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Abstract

Background: Metabolic network models describing the biochemical reaction network and material fluxes inside
microorganisms open interesting routes for the model-based optimization of bioprocesses. Dynamic metabolic flux
analysis (dMFA) has lately been studied as an extension of regular metabolic flux analysis (MFA), rendering a dynamic
view of the fluxes, also in non-stationary conditions. Recent dMFA implementations suffer from some drawbacks,
though. More specifically, the fluxes are not estimated as specific fluxes, which are more biologically relevant. Also, the
flux profiles are not smooth, and additional constraints like, e.g., irreversibility constraints on the fluxes, cannot be
taken into account. Finally, in all previous methods, a basis for the null space of the stoichiometric matrix, i.e., which set
of free fluxes is used, needs to be chosen. This choice is not trivial, and has a large influence on the resulting estimates.

Results: In this work, a new methodology based on a B-spline parameterization of the fluxes is presented. Because of
the high degree of non-linearity due to this parameterization, an incremental knot insertion strategy has been
devised, resulting in a sequence of non-linear dynamic optimization problems. These are solved using state-of-the-art
dynamic optimization methods and tools, i.e., orthogonal collocation, an interior-point optimizer and automatic
differentiation. Also, a procedure to choose an optimal basis for the null space of the stoichiometric matrix is
described, discarding the need to make a choice beforehand. The proposed methodology is validated on two
simulated case studies: (i) a small-scale network with 7 fluxes, to illustrate the operation of the algorithm, and (ii) a
medium-scale network with 68 fluxes, to show the algorithm?s capabilities for a realistic network. The results show an
accurate correspondence to the reference fluxes used to simulate the measurements, both in a theoretically ideal
setting with no experimental noise, and in a realistic noise setting.

Conclusions: Because, apart from a metabolic reaction network and the measurements, no extra input needs to be
given, the resulting algorithm is a systematic, integrated and accurate methodology for dynamic metabolic flux
analysis that can be run online in real-time if necessary.

Keywords: Dynamic metabolic flux analysis, B-spline parameterizations, Non-linear optimization, Parameter
estimation

Background
Metabolic network models describing the biochemical
reaction network and material fluxes inside microor-
ganisms open interesting routes for the model-based
optimization of bioprocesses. The estimation of these
fluxes is called metabolic flux analysis (MFA). Based
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on measurements of exchange fluxes between the
environment and the cell, and possibly thermodynamic,
physiological, statistical [1] or loop-law constraints [2]
and/or measurements from 13C labeling experiments, an
accurate estimate of the full set of fluxes can be obtained
(e.g., [3,4]). Dynamic metabolic flux analysis (dMFA) has
lately been studied as an extension of regular MFA, ren-
dering a dynamic view of the fluxes, also in non-stationary
conditions [5]. Recent dMFA implementations suffer from
some drawbacks, though. In this work, a new method-
ology based on a B-spline parameterization of the fluxes
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is presented. These are estimated using state-of-the-art
dynamic optimization methods and tools, i.e., orthogo-
nal collocation, an interior-point optimizer and automatic
differentiation. The resulting algorithm is also fully con-
tained, resolving the fact that in previous methods, a
choice of the set of free fluxes was required. As will be
shown, the choice of this set has a significant influence on
the resulting estimates, highlighting the need for a more
reasoned determination of this set. In this algorithm this
set of free fluxes is chosen optimally, alleviating the need
for an a priori (non-optimal) choice and improving the
estimates.

In the Background section, the basics of metabolic
reaction networks are covered, together with the deriva-
tion of the dMFA model structure. Existing implemen-
tations of dMFA are described, along with their features
and drawbacks. The main contribution of this work is
in the Methods section. Here, the proposed methodol-
ogy of incremental flux estimation using B-splines is
described. This methodology is validated on the case
studies in the Results and discussion section. Finally, the
Conclusions section summarizes the main results of this
work.

Metabolic reaction networks
A metabolic reaction network represents (a subset of ) all
metabolic reactions which occur inside a cell [6]. In these
networks, m metabolites, both intracellular and extracel-
lular, are connected to each other through n reactions,
which can be intracellular reactions or reactions between
the cell and the environment, so-called exchange reac-
tions. The reaction rates of these reactions, the so-called
fluxes, are summarized in the (n ? 1) flux vector v. The
metabolites can be further subdivided into mint intra-
cellular metabolites and mext extracellular metabolites.
Growth of the cell is usually represented as a pseudo-
reaction to biomass, which is defined as an additional
extracellular compound, rendering mext + 1 extracellu-
lar metabolites in total. All reactions are also classified as
being reversible or irreversible, based on thermodynamic
information. This results in nirr irreversible reactions and
nrev reversible reactions. The information embedded in
this network can be represented by the stoichiometric
matrix S of dimension (m + 1 ? n), which contains
the stoichiometric coefficients of all reactions. In par-
ticular, the element Sij at row i and column j contains
the stoichiometric coefficient of metabolite i in reaction
j. This stoichiometric matrix can be further partitioned
into Sint, Sext and sT

bio, which are the row(s) correspond-
ing to intracellular and extracellular metabolites, and
biomass, respectively. To also describe the irreversibili-
ties in matrix form, an (nirr ? n) irreversibility matrix Iirr
is set up, which selects the irreversible fluxes from the
full set of fluxes. A small network with corresponding

stoichiometric and irreversibility matrices is shown in
Figure 1. For this network, mint = mext = 2 and
n = 4. The Iirr matrix is made up of three rows, as
there are three irreversible fluxes. Every row contains a
1 at one of the columns corresponding to an irreversible
flux.

Modeling of intracellular dynamics
By writing the dynamic mass balances for all intracellular
metabolites, the following system of ordinary differential
equations (ODEs) arises:

dcint(t)
dt

= Sint ? v(t) ? ?( t) ? cint(t) (1)

with t the time [h], cint the (mint ? 1) vector of intracel-
lular concentrations [mmol/gDW], Sint the mint rows of
the stoichiometric matrix which correspond to the intra-
cellular metabolites, v the (n ? 1) vector of specific fluxes
[mmol/gDW/h] and ? the scalar specific growth rate of
the organism [1/h] which equals the flux of the pseudo-
reaction to biomass. The first term on the right hand side
is the reaction term, the second term is a dilution term

Figure 1 Example of metabolic reaction network, stoichiometric
matrix and irreversibility matrix. A small-scale example of a
metabolic reaction network with 4 fluxes, 2 intracellular metabolites,
2 extracellular metabolites and biomass. The number of free fluxes for
this network is 2. In the middle is the corresponding stoichiometric
matrix, split up into the parts for intracellular and extracellular
metabolites, and biomass, and at the bottom is the irreversibility
matrix for this network.
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which arises due to the growth of the biomass. To get a
fully defined model, expressions for all intracellular fluxes
are needed.

