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Introduction
The development of new drugs is time-consum-
ing and costly. For example, the prerequisite 
average costs for the development of an active 
substance accepted by the Food and Drug 
Administration (FDA) are $648.0 million (US 
dollars; range: $157.3–1950.8 million) and the 
average time required to develop a new drug is 
7.3 years (range: 5.8–15.2 years).1 Furthermore, 
around 53% of newly developed drugs fail to 
reach the preclinical phase, mainly due to intol-
erable side effects, unacceptable toxicological 
effects, and unpredictable drug interactions. 
For these reasons, the development of new 
drugs is not a top priority for the pharmaceuti-
cal industry, which instead largely focuses  
on the development and production of pre-
existing active compounds to increase profits 
and reduce losses. Nevertheless, many effective 
treatments have yet to be discovered, especially 
for multifactorial diseases such as degenerative 
diseases.2,3

When vaccines were first created, they were 
intended to prevent diseases caused by infectious 
agents. However, as vaccine technology has 
developed, vaccines have been expanded in an 
effort to combat noninfectious diseases such as 
autoimmune diseases,4,5 cancer,6–8, and degener-
ative diseases.9–11

Conventional vaccines are produced by inactivat-
ing or attenuating some part of an infectious agent 
and exposing it to the body’s immune system. 
This approach has been so successful that vac-
cines are considered one of the major successes of 
the modern world. In particular, this approach 
has been effective against infectious agents with 
low antigen variations such as polio, smallpox, 
measles, and rubella.12,13 However, for diseases 
with mechanisms involving complex immune 
reactions, this approach is often ineffective; thus, 
new strategies for vaccine development are 
required.14 Conventional vaccination methods 
also often trigger side effects including fever and 

Predicting epitopes for vaccine development 
using bioinformatics tools
Valentina Yurina  and Oktavia Rahayu Adianingsih

Abstract: Epitope-based DNA vaccine development is one application of bioinformatics or 
in silico studies, that is, computational methods, including mathematical, chemical, and 
biological approaches, which are widely used in drug development. Many in silico studies 
have been conducted to analyze the efficacy, safety, toxicity effects, and interactions of drugs. 
In the vaccine design process, in silico studies are performed to predict epitopes that could 
trigger T-cell and B-cell reactions that would produce both cellular and humoral immune 
responses. Immunoinformatics is the branch of bioinformatics used to study the relationship 
between immune responses and predicted epitopes. Progress in immunoinformatics has been 
rapid and has led to the development of a variety of tools that are used for the prediction of 
epitopes recognized by B cells or T cells as well as the antigenic responses. However, the in 
silico approach to vaccine design is still relatively new; thus, this review is aimed at increasing 
understanding of the importance of in silico studies in the design of vaccines and thereby 
facilitating future research in this field.

Keywords: antibody, B cells, epitope, immunoinformatics, T cells, tools

Received: 21 January 2022; revised manuscript accepted: 14 April 2022.

Correspondence to:  
Valentina Yurina 
Department of Pharmacy, 
Medical Faculty, 
Universitas Brawijaya, 
Jalan Veteran, Malang 
65145, East Java, 
Indonesia. 
v_yurina@ub.ac.id

Oktavia Rahayu 
Adianingsih  
Department of Pharmacy, 
Medical Faculty, 
Universitas Brawijaya, 
Malang, Indonesia

1100218 TAV0010.1177/25151355221100218Therapeutic Advances in Vaccines and ImmunotherapyV Yurina and OR Adianingsih
research-article20222022

Review

https://journals.sagepub.com/home/tav
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
mailto:v_yurina@ub.ac.id


Therapeutic Advances in Vaccines and Immunotherapy 10

2 journals.sagepub.com/home/tav

hypersensitivity reactions. Therefore, it is neces-
sary to develop a new generation of vaccines, such 
as epitope-based vaccines, with high effectiveness 
and minimal side effects.

