profiling; 3D scanning

1. Background

For severe crashes, agencies investigating the crash often take vehicle position mea-
surements at the scene prior to vehicle recovery and scene clearance. The Federal Highway
Administration’s (FHWA) Traffic Incident Management (TIM) program observed that pri-
mary crashes increase the likelihood of a secondary crash occurring and may impact the
safety of public safety agencies and first responders trying to document and clear the scene
to restart traffic flow [1]. The FHWA also identified that the possibility of a secondary crash
rises by 2.8% for every minute a primary crash incident continues to impact the public right
of way [2]. As a result, there is strong national interest in identifying new opportunities
to help first responders safely manage and clear crashes as quickly as practical. Several
recent efforts have examined the use of unmanned aircraft systems (UAS) to map and
document crash scenes to accelerate scene clearance and reduce risk to first responders on
scene [3,4]. However, documenting crush damage on individual vehicles involved in an
incident requires close quarter scans where UAS maneuverability may prove challenging.

There are trade-offs between how long to devote to on-scene measurements vs. quick
scene clearance and subsequent measurements of the vehicle at a holding facility at a later
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date. In general, the more measurements that are performed on-site, the more confident
one is that additional damage did not occur during recovery towing. Identifying emerging
technologies to provide fast and accurate characterization of the vehicle damage on-site
reduces this ambiguity during subsequent forensic crash investigation work.

2. Measurements Characterizing Vehicle Deformation

Measurement protocols for defining damage profiles in crash vehicles and their use for
estimating vehicle speeds at impact have been well-documented in existing literature for
traditional measurement techniques involving the use of a set of tape measures (Figure 1a),
plumb bobs, jigs, (Figure 1b), datum strings, plywood board method or the plastic sheet
method [5,6]. However, these profiling techniques may involve human errors due to
transcription and require significant time to obtain comprehensive data for a 3D model.
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Studies in the past have explored the accuracy of photogrammetric measurements
compared to traditional hands-on methods such as tape measures, plumb bobs, and crush
PVC jigs (such as those depicted in Figure 1a,b) and found photogrammetry to have slightly
higher accuracy although requiring shorter scan times [7]. However, photogrammetric
reconstruction might fail in identifying conjugate features in overlapping images due
to insufficient overlap and/or excessive variation in camera-to-object distance. While
photogrammetry has the potential to provide detailed visual information on damaged
vehicles which may provide contextual evidence for a crash scene, LiDAR is perhaps
even more accurate and is capable of directly providing depth information in a mapping
environment. Researchers have shown how terrestrial laser scanning methods employing
LiDAR can be applied towards vehicle crush measurements [8]. Techniques involving the
use of total stations [9] or terrestrial LiDAR scanners require extended setups and multiple
scans to accurately capture crush damage profiles. However, equipment such as total
stations or laser/LiDAR scanners are cost prohibitive for public safety agencies to deploy
with every officer and they present operational challenges in portability in situations
requiring quick deployment due to logistics associated with bringing them to the crash
scene and having trained officers available to operate the equipment [10,11]. Research has
also shown that iOS-based LiDAR 3D scan measurements are repeatable with low standard
deviations, thus lending further confidence to the possible widespread adoption of these
techniques across the emergency response domain [12].

3. Motivation

The motivation for this research was to develop an evaluation protocol and apply that
protocol to determine if handheld tablets or smartphones could be used to perform a 3D
scan of a vehicle that would provide similar accuracy as survey-grade LiDAR equipment
in less time. If similar accuracies can be obtained and scan times are significantly shorter,
it would be desirable to do these scans on-scene before vehicles are moved, to capture
evidence as representative of the original incident as possible. Even if survey-grade TLS
scans are performed at a later date, having the on-scene 3D scans that align closely with
TLS scans reduces any ambiguity or doubt that some damage may have occurred after the
vehicle was moved from the scene.