Multi-scale model for microbial dynamics
The intracellular model (Equation (1)) can be combined
with a description for the extracellular dynamics, render-
ing a multi-scale model describing both intracellular and
extracellular concentration variables:

dcext(t)
dt

= Sext ? v(t) ? cbio(t) (2)

dcbio(t)
dt

= sT
bio ? v(t) ? cbio(t) (3)

dcint(t)
dt

= Sint ? v(t) ? ?( t) ? cint(t) (4)

with cext the (mext ? 1) vector of extracellular concen-
trations [mmol/L], cbio the scalar biomass concentration
[gDW/L], Sext the mext rows of the stoichiometric matrix
which correspond to the extracellular metabolites and
sT

bio the row of the stoichiometric matrix which corre-
sponds to the biomass pseudo-metabolite. This system is
for the description of concentration evolution in a biore-
actor operating in batch-mode, but of course transport
terms can be added to make it suitable for fed-batch or
continuous operation of bioreactors. It is important to
notice that cext and cbio are defined per liter of medium,
while cint is defined per gram of biomass dry weight. As
the fluxes are specific, i.e., defined per gram of biomass
dry weight, which is more descriptive from a kinetics
point of view, the fluxes are multiplied with the biomass
concentration in Equations (2) and (3). Again, to fully
define this model structure, expressions for all fluxes are
needed. These expressions are typically estimated from
experimental data.

Simplifying the multi-scale model: assuming a pseudo
steady-state
Because the number of fluxes, and hence the number of
expressions which need to be identified and estimated
from experimental data, grows quite large for even a
medium-scale metabolic reaction network, a simplifica-
tion is typically made in the form of a pseudo steady-state
assumption. First, the dilution term in Equation (4) is
discarded as it is typically much smaller than the reac-
tion term [7]. Based on the empirical knowledge that the
intracellular dynamics are much faster than the extracel-
lular dynamics [8], the pseudo steady-state assumption
can be used to simplify the intracellular part of the multi-
scale model to the following (mint ? n) system of linear
equations:

Sint ? v(t) = 0 (5)

In the majority of metabolic reaction networks, the
number of intracellular metabolites is smaller than the
number of reactions, making this an underdetermined
system of linear equations. The number of degrees of free-
dom d in the system equals the number of unknowns
minus the number of independent equations, i.e., d =
n ? rank(Sint). All solutions to this system can be writ-
ten as a linear combination of a set of independent fluxes,
called the free fluxes:

v(t) = K ? u(t) (6)

with K a suitable basis for the null space of Sint of dimen-
sions (n ? d) and u the (d ? 1) vector of free fluxes. By
substituting this into the extracellular model, the follow-
ing simplified model arises:

dcext(t)
dt

= Sext ? K ? u(t) ? cbio(t) (7)

dcbio(t)
dt

= sT
bio ? K ? u(t) ? cbio(t) (8)

Note that to fully define this simplified model, only
expressions for the free fluxes need to be identified,
resulting in a substantial reduction in experimental and
numerical cost.

The resulting model can be written in a more concise
way by putting together all concentration variables in the
(mext + 1 ? 1) state vector x:

dx(t)
dt

= Se ? K ? u(t) ? qT
bio ? x(t) (9)

with:

x(t) =
[

cext(t)
cbio(t)

]
(10)

Se =
[

Sext
sT

bio

]
(11)

with Se of size (mext + 1 ? n), and qT
bio a (1 ? mext + 1)

row vector which selects the last element of x, the biomass
concentration, i.e., qT

bio = [0 0 . . . 0 1]. This more con-
cise representation will be used in the remainder of this
text.

Dynamic metabolic flux analysis
The dynamic metabolic flux analysis (dMFA) problem
now consists of identifying the free flux profiles over time,
based on measurements of the states, i.e., the extracellular
metabolite concentrations, or the fluxes themselves. This
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problem can be written as a dynamic input estimation
problem using a least-squares objective function:

minimize
u(t),x0

ntime∑
i=1

nout∑
j=1

(yj(ti) ? mij

σij

)2
(12)

subject to:

ẋ(t) = Se ? K ? u(t) ? qT
bio ? x(t) (13)

x(0) = x0 (14)
y(t) = f(x(t), u(t)) (15)
z(t) = Iirr ? K ? u(t) (16)
x(t) ≥ 0, z(t) ≥ 0 (17)

with ntime the total number of time points at which mea-
surements were taken and nout the number of outputs
of the system. This system includes algebraic states z(t),
which represent the irreversible fluxes. By constraining
these states to be positive, the irreversible fluxes are also
kept positive. Furthermore, y(t) is the (nout ? 1) vector of
outputs of the system, which can be any non-linear func-
tion f of the states and free fluxes, and yj(ti) is the model
output j at time ti. The objective function is a weighted
sum of least squares, with mij and σij respectively the aver-
age and the standard deviation for the measurement of
output j at time point ti, and x0 is the vector of initial val-
ues for the states, which is typically also an optimization
variable.

This problem has been treated in literature in differ-
ent ways. Antoniewicz [9] identifies four approaches for
dMFA. (i) The first approach [10] divides the experimen-
tal time domain in metabolic phases, after which in each
phase a classical, static MFA problem is solved, based on
averaged measurements of exchange fluxes. This method
does not produce time-resolved fluxes. (ii) In another
approach [11], the measurements themselves are approx-
imated by spline functions, which are then differentiated,
resulting in a set of extra flux measurements. These mea-
surements are then used to estimate the (free) fluxes using
a series of standard, static MFA problems at different
points in time. This approach is easy to use, but presents
a number of disadvantages [5]. The most important dis-
advantage is the fact that every set of data is fitted with
its own, independent set of parameters, disregarding the
correlation between the different measurements in the
estimation process itself. Due to this independent estima-
tion, it is also not possible to use a consistent criterion
for assessing the goodness of the fit, as not all data are
taken into account in every estimation problem. Further-
more, by representing the dynamic problem as a series
of disconnected, static problems, important information
on the dynamic nature of the system is lost. Further

information loss also occurs when taking derivatives of the
spline functions. Also the dynamic, possibilistic frame-
work of Llaneras et al. [12] can be categorized in this class.
In this framework, dynamic extracellular concentration
measurements are taken into account into a possibilistic
MFA strategy by approximating the derivatives of the con-
centrations. Again, the need for numerical differentiation
is an important drawback of also this methodology. (iii)
Most of these drawbacks have been overcome using the
approach described in [5]. In this method, the free fluxes
are not estimated as specific fluxes, but are combined with
the biomass concentration to non-specific free fluxes.
These are then parameterized as piecewise linear func-
tions, which ascertains that the dynamic system can be
solved analytically, resulting in a non-dynamic, non-linear
parameter estimation problem. This approach, unfortu-
nately, introduces some new drawbacks, i.e., the fact that
specific fluxes, which are most descriptive from a biolog-
ical kinetics point of view, cannot be estimated directly,
again resulting in a loss of information when these need
to be calculated, the non-smoothness of the flux pro-
files because of the piecewise linear description, and the
fact that the irreversibility constraints on the fluxes are
not taken into account. (iv) The most recent approach,
called Dynamic Flux Estimation (DFE) [13], uses power-
law or Michaelis-Menten kinetic functions to describe the
fluxes, which must be a priori postulated. This kinetic
information is not yet available for all metabolic reac-
tions in a range of environmental conditions, so an
approach which does not need these kinetic functions is
preferred. The interested reader is referred to [9] for a
review of applications of these four classes of methods
for dMFA.