The evolution of epitope-based vaccines is one of 
the most promising developments to arise from 
bioinformatics-based research.15 Bioinformatics 
or in silico studies, that is, computational methods 
that include mathematical, chemical, and biologi-
cal approaches, are widely used in drug develop-
ment. For example, in silico studies are often 
utilized to analyze the bioavailability of drug com-
pounds,16,17 pharmacokinetic–pharmacodynamic 
processes,18 interactions among drug compounds, 
and the toxic effects of drug compounds.19,20

During vaccine design, in silico studies are per-
formed to predict epitopes that can trigger both 
T-cell and B-cell reactions, which in turn pro-
duce cellular and humoral immune responses.21 
Immunoinformatics is the branch of bioinfor-
matics in which the relationship between 
immune responses and predicted epitopes is 
studied.22 The rapid development of immunoin-
formatics has been characterized by the creation 
of tools used for the prediction of epitopes rec-
ognized by B cells and T cells and for antigen 
responses.23,24 Nevertheless, the in silico approach 
to vaccine design is still relatively new; therefore, 
it is necessary to conduct in-depth studies that 
will increase general understanding of the impor-
tance of in silico research to the vaccine design 
process.

In silico approach for vaccine design
The aim of vaccination is to stimulate the mem-
ory of the adaptive immune system to ensure that 
it responds immediately to the next antigen expo-
sure. The adaptive immune system consists of 
two classes, namely the humoral immune system 
mediated by antibodies produced by B lympho-
cyte cells and the cellular immune system medi-
ated by T lymphocytes. The humoral and cellular 
immune systems are stimulated when a receptor 
recognizes a particular part of an antigen known 
as an epitope.21,25

Conventional vaccination approaches that use 
weakened or activated antigens are ineffective 
against several types of diseases, especially those 
involving complex immunity such as HIV, 

tuberculosis, cancer, and atherosclerosis. Thus, 
to increase specificity, effectiveness, and safety, 
bioinformatics methods are used during epitope-
based vaccine development.10,26–28 This approach 
minimizes resource use and time costs because 
the initial screening is conducted in silico to 
increase the efficiency of the vaccine candidate 
search.23 In comparison to conventional vaccines, 
epitope-based vaccines are typically well-toler-
ated and have fewer side effects.15,24 At present 
the approach has been demonstrated to be effec-
tive designing vaccine, including for COVID-19 
vaccines29–31 and other infectious diseases.32,33

During vaccine design, the bioinformatics 
approach is based on the availability of data and 
epitope predictions.34 In broad terms, the steps 
involved in vaccine design using the in silico 
method include searching antigen protein data-
bases, analyzing protein interactions, characteriz-
ing the epitopes recognized by both T cells and B 
cells, and analyzing antigenicity and homology. 
This approach usually requires massive amounts 
of reliable antigenic protein data. The prediction 
of epitopes recognized by B cells and T cells is 
based on sequences and structure and not on 
pathological mechanisms.35

Protein databases and protein interaction 
analysis
Massive, reliable protein databases are required 
for the design of epitope-based vaccines. 
Currently, several such protein databases can be 
easily accessed including those provided by the 
National Center of Biotechnology Information 
(NCBI), UniProt, or Protein Data Bank (PDB).

From the NCBI website (www.ncbi.nlm.nih.
gov), various data related to proteins can be 
accessed. Some programs for analysis can also be 
operated from this website including a search and 
retrieval system that provides users with inte-
grated access to sequence, mapping, taxonomy, 
and structural data. Moreover, the website pro-
vides sequence similarity search tools and can be 
used to identify genes and genetic features.36

The PDB (www.rcsb.org) provides access to pro-
tein-related data including protein sources, crystal-
lographic data, chemical structures, peptide 
sequences, and protein structures based on nuclear 
magnetic resonance (NMR). In addition, this 
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database enables various protein visualizations and 
protein analyses such as sequencing, prediction of 
protein structure, and protein symmetry analysis. 
Furthermore, the PDB provides a domain-based 
structural alignment method. It also includes 
structure depositions that have been determined 
using several techniques including macromo-
lecular crystallography, three-dimensional (3D) 
electron microscopy (EM), powder diffraction, 
and fiber diffraction.34,37,38

UniProt (www.uniprot.org) provides almost 
complete information on proteins including data 
on functions, names and taxonomies, subcellular 
locations, related pathologies, post-translational 
modifications (protein processing), expressions, 
interactions, structures, sequences, families and 
domains, reference information, and similar pro-
teins. Moreover, Uniprot includes improved 
metagenomic assembly and binning tools that 
provide high-quality metagenomic assembled 
genomes. In addition, Uniprot provides the 
UniRef databases, which cluster sequence sets at 
various levels of sequence identity, and the 
UniProt Archive (UniParc), which delivers a 
complete set of known sequences.39,40

Many new databases and tools have been devel-
oped as accessible repositories for storing and 
analyzing large amounts of immunology-related 
biological data. Most of these databases have 
been listed as public repositories to make it easier 
for researchers to find the databases they need. 
These public repositories provide access to up-to-
date annotated lists of immunoinformatic 
resources, ensuring the quality and relevance of 
these databases and tools.41 The three main pub-
lic repositories containing information on availa-
ble databases and tools related to 
immunoinformatics are (1) Nucleic Acids 
Research Database Annual Issue, (2) Canadian 
Bioinformatics Links Directory, and (3) Immune 
Epitope Database and Analysis Resources 
(IEDB).