4. Equipment and Data Collection Procedure

The data acquisition equipment used in this study were an iPad Pro (2nd genera-
tion) [13] (Figure 2), and two independent terrestrial laser scanners: FARO Focus 3D X330
(Figure 3a) and Trimble TX8b (Figure 3b). The iPad handheld LiDAR scanner works at a
range of up to 5 m. The FARO Focus 3D X330 laser scanner can scan up to 976,000 points
per second with a maximum range of 330 m and a range accuracy of ±2 mm [14]. The
Trimble TX8b laser scanner can scan up to one million points per second with a maximum
range of 120 m and a range accuracy better than ±2 mm [15].
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Figure 3. Terrestrial Laser Scanning (TLS) equipment: (a) Trimble TX8b Laser Scanner; (b) FARO Focus 3D X330
Laser Scanner.

For the handheld LiDAR data collection, multiple passes were conducted by walking
around the damaged vehicle at varying distances and elevations from the surface with the
handheld device’s LiDAR scanner directly pointing at the vehicle. The scan required a total
time of approximately 15 min to ensure sufficient coverage of all surfaces of the vehicle
captured for this study.

For the TLS survey, each scanner required four scans in order to provide a complete
coverage of the vehicle. Figure 4 shows the FARO stations set up. Each TLS scan took
about twenty minutes for a total of three hours considering the time for scanners’ move
and setup between the different locations. A representative diagram of the four locations
where TLS stations were set up around the damaged vehicle is depicted in Figure 5.
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5. Methodology

In this study, the quality of handheld LiDAR data for damage profile mapping is
evaluated based on a comparison between the handheld LiDAR generated point cloud
and the point cloud generated by the TLS. A systematic cloud-to-cloud comparison is
essential when evaluating any new sensing technology in order to instill user confidence
in measurement accuracy for widespread adoption. The methodologies proposed herein
define the fundamental techniques for evaluating the sensor accuracy. Figure 6 illustrates
the workflow, which includes two major components: point cloud registration and cloud-
to-cloud distance estimation.

In this study, data acquisition and post-processing of handheld LiDAR is based on the
3D Scanner AppTM [16] application available for the LiDAR capable iPad, and the output
is a color-coded point cloud by spectral information (RGB) in a unified reference frame
established by the scanning application. For TLS, the point cloud acquired by each scan is
available in a different local reference frame that is defined by the scan location/setup. A
registration is required to bring the point clouds from the different scans to a common local
reference frame. In order to enable a direct comparison, the survey-grade and handheld
LiDAR point clouds should be registered to a common reference frame. The following
subsections describe the point cloud registration and comparison strategies.
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5.1. Point Cloud Registration

A coarse registration followed by a fine registration is performed to align the point
clouds from different scans/systems. The first registration pass provides an initial estimate
of the transformation parameters for rough alignment of the point clouds. The second
registration pass fine-tunes the transformation parameters to ensure better, more precise
alignment among the point clouds.

In this study, coarse registration is conducted by manually identifying conjugate point
pairs in areas of overlap among the point clouds. For fine registration, the iterative closest
projected point (ICPP) approach [17] is adopted. The ICPP approach starts with establishing
point correspondences between two point clouds—one is selected as a reference and another
as a source. For a point a in the source cloud, the ICPP finds its three closest points, p, q, and
i, in the reference cloud, and forms a triangular patch. The source point a is then projected
onto the triangular patch. If the projected point b falls within the patch, it will be considered
as a corresponding point to the source point a only if their separation is below a user-defined
threshold. Once the point-to-point correspondence is established, the algorithm estimates
the parameters of a rigid body transformation between the two point clouds. The estimated
transformation parameters are then applied to the source cloud to refine the alignment
between the source and reference clouds. This process (i.e., establishing point pairs as
well as estimating and applying the transformation parameters) is repeated until preset
convergence accuracy requirements are met.