The approach which is presented in this work addresses
the disadvantages of previous methods by establishing the
true non-linear, dynamic nature of the dMFA problem and
using state-of-the-art tools for solving this kind of prob-
lems. More specifically, the dynamic optimization prob-
lem is solved using (i) direct collocation on finite elements
to obtain a finite dimensional optimization problem, and
(ii) automatic differentiation to calculate exact first and
second order information. The smoothness of the free
flux profiles is ensured by using B-spline functions of sec-
ond order. B-splines have already been used to discretize
the state variables for parameter estimation in biological
models [14], but not yet to discretize the fluxes in dMFA
models. By using all data at once in the parameter estima-
tion process, the goodness-of-fit of the resulting model can
be assessed in a consistent way. Furthermore, no knowl-
edge of the kinetics of the different metabolic reactions
is needed. However, if this information is available, it can
easily be integrated in this methodology in all possible
functional forms, including non-linear expressions, as the
problem is solved as a non-linear optimization problem.
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Methods
This section is organized in the following way. First, the
dMFA problem is transformed into a dynamic parame-
ter estimation problem by use of the B-spline parame-
terizations. This problem is then further discretized by
applying the orthogonal collocation technique, rendering
the definition of an NLP subproblem for a fixed num-
ber of internal knots in the different spline functions. An
adaptive, incremental algorithm to generate a sequence of
these subproblems is then defined, in which the number of
internal knots is systematically increased, and the exper-
imental horizon is elongated until the full experiment
is described. After this, an extension of the algorithm
is described in which the K matrix is chosen optimally,
i.e., in such a way that the sum of squared errors (SSE)
is minimized. This extension makes the algorithm fully
integrated, once a network is chosen and measurements
are provided. Finally, the determination of the confidence
algorithms for the flux estimates is outlined.

Parameterization of the free fluxes using B-splines
In this novel approach, every free flux is parameterized
as a polynomial spline function, based on B-spline basis
functions [15]. These B-spline functions are defined by
(i) the degree k, (ii) the locations of the g + 2 so-called
knots t0, t1, . . . , tg , tg+1, of which the middle ones are the
g internal knots, and (iii) the q control points, or spline
parameters pu. To get a smooth flux profile, i.e., a function
with continuous first derivative, the degree of the spline
function should be at least two, and for this reason the
degree will be fixed to two in this work, i.e., k = 2. Also,
the start and end knots (t0 and tg+1) are fixed at respec-
tively the start and end times of the experimental horizon
under consideration. This leaves three entities to calibrate:
the number of internal knots, the internal knot locations
and the spline parameters. The basis functions are defined
recursively by the Cox-de Boor recursion formula:

Bi,0(t) =
{

1 if ti ≤ t ≤ ti+1

0 otherwise
(18)

Bi,p(t) = t ? ti
ti+p ? ti

?Bi,p? 1(t)+ ti+p+1 ? t
ti+p+1 ? ti+1

?Bi+1,p? 1(t)

(19)

The spline function is then defined as a linear com-
bination of the B-spline basis functions with the spline
parameters as coefficients:

û(t) =
q∑

i=1
pu,i ? Bi? 1,k(t) (20)

Because of the fact that the vector space of spline func-
tions of degree k with g +2 knots has dimension g +k +1,

the number of B-spline basis functions and corresponding
spline parameters is related to the degree and the number
of internal knots as follows:

q = g + k + 1 (21)

However, based on the recursive definition, only g + 2 ?
(k + 1) = g ? k + 1 basis functions can be defined from
the g + 2 knots. This means that 2k extra knots need to
be added to fully define the spline function. This is usually
done by adding k knots at the beginning and at the end of
the knot sequence, equal to the starting and ending knot,
respectively [15,16]. For k = 2, e.g., the total sequence
of knots is t0, t0, t0, t1, . . . , tg , tg+1, tg+1, tg+1. Based on this
total knot vector and the order, the spline functions can
be efficiently evaluated using the Cox-de Boor algorithm
[17].

A second degree spline function with two internal knots
is shown in Figure 2, along with the B-spline basis func-
tions that generate the spline. In this figure, the basis
functions are already multiplied with their corresponding
spline parameter. It is clear that the different basis func-
tions are only non-zero in a part of the interval, i.e., the
spline parameters only influence a part of the final spline
function. This property is called local support. The loca-
tion of the internal knots is also important, because, when
more knots are situated in a specific region, there is a

Figure 2 Example of a second degree B-spline function. A second
degree spline function with two internal knots (in yellow), along with
the B-spline functions that generate it (in blue, green, red, cyan and
pink). In this figure, the B-spline basis functions are already multiplied
with their corresponding spline parameter, so the spline function is
obtained by summing the 5 basis functions at each point in time.
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higher flexibility in that specific region, enabling the func-
tion to have a more exotic shape. As will also be seen in the
Results and discussion section, the internal knots will flock
together in regions in which there is a high curvature, and
will move away from flat regions.

In the final sequential algorithm, three main operations
on the splines are used. The first operation is constraining
a knot to the specific measurement interval it is in. This
is done to prevent knots from straying too far from their
initial optimal location. The second operation is inserting
a knot at the end of a specified time frame. In this opera-
tion, knot insertion, a feature inherent to B-splines, is used
to insert a knot without changing the spline profile. This
way, the next optimization can be started from a good ini-
tial guess, with an extra knot inserted. This operation also
takes into account the bounds which were placed on pre-
viously added knots, i.e., the knot is inserted in the time
frame at the end, where no knot has yet been inserted.
The last operation prolongates the splines, which only
changes the ending knot to the new value. This means that
the spline profile is slightly changed, because the spline
parameters stay the same, but is still close to the previous
profile.

Each free flux is represented by its own spline func-
tion, and thus has its own set of internal knot locations
and spline parameters. For ease of notation, the spline
parameters for the different free fluxes will be concate-
nated into three vectors:

g =
⎡
⎢⎣

g1
...

gd

⎤
⎥⎦ (22)

tknot =
⎡
⎢⎣

tknot,1
...

tknot,d

⎤
⎥⎦ (23)

pu =
⎡
⎢⎣

pu,1
...

pu,d

⎤
⎥⎦ (24)

The vector g contains the number of internal knots for
the d free fluxes, which are integer variables. The vector
tknot contains the internal knot locations for all free fluxes,

i.e., this vector contains ng elements, with ng =
d∑

i=1
gi.

The last vector pu contains all spline parameters or con-
trol points for all free fluxes. The number of elements in
this vector equals ng + d ? (k + 1). In total, there are d
integer parameters, the numbers of internal knots, and
2?ng+d?(k+1) continuous parameters, the knot locations
and spline parameters, to estimate.