Antigenicity and epitope prediction
After protein data is analyzed, 3D protein struc-
ture analysis or modeling can be conducted. In 
general, homology modeling or comparative 
modeling methods are performed because not all 
studied proteins have known 3D structures. 
Using these methods, protein structure can be 

predicted based on alignment results with one or 
more other proteins for which the structure is 
known. The program largely applied in protein 
modeling is MODELER, in which information 
from an input target-template alignment is used 
to create a series of homology-derived spatial 
restraints that act on the atoms of the 3D protein 
model. Sigma values of homology-derived dis-
tance restraints define the acceptable amount of 
conformational freedom for the model based on 
its templates.42

Analysis of protein interactions is performed 
using protein docking, which predicts the forma-
tion of protein complexes or ligands based on 
binding models and surface free energy. Protein 
docking can be divided into two processes: sam-
pling and scoring. Sampling is a method used to 
determine which parts of a protein are relevant to 
conformational or binding orientations. The sam-
pling process can involve the use of a binding ori-
entation algorithm (rigid-body sampling) or may 
be based on protein conformation (conforma-
tional sampling). Once sampling is completed, 
scoring is conducted to assess each binding 
model. Moreover, each binding model is sorted, 
with the binding model possessing the highest 
score suggested as a protein complex formation 
model.43

Molecular docking is then performed to ensure 
that a candidate epitope vaccine could generate a 
stable immune response. This is achieved by 
measuring interactions between the candidate 
and target immune cell receptors such as Toll-like 
receptor 2 (TLR2), TLR3, and TLR4.44–46 
Several studies have included molecular docking 
of vaccines with the human leukocyte antigen 
molecule or major histocompatibility complex I 
(MHC I) and MHC II receptors.45,47 After molec-
ular docking is completed, the protein–protein 
interactions among docked molecules are also 
analyzed.

Antigenicity prediction
Antigenicity prediction is used to determine the 
peptides that have high antigenicity and can be 
developed as vaccine candidates. The many tools 
used to predict antigenicity are based on various 
antigenicity determination methods, for example, 
the Kolaskar–Tongaonkar method48 and Welling 
method.49
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The Kolaskar–Tongaonkar method is based on 
experimental research indicating that hydropho-
bic residues, such as cysteine, leucine, and valine, 
on the surface of proteins tend to have antigenic 
characteristics. Based on these experimental data, 
a semi-empirical method was developed to assess 
whether a peptide is or is not antigenic. The 
method has an accuracy of around 75% and has 
the advantage of being simple to use as it only 
requires one parameter.48 The Welling method is 
used to determine an antigenicity value based on 
a comparison between the percentage of specific 
amino acids on the antigenic side and the per-
centage of these amino acids in the protein.49

B-cell epitope mapping
Structural epitope mapping could be conducted 
using X-ray crystallography, nuclear magnetic 
resonance (NMR),50 EM,51 or cryoelectron 
microscopy (CM).52,53 X-ray crystallography is 
believed to be the most precise method for struc-
tural epitope mapping. However, the quality of 
cocrystals and the antibody’s electron density 
limit X-ray crystallography.54 NMR offers pep-
tide mapping based on the difference in the NMR 
signal of the free antigen or the antibody-bound 
antigen to determine the epitopes. NMR epithe-
lial mapping provides more detailed information 
than mutagenesis or peptide mapping and can be 
much faster than X-ray crystallography.55,56 CM 
is another technique used to determine macro-
molecular structures with resolution comparable 
to X-ray crystallography. Because the samples are 
flash frozen in CM, crystallization is not required. 
Typically, fewer samples are required, but they 
must still be relatively homogeneous in purity. 
CM provides higher resolution information for 
larger molecules and less information for smaller 
molecules.57