The above-mentioned point cloud registration strategy is performed for aligning:
(i) point clouds from different TLS scans and (ii) handheld LiDAR and TLS point clouds,
as depicted in Figure 6. The point clouds after registration from the Trimble, FARO, and
handheld LiDAR are shown in Figure 7.
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5.2. Cloud-to-Cloud Distance Estimation

Once the point clouds from handheld LiDAR and TLS (FARO, Trimble) are registered,
the discrepancy between the two point clouds is estimated by calculating the cloud-to-cloud
distance using the strategy proposed in [18], as illustrated in Figure 8. For a given point in
the source point cloud (blue point in Figure 8a), its closest point in the reference point cloud
is first identified, as shown by the green point in Figure 8b. Then, a spherical region with a
pre-defined radius centered at the closest point is created (Figure 8b). An iterative plane
fitting is conducted using the points in the reference point cloud within the spherical region,
as shown in Figure 8c. The objective of the iterative plane fitting is removing outlier points
that might not belong to the planar neighborhood in Figure 8c. Lastly, the normal distance
between the selected source point and corresponding plane is computed (Figure 8d). The
normal distance can be used as a coloring scalar value to qualitatively illustrate the cloud-
to-cloud separation. Moreover, the mean, standard deviation, and root mean square error
(RMSE) of the estimated normal distances are used to quantitatively describe the closeness
of the source and reference point clouds after the fine registration process. The results that
follow show cloud-to-cloud distance estimation between the FARO and handheld LiDAR
scans as well as the Trimble and handheld LiDAR scans separately.
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6. Comparison of Handheld LiDAR and TLS Models

Qualitative and quantitative comparisons between handheld LiDAR and TLS data
were carried out to assess the quality of point clouds acquired by the two acquisition
systems. The handheld LiDAR and TLS point clouds were selected as the source and
reference, respectively. The cloud-to-cloud distance between points in the handheld LiDAR
point cloud and each TLS dataset was calculated, henceforth referred to as residuals.

• The residuals between the FARO and handheld LiDAR scans are shown in Figure 9.
• The residuals between the Trimble and handheld LiDAR scans are shown in Figure 10.
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Figure 10. Point cloud distance comparisons between handheld LiDAR and Trimble scans (meters).

To further examine the details captured by the LiDAR scan, ten transverse cross-
sectional and four longitudinal cross-sectional profiles were extracted from the handheld
LiDAR point cloud.

• The transverse and longitudinal cross sections for the FARO scanner are shown in
Figure 11a,b, respectively.

• The transverse and longitudinal cross sections for the Trimble scanner are shown in
Figure 12a,b, respectively.
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Figure 12. Transverse and Longitudinal Cross-sectional vehicle profiles to calculate cloud-to-cloud distance between Trimble
(green) and handheld LiDAR profiles (blue): (a) Transverse Cross-sectional profiles; (b) Longitudinal Cross-sectional profiles.

The cross sections in Figures 11 and 12 were used to compute cloud-to-cloud distance
estimates obtained from the handheld LiDAR scan.

• Figure 13a,b show side views of sample transverse cross-sectional and longitudinal
cross-sectional profiles from the handheld LiDAR data colored by cloud-to-cloud
distance with the FARO scans, a scale for which is included in Figure 13c.

• Figure 14a,b show side views of sample transverse cross-sectional and longitudinal
cross-sectional profiles from the handheld LiDAR data colored by cloud-to-cloud
distance with the Trimble scans, a scale for which is included in Figure 14c.
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Figure 14. Cloud-to-cloud distance residual samples for Transverse and Longitudinal Cross-sectional vehicle profiles for
Trimble and handheld LiDAR: (a) Transverse Cross-sectional profile 7; (b) Longitudinal Cross-sectional profile 13; (c) Color
scale for Residual between Handheld and TLS.

Points with cloud-to-cloud distances larger than 5 cm are colored in white. As can be
seen in Figures 13 and 14, the areas with larger discrepancies are inside the vehicle. Those
discrepancies occur because the TLS (FARO, Trimble), with limited scan locations, could
only cover the exterior of the vehicle. The handheld scanner, on the contrary, can move
around the vehicle and had better visibility of the interior of the vehicle.