Formulation of the dynamic estimation problem
The parameters in g directly control the number of the
other parameters. As the least squares objective will keep
on decreasing with increasing number of parameters, the
optimal g will contain infinity values at all elements, ren-
dering a perfect fit. For this reason, g is not added as an
optimization variable in the optimization problem. The
estimation of these values will be addressed later on. Using
the B-spline flux parametrizations, the input estimation
problem (Equation (12)) is reformulated as a dynamic
parameter estimation problem:

minimize
pu,tknot,x0

ntime∑
i=1

nout∑
j=1

(yj(ti) ? mij

σij

)2
(25)

subject to:

ẋ(t) = Se ? K ? û(t) ? qT
bio ? x(t) (26)

x(0) = x0 (27)
y(t) = f(x(t), û(t)) (28)
z(t) = Iirr ? K ? û(t) (29)
x(t) ≥ 0, z(t) ≥ 0 (30)

Discretization of the dynamic parameter estimation
problem using collocation
The resulting dynamic optimization problem must be dis-
cretized in some way to be able to solve it [18]. In this
work, direct collocation on finite elements was chosen
[19]. For a full overview on the direct collocation method,
the reader is referred to [18]. For the methodology in this
work, cubic Lagrange polynomials were chosen, with col-
location points situated at the Radau roots. The finite
element borders were chosen at the time points of the
measurements.

The direct collocation method turns the differential and
algebraic states into discrete, continuous variables px and
pz, respectively, and the dynamic system into two sets of
equality constraints: (i) the collocation constraints hcoll,
which make sure that the polynomials satisfy the dynamic
system exactly at the collocation points, and (ii) the con-
tinuity constraints hcont, which ensure the continuity of
the Lagrange polynomials over the finite element bor-
ders. After discretizing the system of ODEs, the dynamic
parameter estimation problem turns into the following
non-linear programming problem (NLP):

minimize
px,pz,pu,tknot,x0

ntime∑
i=1

nout∑
j=1

(yj(ti) ? mij

σij

)2
(31)
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subject to:

hcoll(px, pz, pu, tknot) = 0 (32)
hcont(px, pz) = 0 (33)

x̂(0) = x0 (34)
y(t) = f(x̂(t), û(t)) (35)

px ≥ 0, pz ≥ 0 (36)

with px the collocation variables, including the initial
values for the states.

If the spline degree k and the Lagrange polynomial
degree are fixed to 2 and 3 respectively, and the number
of finite elements is taken as ntime ? 1, as the finite ele-
ments are situated between the measurement time points,
the dimensions of this problem depend on the total num-
ber of internal knots ng, the number of time points ntime
and the characteristics of the network. These dimensions
are given in Table 1.

The resulting NLP (31) is solved using the interior-point
optimization routine IPOPT [20]. Gradient, Jacobians and
Hessian are generated exactly using automatic differentia-
tion with CasADi [21].

Adaptive incremental free flux estimation
The number of internal knots directly controls the num-
ber of the other parameters. As the least squares objec-
tive will keep on decreasing with increasing number of
parameters, the optimal number of knots will be infinity,
rendering a perfect fit of the measurement noise instead
of the trend. For this reason, a mechanism to prevent

Table 1 Dimensions of the resulting non-linear
programming problems

Variables

Differential state variables px 4 ? (ntime ? 1) ? (mext + 1)

Algebraic state variables pz 4 ? (ntime ? 1) ? nirr

Spline parameters pu ng + d ? (k + 1)

Internal knot locations tknot ng

Initial values x0 mext + 1

K matrix values n ? d

Equality constraints

Differential state collocation constraints 3 ? (ntime ? 1) ? (mext + 1)

Differential state continuity constraints (ntime ? 2) ? (mext + 1)

Algebraic state collocation constraints (3 ? (ntime ? 1) + 1) ? nirr

Algebraic state continuity constraints (ntime ? 2) ? (nirr)

Initial value constraints mext + 1

K null space constraints mint ? d

K orthogonality constraints d?(d+1)
2

overfitting has to be used. Furthermore, although the
polynomial spline functions are linear functions of the
spline parameters, the system of ODEs is non-linear, and
the splines are also non-linear in the knot locations. These
non-linearities in the constraints lead to local minima in
the optimization problem. To address these issues, a sys-
tematic, incremental strategy for estimating the free flux
parameters and knot locations has been devised, based
on the Akaike model discrimination criterion (AIC). This
criterion [22] is frequently used to discriminate between
different model structures which can describe the same
phenomenon. It takes into account both the model error,
i.e., the least squares error, and the number of param-
eters needed to describe the data. It has been applied
successfully for model discrimination in both linear and
non-linear models for biological systems (see, e.g., [23]).
In this work, the corrected AIC criterion for small sample
sizes (AICc) is used, as this is more suited in cases where
the number of measurements is close to the number of
parameters:

AICc = f + 2 ? np + 2 ? np ? (np + 1)

nmeas ? np ? 1
(37)

with f the weighted least squares error, as defined in
Equation (31), and nmeas the total number of measure-
ments, i.e., ntime ? nout. From this definition it is clear that:

nmeas ≥ np + 2 (38)

as otherwise the denominator can become zero or nega-
tive. In the remainder of this text, AICc is indicated just as
AIC, for simplicity.

An algorithmic description of the methodology is given
in Figure 3. The method is started by estimating splines
without knots, i.e., only second degree polynomials, on
a reduced dataset, i.e., the first l timepoints, where l is
the number of timepoints needed to make sure that the
denominator of Equation (37) is strictly positive:

l ? nout ≥ 3 ? d + mext + 3 (39)

After selecting the correct number of timepoints, the
polynomials are fitted and the optimal AIC value is saved
as F , together with the optimal splines U . Then, it is
checked if a new knot can be inserted based on the
number of measurements available at this point. If so, d
optimization problems are generated, in which every time
one knot is inserted into one free flux spline at a time. The
three problems are solved, and the minimum AIC value
over these problems is saved as AIC∗, along with the cor-
responding optimal splines U∗, in which there is now one
knot in one of the splines. Now, two possibilities arise. If
AIC∗ is smaller than F , a new, better solution is found,
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Figure 3 Incremental flux estimation algorithm. A schematic representation of the algorithm for the incremental flux estimation. The steps
marked with a red A, B and C correspond to the steps in Figure 7.

and another knot can be added using the same steps just
described. If AIC∗ is higher than F , however, the old opti-
mum was better than the new one, and so the old one is
kept. At this point, an optimal solution for this number of
time points has been found, and a new time point can be
added if there is still one left to be added. After adding the
time point, the splines are prolongated, and the prolon-
gated problem is solved to get the new starting values for
F and U for the next iteration. Once all time points have
been added, U contains the final, optimal set of free flux
profiles for the specified dataset.

Although the Akaike criterion can compare different
models, it cannot assess the absolute goodness-of-fit.
To this end, a χ2-test is also executed on the resulting
model [24]. The resulting model is accepted if the vari-
ance weighted sum of squared errors is smaller than the
critical χ2-value for the specified confidence level (95%)
and number of degrees of freedom, which is the num-
ber of measurements minus the number of independent
parameters.

This methodology ensures that each optimization prob-
lem is initialized with an excellent initial guess for the knot
locations and spline parameters, rendering shorter opti-
mization times and convergence to at least a decent local
minimum in each iteration.