B-cell epitope prediction
B cells mediate the humoral immune system 
through antibody secretion that neutralizes anti-
gens. B cells are stimulated when the antigen 
receptor, which is part of the paratope, recognizes 
antigenic epitopes. Most available epitope map-
ping methods (structural and functional 
approaches) are costly, time-consuming, and fre-
quently fail to detect all epitopes. The protein 
structure including residues in direct contact with 
an antibody is interpreted using structural epitope 

mapping methods, although these methods fre-
quently fail to identify the role of amino acids in 
binding strength. The goal of functional epitope 
mapping techniques is to identify and character-
ize residues critical for binding within structurally 
specified antigenic determinants.24

Epitopes recognized by B cells can be classified 
into two types: continuous and discontinuous 
epitopes. Continuous epitopes (also referred to as 
linear or sequential epitopes) are short peptide 
fragments (about 15 amino acids in size) of an 
antigen protein that are specifically identified by 
certain antibodies. Discontinuous epitopes con-
sist of amino acid residues that are not sequential 
in their primary structure but involve a folding 
mechanism that forms into a region that is close 
together. However, the folding mechanism 
increases the complexity of epitope prediction; 
the classification is not rigid because several con-
tinuous epitopes could form certain conforma-
tions that are recognized by antibodies and 
discontinuous epitopes can also contain several 
sequential linear peptide sequences.58 Because of 
their complexity, the prediction of B-cell epitopes 
is often less accurate than the simpler prediction 
of T-cell epitopes.

Linear epitope prediction
Sequence-based prediction can be used to pre-
dict continuous epitopes based on the propen-
sity scale method, which is used to assess and 
compare the tendency of amino acids to become 
epitopes recognized by B cells relative to amino 
acids that form antigens. To determine the pro-
pensity value for a residue, i, a central residue in 
a window chosen with size n, we would use the 
formula i − (n − 1)/2. The value of residue i is the 
average value for amino acids in a predetermined 
window range. In general, 5–7 amino acids are 
used to determine an epitope. The assessment is 
based on the physical characteristics of these 
amino acids, for example, hydrophilicity, flexi-
bility, solvent accessibility, or protein helixes.59,60

Hydrophilic scores are determined based on 
amino acid retention times in high-performance 
liquid chromatography in the reverse phase col-
umn. In such assessments, a window consisting of 
seven amino acids has been used, in which for the 
fourth amino acid residue value is determined 
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from the average hydrophilicity value of the seven 
residues.61

The flexibility assessment by Karplus and Schulz 
is based on the mobility of protein segments at a 
factor B temperature of carbon α for 31 proteins 
with known structures. This flexibility calculation 
uses the first amino acid from a window span con-
sisting of six amino acids.59

Solvent accessibility scores are determined based 
on the probability of an amino acid being exposed 
to the X-ray structure of 28 proteins. The surface 
probability (Sn) is determined using the following 
formula:

Sn n i
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where Sn is surface probability, δn is the fractional 
probability value of the surface, and the i value 
varies from 1 to 6. A hexapeptide with Sn >1 
indicates an increased probability that an amino 
acid will be on the surface.62 Moreover, an assess-
ment by Chou and Fasman is based on the prob-
ability that a certain range of residues are part of 
a β-turn structure.59

Studies have shown that predictions made using a 
single physicochemical characteristic cannot 
accurately predict B-cell epitopes. Therefore, 
some tools simultaneously use a combination of 
physicochemical character assessments, such as 
PREDITOP, PEOPLE, and BEPITOPE, to 
improve the accuracy of predictions.21,63,64 The 
machine learning method is a computational 
method that uses a train classifier to distinguish 
epitope and non-epitope antigenic structures 
based on data related to structural differences and 
physicochemical characteristics.64

Sequence-based prediction has the advantage of 
not requiring any understanding of the target 
antigen’s 3D structure. To determine the 3D 
structure of a target antigen, data from X-ray 
crystallography studies are required; however, not 
all target antigens have known 3D structures. In 
contrast, the disadvantage of sequence-based pre-
diction of B-cell epitopes is their relatively low 
accuracy, which on average is 60–70% because 
the majority of epitopes recognized by B cells are 
naturally in a discontinuous condition.60