Table 1 reports the statistics of the cloud-to-cloud distance between the FARO scans
and handheld LiDAR for each of the 14 profiles, including the mean, standard deviation,
and RMSE. Table 2 reports those same statistics for the Trimble scans. According to the
RMSE in both tables, the point clouds from handheld LiDAR and both TLS equipment
options (FARO, Trimble), are in good agreement within a range of 3 cm.

Table 1. Statistics of cloud-to-cloud distance between the handheld LiDAR profiles and FARO data.

Profile Type Profile ID Mean (cm) Std. Dev. (cm) RMSE (cm)

Transverse
Cross section
(Figure 11a)

1 1.9 2.4 3.0
2 1.1 1.4 1.8
3 1.5 1.9 2.4
4 1.2 1.3 1.7
5 1.1 0.9 1.4
6 1.5 1.6 2.2
7 1.9 1.7 2.6
8 2.0 2.0 2.9
9 1.7 1.6 2.4
10 2.1 1.6 2.7

Longitudinal
Cross section
(Figure 11b)

11 2.2 1.5 2.6
12 2.0 1.6 2.5
13 1.7 1.3 2.2
14 1.9 1.6 2.5
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Table 2. Statistics of cloud-to-cloud distance between the handheld LiDAR profiles and Trimble data.

Profile Type Profile ID Mean (cm) Std. Dev. (cm) RMSE (cm)

Transverse
Cross section
(Figure 12a)

1 1.6 2.0 2.6
2 0.9 1.3 1.6
3 1.7 1.8 2.4
4 1.1 0.8 1.4
5 0.9 0.8 1.3
6 1.3 1.2 1.8
7 1.6 1.6 2.3
8 2.0 1.7 2.6
9 1.9 1.7 2.6
10 2.2 1.5 2.7

Longitudinal
Cross section
(Figure 12b)

11 2.0 2.1 2.4
12 1.9 1.6 2.5
13 1.5 1.5 2.1
14 1.2 1.2 1.7

7. Conclusions and Future Scope

This paper proposes a methodology and subsequent measurement accuracy com-
parisons for survey-grade terrestrial laser scanning (TLS) and handheld alternatives. An
iPad Pro (handheld) and two different survey-grade TLS LiDAR units were used to profile
a damaged vehicle for this study. Point cloud comparisons between the handheld and
terrestrial LiDAR scanning techniques for a damaged vehicle show good agreement. The
methodology presented in this study for point cloud comparison will provide a strong foun-
dation for future evaluations of remote sensing alternatives by public safety professionals
as more and more consumer grade LiDAR technologies become increasingly available in
off-the-shelf electronic handheld devices. The maximum root mean square error (RMSE)
obtained for profile distance between handheld and TLS scans for a damaged vehicle was
observed to be 3 cm, a level of accuracy that is likely sufficient and acceptable for most
forensic studies. This level of accuracy is sufficient for crash scene reconstruction as it
is similar to the measurement error of currently used technology. Handheld scanning
methods provide significant time savings compared to TLS and traditional vehicle profiling
methods (minutes compared to hours). Secondly, handheld scanners afford first respon-
ders and reconstructionists alike the ability to reach and scan traditionally unreachable
locations of damaged vehicles such as the interiors or the undercarriage, thus ensuring
a comprehensive scan of all observed damage, and not being limited by the range or
maneuverability of traditional terrestrial laser scanners. Adoption of these techniques by
public safety agencies and first responders has the potential to aid in faster scene clearance
and reduce secondary crashes. Furthermore, on-scene documentation of vehicle damage
profile reduces the ambiguity as to whether the damage occurred during the crash, or after
the vehicle was moved to an off-site yard.

Future research in this domain will involve evaluating the performance of point
clouds derived from RGB images captured by smartphone devices using Structure from
Motion (SfM) strategies. Additionally, SfM point clouds derived from unmanned aerial
vehicle (UAV) imagery documenting crash scenes may further be augmented by handheld
LiDAR data.
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