Choice of the null space basis K
The only degree of freedom left at this point is the choice
of the basis K for the null space of Sint. The choice of this

basis defines which fluxes are used as free fluxes, and as
these are the profiles that are estimated, this choice can
have significant consequences concerning the final fit of
the model. Free fluxes with a large curvature in their pro-
file need more parameters to be successfully estimated.
There are three options: (i) a fixed rational basis, (ii) a
fixed orthonormal basis, or (iii) an optimal orthonormal
basis. A rational basis is derived from the reduced row
echelon form of Sint. In this form, d fluxes are chosen as
free fluxes, and the other ones are linear combinations
of these free fluxes. The rational basis has the advantage
that the free fluxes are easy to interpret, but they are
probably not the best choice considering goodness-of-fit.
An orthonormal basis is typically derived from the sin-
gular value decomposition of Sint. In this case, the free
fluxes are themselves linear combinations of the fluxes,
rendering free fluxes which cannot be easily interpreted,
although the set of all fluxes is still easily calculated from
the free fluxes. This basis is numerically preferable, but
still not optimal considering goodness-of-fit. As a last
possibility, the basis can be optimized during the estima-
tion of the fluxes. To do this, the values in the K matrix
are added as optimization variables, and two matrix
constraints are added, one that defines K to be a null
space of Sint, and another one which constrains K to be
orthonormal:

Sint ? K = 0 (40)

KT ? K ? I = 0 (41)
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with I a (d ? d) identity matrix. In this last constraint,
only the diagonal and one of the two off-diagonal parts
are independent, since KT ? K is symmetric. In total,
n ? d variables are added (all elements of K), along with
mint ? d null space constraints and d?(d+1)

2 orthogonality
constraints, rendering d?(d? 1)

2 extra degrees of freedom for
the optimization.

Formulation of the non-linear estimation problem with an
optimal K
When using the optimal basis, the optimization problem
looks like this:

minimize
px,pz,pu,tknot,x0,K

ntime∑
i=1

nout∑
j=1

(yj(ti) ? mij

σij

)2
(42)

subject to:

hcoll(px, pz, pu, tknot, K) = 0 (43)
hcont(px, pz) = 0 (44)

x̂(0) = x0 (45)
y(t) = f(x̂(t), û(t)) (46)

px ≥ 0, pz ≥ 0 (47)
Sint ? K = 0 (48)

KT ? K ? I = 0 (49)

Determination of confidence bounds on the estimated flux
profiles
After the optimal model is estimated, uncertainty of the
parameters and free flux profiles is estimated using a
Monte Carlo bootstrapping methodology [25]. The Monte
Carlo approach is used frequently in MFA studies [26]. In
this work, the method is used because of the non-linearity
and constraints in the optimization problem. In this case,

the Fisher information approach can give highly different
confidence intervals because of these non-linearities and
bounds. Based on the assumption of normally distributed
measurements with known variances, 1000 sets of mea-
surements were sampled from these distributions and for
each set of measurements, parameters were estimated,
resulting in 1000 sets of parameter values and 1000 free
flux profiles. 95% confidence intervals were generated by
sorting these parameters and taking the 2.5th and 97.5th

percentiles as respectively lower and upper confidence
bounds.

Results and discussion
This results section is structured in the following way.
First, the small-scale case study is presented, along
with the network, simulated measurements and refer-
ence fluxes used to simulate these measurements. For
the small-scale network, different cases with and with-
out measurement noise, and with different K matrices, are
introduced. Then, a detailed description of the iterations
made by the algorithm for one case is given, to further
clarify the operation. After this, the results of all cases in
the small-scale case study are shown and discussed, high-
lighting the most important features of this methodology.
Then, the medium-scale case study is treated, again by
showing the network, simulated measurements and refer-
ence fluxes. Finally, the results for this case study are pre-
sented, with both the fixed and optimal (free) K matrices,
along with an analysis of the computational complexity for
both case studies.

Description of the small-scale case study
The network is shown in Figure 4, along with the corre-
sponding Sint, Se and Iirr matrices. It consists of 3 extracel-
lular metabolites and biomass, 4 intracellular metabolites
and 7 fluxes. Thus, the number of free fluxes is 3. For

Figure 4 Case study network and corresponding matrices. Metabolic reaction network for the case study (top left), along with the intracellular
and combined extracellular and biomass stoichiometric matrices and irreversibility matrix (right), and the null space basis matrices corresponding to
the cases with free fluxes 1, 4 and 5, and free fluxes 3, 6 and 7 (bottom left).
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the simulation of the measurements, these were chosen as
flux 1, 4 and 5. Measurements were simulated by choosing
reference profiles for these three fluxes, and simulating
the states using the dynamic system.

u1,ref = cAext
1.5 + cAext

(50)

u4,ref = 0.2 ? cEext
3 + cEext

(51)

u5,ref = 1
1 + cFext

(52)

The starting values for the 4 states were chosen at 10,
15, 0 and 0.1, respectively. Two sets of measurements were
generated, both at 21 equidistant points in time between
0 and 20 for all 4 states, rendering both 84 measurements
in total: (i) one set with normal noise with a variance of
10? 8, to test the capabilities of the algorithm without mea-
surement error, and (ii) one set with a different, realistic
variance for every measurement, to test the capabilities in
a more realistic setting. A value for the variance of every
measurement is necessary for the algorithm, because of
the use of the variance-weighted sum of squared errors in
the AIC criterion. For that reason, the variance in the first
case was not set at 0, but at a very low value. The reference
profiles and the simulated data based on these profiles for
the realistic noise realization are shown in Figure 5.

The methodology was executed for 4 different K matri-
ces: (i) the one corresponding to free fluxes 1, 4 and 5,
i.e., the same one as was used to generate the simulated
measurements, (ii) the one corresponding to free fluxes
3, 6 and 7, of which free fluxes 3 and 6 are reversible, as
opposed to the first case where all free fluxes are irre-
versible, (iii) an orthonormal basis obtained through the

Matlab command null(Sint), and (iv) a variable basis which
is optimized using the additional constraints as described
before. These cases are referred to as 145, 367, orthonor-
mal and optimal, respectively. In total, the algorithm was
run 8 times: 4 times for the different cases with low noise,
and 4 times for the different cases with the realistic noise
realization.

All reactions, all stoichiometric matrices, the irre-
versibility matrix, the null space basis matrices, and the
simulated measurements and measurement variances for
this case study are given in the Additional files 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11 and 12.

Description of the algorithm iterations
To validate and clarify the operation of the proposed algo-
rithm, the key iterations for the case with free fluxes 1,
4 and 5 are described in more detail. An overview of the
different iterations is given in Table 2 and the profiles
for free flux 1 before and after all iterations are depicted
in Figure 6. Also, a detailed description of the steps in
iteration 8 and 9 for all free fluxes is given in Figure 7.