Furthermore, newer methods have been devel-
oped to predict continuous B-cell epitopes. The 
SVMTriP service predicts continuous B-cell 
epitopes using the support vector machine algo-
rithm (SVM) and the Tri-peptide similarity and 
propensity score (SVMTriP) in order to improve 
prediction accuracy.65 Another approach is using 
validated B-cell epitopes as well as non B-cell 
epitopes from Immune Epitope Database which 
is resulting in two types of datasets called Lbtope_
Variable and Lbtope_Fixed length.66

Confirmed epitope prediction
The prediction of a confirmed epitope was devel-
oped because 90% of the epitopes recognized by 
B cells are in a discontinuous condition or form 
specific conformations. The first discontinuous 
epitope prediction method developed was the 
conformational epitope prediction, which can 
predict continuous or discontinuous epitopes 
using 3D protein structures. The underlying algo-
rithm employs solvent accessibility data based on 
the Voronoi polyhedron. Continuous epitopes are 
determined based on the presence of at least three 
sequential residues, whereas discontinuous 
epitopes are determined by decreasing continu-
ous epitopes with Cα within 6Ȧ.24

Another method, DiscoTope, uses a combination 
of amino acid statistics, spatial context, and 
amino acid surface accessibility to predict B-cell 
epitopes.67 This method can detect 15.5% of the 
residues present in discontinuous epitopes with a 
specificity of up to 95%; at this level of specificity, 
Parker’s hydrophilicity method can only detect 
11% of residues in discontinuous epitopes.24,26,67

ElliPro is a tool based on the combination of the 
Thornton concept, the MODELER program, 
and Jmol viewer.59 For the prediction of B-cell 
epitopes, ElliPro uses three steps: estimation of 
protein structure as an ellipsoid, calculation of the 
residual protrusion index (PI), and grouping of 
residues based on PI values. PI values are defined 
as the percentage of protein atoms inside the 
ellipsoid where the first residue is outside the 
ellipsoid.59 The Antigenic Epitopes Prediction 
with Support Vector Regression server (EPSVR) 
manipulates vector regression to combine the 
same scores as EPCES and achieves an area 
under the curve (AUC) of 0.597.68 Other tools 
that can be used to predict discontinuous B-cell 
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epitopes include Epitopia,69 PEPOP,70 
EPIMAP,60 and CBTOPE71 (Table 1).

T-cell epitope prediction
Compared with B-cell epitope predictions, T-cell 
epitope predictions are generally easier and more 

accurate because the structures of epitopes identi-
fied by T cells are simpler, that is, short, linear 
peptides (9–15 amino acids in length). Epitopes 
are recognized by the T-cell receptors (TCRs) in 
the form that is presented by the MHCs, that is, 
MHC class I or class II. It is important to con-
sider both epitope and MHC bonding and 

Table 1. B-cell epitope prediction tools.

Tools Description URL

ABCpred Based on sequence with ANN http://crdd.osdd.net/raghava/
abcpred/

BEPITOPE Based on sequence to predict continuous epitope http://bepitope.ibs.fr/

BCPREDS Predicting linear B-cell epitopes using the 
subsequence kernel

http://ailab-projects1.ist.psu.
edu:8080/bcpred/index.html

Bepro Based on antigen structure to predict 
discontinuous epitope

http://pepito.proteomics.ics.uci.
edu/

CEP Based on structure to predict continuous and 
discontinuous epitopes

http://bioinfo.ernet.in/cep.htm

COBEpro Based on B-cell epitope primer sequence. 
Secondary structure and solvent accessibility are 
also responsible for increasing prediction accuracy

http://scratch.proteomics.ics.uci.
edu/

DiscoTope Based in sequence and structure for predicting 
continuous and discontinuous epitopes

http://www.cbs.dtu.dk/

Ellipro Based on solvent accessibility and protein 
flexibility

http://tools.immuneepitope.org/
tools/ElliPro/iedbinput

EMT Based on phage display to predict continuous and 
discontinuous epitopes elro@novozymes.com

EPCES Prediction of discontinuous epitopes using support 
vector regression and multiple server

 http://sysbio.unl.edu/EPCES/

EPIMAP Based on phage display to predict continuous and 
discontinuous epitopes mumey@cs.montana.edu