For this network, nout = 4 and d = 3, so the number of
time points needed to start is 4, based on Equation (39).
In the first iteration, basically three second degree polyno-
mials are fitted for each of the three fluxes. At this point it
is not yet possible to insert a knot because after insertion
the number of parameters would be 11, and Equation (38)
would not be satisfied anymore. So a new time point is
added at the end, and the problem is solved again for
this extended dataset. Now, it is possible to insert a knot.
Three subproblems are generated, one for each flux spline
in which a knot is inserted. The minimum AIC for these
subproblems (150.0) is however bigger than the previous

Figure 5 Reference free flux profiles and simulated measurements for the realistic noise setting. The profiles for the free fluxes (left) that
were used to simulate the state measurements (right). The measurements in this figure correspond to the realistic noise setting, with different
variances on all measurement points.
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Table 2 Overview of the iterations done by the incremental flux estimation algorithm for the 145 case

Iter. no. ntime np AIC before insertion Min. AIC Comment

1 4 13 208.0 ? No new knot possible

2 5 13 86.7 150.0 No better minimum

... ... ... ... ... ...

7 10 13 41.0 50.3 No better minimum

8 11 15 58.6 48.0 Knot inserted in flux 1, interval 7

15 48.0 57.9 No better minimum

9 12 17 88.2 58.4 Knot inserted in flux 1, interval 9

17 58.4 65.5 No better minimum

10 13 19 1562.6 1400.7 Knot inserted in flux 1, interval 10

21 1400.7 100.5 Knot inserted in flux 1, interval 11

23 100.5 85.8 Knot inserted in flux 3, interval 8

23 85.8 100.4 No better minimum

11 14 23 81.1 93.8 No better minimum

12 15 23 78.2 89.2 No better minimum

13 16 23 78.8 85.5 No better minimum

14 17 25 92.0 82.4 Knot inserted in flux 3, interval 12

25 82.4 92.3 No better minimum

15 18 25 80.1 88.9 No better minimum

... ... ... ... ... ...

18 21 25 79.9 84.1 No better minimum

one (86.7), so no new minimum is found, and the dataset
is extended again. This same pattern goes on until itera-
tion 8, which is shown in more detail in Figure 7. In step
8A, the prolongated problem of the previous iteration is
solved, giving the base value for F (58.6), and the starting
set of free flux profiles U for this iteration. The dashed
lines indicate the profiles before optimization, i.e., after
the prolongation step of iteration 7, and the solid lines are
the profiles after optimization. Step 8B consists of three
optimizations, one for each free flux. In step 8B1, a knot
is inserted into the spline corresponding to free flux 1,
which, as is shown by the dashed lines, does not change
the profile of this flux. The profiles are then used as good
starting values for the optimization, after which again the
solid profiles result. The optimal location of this knot is
7.94. This same procedure is repeated in steps 8B2 and
8B3, with insertion in free flux 2 and 3 respectively. After
this, the minimum AIC value over steps 8B1, 8B2 and 8B3
is collected (48.0), along with the corresponding profiles.
In this case, the minimum is found when inserting a knot
in free flux 1. Since the minimum AIC value is also lower
than F , the profiles from step 8B1 form the starting values
for a new round of insertions, after a constraint has been
added that constrains the location of the newly added knot
to its corresponding measurement interval, in this case
between 7.0 and 8.0. This new round of insertions does

not yield a better minimum (57.9). This means the pro-
files after step 8B1 are the best possible in this iteration,
and these profiles are prolongated in step 8C. As can be
seen in the figure, the prolongation changes the profiles
slightly, but they are still good starting values for the base
optimization of iteration 9 (step 9A), yielding an F value
of 88.2. Because of the knot that is already present in step
9B1, the new knot for free flux 1 is inserted after time 8.0.
The new minimum (58.4) is again found after insertion in
free flux 1, and a second insertion in this iteration does
not result in an improvement (65.5), so the profiles after
step 9B1 are prolongated in step 9C. The algorithm ends in
iteration 18, because the full dataset is used at that point,
rendering the optimal flux profiles for the full experiment.

The fact that this procedure results in a good sequence
of starting values for the different optimization problems
is clearly shown in Figure 6. The dashed lines are again
the profiles before each iteration, the solid lines are the
profiles after the iteration. Because of the high degree
of non-linearity resulting from the free knot locations,
these good starting values are essential for the efficient
estimation of the fluxes.

Results in the low noise setting
The estimated fluxes for the different choices of the null
space basis K in the setting with a very small amount of
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Figure 6 Intermediate flux profiles for the 145 case. Overview of
the intermediate flux profiles during the iterations of the algorithm
for the 145 case with realistic noise, for free flux 1. The dashed lines
are at the beginning of the iteration, the solid lines are at the end of
the iteration, before the prolongation step. The iteration number is
shown in the top right of each plot.

noise are displayed in Figure 8, along with the reference
profiles. The absolute error between the estimated profiles
and the reference profiles are depicted in Figure 9. This
figure also contains the numeric integral of the absolute
value of the profiles, as a quantitative way to compare the
different alternatives. The sum of all these values is given
in the top of the column.

These figures indicate that, except in the orthonormal
case, the methodology gives an accurate representation
of the fluxes in the theoretically optimal low noise set-
ting. The big differences with the reference profiles in the
orthonormal case are mainly due to numerical problems,

since in this low noise setting, a lot of knots are inserted
(about 10 per free flux), resulting in harder optimization
problems and longer optimization times. Although the
other methods for the choice of K can cope with these
difficulties, this is apparently not the case for the orthonor-
mal method. The integral numbers for the other three
methods are very close, so there is no clear difference
between them in this low noise setting.

Results for the realistic noise realization
The estimated fluxes based on the different choices for
the null space basis K for the realistic noise setting are
displayed in Figure 10, next to the reference profiles.
Again, the absolute errors between these estimated pro-
files and the reference profiles are given in Figure 11, along
with the integral differences for each profile, and their sum
per case. The state trajectories for the different cases are
very similar, so these are only shown for the 145 case in
Figure 12. In Table 3, the knot locations and goodness-
of-fit values for the different cases are summarized. It is
important to note that all estimations are approximations,
as the real kinetic law for the fluxes is not known to the
estimation procedure. A few observations can be made.

First of all, it is clear that the algorithm puts the knots
in locations where they are most needed. In the 145 case,
four knots are chosen for flux 1, which exhibits the high-
est degree of curvature, two knots for flux 5, and no knots
for flux 4, which has the flattest profile. Fluxes 3, 6 and 7,
on the other hand, all exhibit profiles with a much higher
degree of curvature, resulting in a higher total number of
knots for the 367 case. Both the SSE and the number of
parameters are higher for this case, resulting in a higher
AIC value. Based on these observations, a possible strat-
egy for choosing the basis K could be to choose free fluxes
with a ?flat? profile, i.e., with a low degree of curvature.
This is in practice not feasible as the flux profiles are of
course not known beforehand. A possible solution would
be to choose a basis, estimate the fluxes, and choose a
new basis based on the results of the estimation. For this
to work, one would need a way of quantifying the degree
of curvature of a function, which is not trivial. It would
also be computationally very demanding, as the full esti-
mation procedure would have to be repeated a number
of times.

The choice of a random orthonormal basis is also clearly
not satisfactory. For this case, the knot locations can-
not be displayed anymore on the flux profiles, as the
free fluxes are in this case linear combinations of the
different fluxes. In the final, optimal case, from the set
of possible orthonormal bases, the one which minimizes
the goodness-of-fit is chosen during the course of the
algorithm, introducing a minimal number of extra param-
eters for the optimization. The estimated profiles for this
case, as well as for the 145 case, accurately resemble the
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Figure 7 Detail of iterations 8 and 9 for the 145 case. Detailed view of the key steps in iteration 8 and 9 for all three free fluxes (from top to
bottom), for the 145 case, with realistic noise. The dashed lines are before optimization, the solid lines after optimization. The A, B and C steps
correspond to the steps highlighted in the algorithm in Figure 3.

Figure 8 Estimated flux profiles for the low noise setting. The reference flux profiles (left column) and estimated flux profiles for the different
cases in the low noise setting: the case with optimized K matrix (second column), the case with the orthonormal K matrix (third column), the 145
case (fourth column), and the 367 case (right column). The profiles are for fluxes 1 through 7 from top to bottom.
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Figure 9 Absolute deviation of the flux profiles from the reference for the low noise setting. The deviation of the estimated profiles from the
reference for the different cases in the low noise setting: the case with optimized K matrix (first column), the case with the orthonormal K matrix
(second column), the 145 case (third column), and the 367 case (right column). The profiles are for fluxes 1 through 7 from top to bottom. The
number on the top right of each graph is the integral of the absolute value of each deviation profile. These numbers are summed for each case at
the top of the column, next to the title.

reference profiles, although the integral numbers indicate
that the optimal case is slightly better. In the optimal case,
however, three extra parameters are introduced, result-
ing in a lower SSE, but a slightly higher AIC value and
computational time. This is only a small penalty, though,
not outweighing the benefits of having an accurate esti-
mate using only one run of the algorithm, and the fact
that the algorithm is completely contained, as the user
does not have to make any choices once the measure-
ments and the details of the network are given. In this
simulated case study, the results for the 145 case are prob-
ably better because the same basis was used to simulate
the measurements. In a real-life setting, though, there is
no generating set of free fluxes, and a choice regarding
this set of free fluxes cannot be made. Thus, the addition
of the determination of the optimal K basis is a wel-
come addition in real-life settings, as the optimal basis is
always found, without any choices required by the user.

The operation of the algorithm in optimal K mode thus
makes the algorithm fully contained.

Description of the medium-scale case study
The medium-scale network was adapted from [5], and all
reactions are available in the supplementary data of that
work. A few alterations were made, though. The pseudo-
reaction of the glucose feed to the glucose in the medium
(reaction 59 in [5]), was removed, as this flux was con-
sidered constant and thus does not need to be estimated.
Furthermore, reaction 41 in [5] (42 in Additional file 13),
threonine to glycine, was set to be reversible, as other-
wise no biomass could be formed, and also reaction 61 in
[5] (66 in Additional file 13), the citrate exchange reac-
tion, was considered reversible. This resulted in a network
with in total 68 fluxes, 62 intracellular metabolites and
10 extracellular metabolites (glucose, glycerol, ammonia,
sulphate, citrate, 1,3-propanediol, acetate, carbon dioxide,
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Figure 10 Estimated flux profiles for the realistic noise setting. The reference flux profiles (left column) and estimated flux profiles for the
different cases in the realistic noise setting: the case with optimized K matrix (second column), the case with the orthonormal K matrix (third
column), the 145 case (fourth column), and the 367 case (right column). The profiles are for fluxes 1 through 7 from top to bottom.

oxygen and biomass). The number of free fluxes is 6,
and these were chosen to be (numbering according to
Additional file 13) flux 62 (glycerol exchange), 63 (glu-
cose uptake), 65 (ammonia uptake), 66 (citrate exchange),
67 (acetate uptake) and 68 (oxygen uptake). Furthermore,
there are 44 irreversible fluxes.

Measurements were generated by considering a contin-
uous reactor set-up in which, after starting the reactor
with a full medium, only glucose is added from a feed with
a fixed concentration. The model equation (Equation (9))
is changed accordingly:

dx(t)
dt

= Se ? K ? u(t) ? qT
bio ? x(t) + D ? (xin ? x) (53)

with D the dilution rate [1/h], which is controlled between
0 and 1 following the input profile in Figure 13, and xin
the (10 ? 1) vector of feed concentrations [mmol/L] of the
different metabolites. As only glucose is in the feed, with
a concentration of 20, this vector is the following:

xin =

⎡
⎢⎢⎢⎣

20.0
0.0

...
0.0

⎤
⎥⎥⎥⎦ (54)

The reference fluxes for the six free fluxes were the
following:

u62,ref = 0.0995 (55)

u63,ref = 0.5605 ? cGluc
9.89 + cGluc

(56)

u65,ref = 0.122 ? cNH3
0.1919 + cNH3

(57)

u66,ref = 0.0207 ? cCit
5.575 + cCit

(58)

u67,ref = 0.8834 ? 1
10.0 + cAc

(59)

u68,ref = 0.438 ? cO2
9.706 + cO2

(60)
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Figure 11 Absolute deviation of the flux profiles from the reference for the realistic noise setting. The deviation of the estimated profiles
from the reference for the different cases in the realistic noise setting: the case with optimized K matrix (first column), the case with the orthonormal
K matrix (second column), the 145 case (third column), and the 367 case (right column). The profiles are for fluxes 1 through 7 from top to bottom.
The number on the top right of each graph is the integral of the absolute value of each deviation profile. These numbers are summed for each case
at the top of the column, next to the title.

Figure 12 Estimated state trajectories. The estimated state
trajectories for the 145 case with realistic noise.

The starting values for the concentrations
[
cGluc, cGlyc, cNH3, cSO4, cCit, cPDO, cAc, cCO2, cO2,

cBIOMASS]T

(61)

in the simulation were chosen to be

[100, 53.15, 38.45, 62.61, 0, 0, 0, 6.78, 100, 2.14]T (62)

In total, 31 measurements at equidistant points between
0 and 10 hours were generated for 8 concentra-
tions (glucose, glycerol, ammonia, sulphate, citrate, 1,3-
propanediol, acetate and biomass) and 2 fluxes (oxygen
and carbon dioxide). In typical settings, oxygen and car-
bon dioxide concentrations are not measured directly,
but their uptake and production fluxes, respectively, are
measured through off-gas analysis on the bioreactor. The
resulting set of 310 measurements is not shown separately,
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Table 3 Results for the different cases: the intervals where knots are inserted for the three free fluxes, values for SSE and
AIC and the number of parameters

Choice of K Knot intervals for free flux SSE AIC np

1 2 3

1, 4 and 5 7, 9, 10, 11 ? 8, 12 7.49 79.9 25

3, 6 and 7 10, 11, 12 10, 11, 12 7, 8, 10, 11 49.50 160.4 33

Orthonormal 8, 11, 12 9, 10, 11 7, 8, 10, 11 14.41 125.3 33

Optimal 7, 9, 10, 11 ? 8, 12 1.33 86.9 28

but can be found in Figures 14 and 15, along with the fit-
ted states. The reference fluxes are shown in Figures 16
and 17, along with the estimated fluxes.

All reactions, all stoichiometric matrices, the irre-
versibility matrix, the null space basis matrix, and the
simulated measurements and measurement variances for
this case study are given in the Additional files 13, 14, 15,
16, 17, 18, 19, 20, 21 and 22.

Results for the medium-scale network
The estimation of the fluxes in the medium-scale network
was carried out with both a fixed K matrix, again the same
one as used to simulate the measurements, and an opti-
mized K matrix. The estimated fluxes for the fixed K are
shown in Figure 16, the results for the optimal K matrix
are shown in Figure 17. Also, the fitted measurements for
both cases are presented in Figures 14 and 15. It is clear
that the proposed methodology is also able to estimate
the fluxes in a larger network successfully. The confidence
bounds are in this case, however, much wider than in the
small-scale case. This is due to the larger amount of mea-
surement noise added to the simulated measurements.
Due to the minimization of the AIC criterion, this is the
best possible fit while at the same time keeping the uncer-
tainty as low as possible. Also, the difference between the

Figure 13 Medium-scale case study input profile. The dilution rate
input profile for the continuous controlled bioreactor model of the
medium-scale case study.

estimates with a fixed and an optimal K matrix is again
very small. This again confirms the fact that the algorithm
can be successfully used in the optimal K mode, i.e., with-
out making an a priori choice on the free fluxes, as the
results are very similar in the two cases. This is an impor-
tant advantage of this method as in practice the set of free
fluxes is not known.

Computational complexity of the algorithm
The time needed to solve the dMFA problem using this
methodology is the product of on the one hand the total
number of optimization problems to solve, and on the
other hand the average time per optimization problem. If
only one knot addition is allowed for every measurement
time point which is added, and when making abstrac-
tion of the possibility that in the first iteration(s) no knot
can be inserted, the total number of optimization prob-
lems equals ntime ? d, and thus scales linearly with both
the number of measurement time points and the num-
ber of free fluxes. The average time per optimization
problem is harder to assess, as this is dependent on the
total number of variables, as indicated in Table 4, but
also on the number of non-zeros in the Jacobians and
Hessians, and other characteristics of the NLP solver used.
It is important to notice that the total number of fluxes
does not influence the computational complexity, so this
methodology should be usable also for larger networks
with more fluxes, but a number of free fluxes which is
still considerable. Typical networks used for metabolic
flux analysis have a number of fluxes in the range of 100,
but a number of free fluxes that is typically in the region
of 10.

To give a general idea about the computational complex-
ity of the algorithm, the total CPU times of the estimations
for the small-scale and medium-scale network for both
fixed and optimal K matrices are shown in Table 4. These
times are attained when running the algorithm on one
core of an eight-core Intel i7-3770 CPU at 3.40 Ghz. Also,
the average time per optimization problem over the dif-
ferent iterations is plotted as a function of the iteration
number for the four cases, i.e., small- and medium-scale
with fixed and free K, in Figure 18. Based on these find-
ings, a general guideline to keep CPU times reasonable
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Figure 14 Estimated state trajectories. The estimated state trajectories for the medium-scale network with fixed K matrix, along with the
simulated data on which the estimation is based.

is to keep the time horizon under consideration small,
i.e., with not too many measurement time points, as this
will reduce the total number of optimization problems.
Furthermore, every added time point increases the com-
putational cost per optimization problem exponentially,
so it is better to only use data around a specific region of
interest, instead of using all possible data in a very wide
time horizon. One could, for example, run the algorithm
on a coarse subset of the measurements and choose, based

on the results, a specific region of interest where a finer
grid of measurements is used to get a better estimate.
Although it is not investigated in this work, the algorithm
also exhibits very nice possibilities for parallellization, as
in every iteration of the algorithm d mutually indepen-
dent optimization problems have to be solved. These can
be easily assigned to different cores on a multi-core CPU.
Finally, the automatic differentiation of the objective and
constraint functions of the different subproblems can also

Figure 15 Estimated state trajectories. The estimated state trajectories for the medium-scale network with optimized K matrix, along with the
simulated data on which the estimation is based.
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Figure 16 Estimated flux profiles. The estimated free flux profiles for the medium-scale network with fixed K matrix (in full line), including 95%
confidence regions. For brevity, only the free fluxes are shown. All other fluxes can be calculated through the K matrix. In dashes are the reference
profiles which were used to simulate the measurements.

Figure 17 Estimated flux profiles. The estimated free flux profiles for the medium-scale network with optimized K matrix (in full line), including 95%
confidence regions. For brevity, only the free fluxes are shown. In dashes are the reference profiles which were used to simulate the measurements.
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Table 4 CPU times for the two case studies, both with fixed
K and optimized K

Case study K matrix Running time in seconds

Small-scale Fixed 31.2

Small-scale Optimal 51.0

Medium-scale Fixed 494.0

Medium-scale Optimal 1771.4

be further exploited, as at this point, these are basically
repeated when going from one iteration to the next. The
only part which is added, though, is the part for the inter-
val between the last and the newly added time point, while
everything before this point stays the same. This initializa-
tion of the different subproblems offers opportunities for
further reductions in CPU times in future research. Nev-
ertheless, the algorithm can already at present perfectly
run in real-time on standard equipment as bioprocesses
typically involve multiple days.

Conclusions
In this contribution, a novel systematic methodology
for dynamic metabolic flux analysis, based on B-spline
parameterizations, has been presented. Because of the
high degree of non-linearity in the estimation of the
knot locations, an incremental knot insertion algorithm
is proposed. By using this algorithm, at least an excellent
local minimum is found. Furthermore, the algorithm is
fully contained, as the user does not have to make any
choices regarding the null space basis of the intracellu-
lar stoichiometric matrix. This methodology tackles the
disadvantages of previous methods for dMFA by making

Figure 18 Average CPU time per optimization problem. The
average CPU times per optimization problem plotted as a function of
the iteration number. In red crosses for the small-scale network with
fixed K, in blue triangles for the small-scale network with optimal K, in
green squares for the medium-scale network with fixed K, and in
black circles for the medium-scale network with optimal K.

sure that the estimates are smooth, that specific fluxes
are estimated and that extra constraints can be taken
into account. The algorithm is validated on a small-scale
simulated case study in both a low noise and a realistic
noise setting. In both cases, an accurate dynamic esti-
mation of the fluxes is obtained. The algorithm was also
tested on a more realistic network with 68 fluxes and
6 free fluxes. Although CPU times are longer, mainly
due to a larger number of measurements, the algorithm
was also able to successfully estimate the fluxes in this
larger case study. The algorithm can still be run in real-
time as biological processes are typically slow. To keep
CPU times under control, the total number of measure-
ments should be reduced if possible, as the CPU time per
iteration tends to grow exponentially over the iterations.
This can be done, e.g., by only considering time horizons
which are of specific interest to the researcher. Possi-
ble further improvements of the algorithm, mainly in the
regions of parallellization and subproblem initialization,
are indicated.
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