Epitopia Based on linier sequence or 3D structure http://epitopia.tau.ac.il

IEDB B-cell 
epitope tools

Based on amino acid scale for continuous epitope 
prediction and 3D structure for discontinuous 
epitope prediction

http://tools.immuneepitope.org/
main/html/B-cell tools.html

LBtope Using various techniques (e.g. SVM, IBk) on a large 
dataset of B-cell epitopes and non-epitopes

 http://crdd.osdd.net/raghava/
lbtope/

SVMTriP Based on support vector machine (SVM) which is 
combining the tri-peptide similarity and propensity 
scores (SVMTriP)

 http://sysbio.unl.edu/SVMTriP/

ANN, artificial neural network.
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epitope–MHC and TCR complex bonds during 
the prediction of epitopes recognized by T cells. 
Epitopes bind to specific parts of MHCs, known 
as grooves, which are usually formed from two α 
helices and one β sheet and are then presented to 
T cells.72 Peptides are bound to MHCs through 
hydrogen bonds, electrostatic interactions, and 
van der Waals interactions. In general, peptides 
that bind to MHC class I have 8–11 amino acids 
sizes, whereas peptides that bind to MHC class II 
are 12–25 amino acids in length and protrude 
from the MHC groove but have at least 9 amino 
acids in the core.73 However, other studies have 
shown that some larger peptides can also bind to 
the MHC but have a lower immunogenic 
potential.23,74

Some of the methods used to predict epitopes 
that are recognized by T cells are the motif-based 
system, matrix, SVM, empirical scoring, and 
molecular dynamics (MDs) methods.73 The 
motif-based system was the first T-cell epitope 
prediction method developed. In this method, 
amino acid sequences that have a high tendency 
to bind to the MHC groove or so-called motif are 
predicted. The amino acid sequence is then com-
pared with the data in a library motif, where the 
previously determined binding peptide sequence 
and the nonbinding MHC-binding motif are col-
lected. The accuracy of this method can reach 
60–70% because not all peptides have known 
motifs.23

Other motif-based system has been developed 
based on machine learning algorithms (MLAs). 
For instance, based on MLAs, peptide-binding 
motifs can be determined according to certain 
classifications, for example, a positive value for a 
peptide binder and a negative value for a nonpep-
tide binder. MLAs can also be used for several 
classifications at the same time. Artificial neural 
networks are one of the types of MLAs most 
widely used to determine the motifs for introduc-
ing peptides to MHCs.22,75

Prediction of T-cell epitopes can also be per-
formed by simulating MDs, in which free bind-
ing energy is calculated for a molecular system. 
MDs can be used to explain the movement of 
atoms individually or collectively in a molecular 
system; thus, MDs provide a dynamic picture. 
The advantage of MDs relative to other methods 
is that they are not based on data alone but based 

on de novo predictions of all parameters that con-
struct the structure of the receptor ligand com-
plex.76 A summary of the tools that can be used 
to predict epitopes recognized by T cells is shown 
in Table 2.

In silico studies offer a new solution for cutting 
costs and time, which is important for drug devel-
opment. By using in silico studies, we can predict 
the effectiveness of a drug compound and thereby 
design an ‘ideal’ drug. Indeed, with the aid of in 
silico technology, before a new drug is developed, 
its effectiveness, side effects, potential for con-
tractions, and toxic effects can be determined in 
advance. Thus, the time and costs required for 
development can be reduced.

During vaccine development, in silico studies can 
provide huge benefits. Conventional vaccines that 
use all or part of a weakened or inactivated patho-
gen often cause severe side effects such as fever 
and hypersensitivity reactions. The imperfect 
inactivation process also allows active pathogens 
to enter the body and cause symptoms of the dis-
ease. The development of recombinant protein-
based subunit vaccines requires a long time 
because it must include the most potent antigen 
screening process among many other antigen pro-
teins.23 The development of recombinant pro-
tein-based vaccines is expensive because the 
production process must be sterile. Recombinant 
protein stability is also relatively low; therefore, 
vaccines must be stored at a certain temperature, 
which increases difficulties with their distribution 
and storage. Therefore, epitope-based vaccines 
are considered to be a solution to the problems of 
conventional vaccines, including vaccines for 
infectious diseases,28,29,77,78 and even metabolic 
disorders or inflammatory diseases.10

The development of informatics has given rise to 
new programs with respective advantages. The 
emergence of epitope prediction tools, antigenic-
ity prediction, protein modeling, and docking 
analysis has made it possible to design epitope-
based vaccines with maximum efficacy. In addi-
tion, the development of X-ray crystallization 
technology, NMR spectrophotometry, and CM 
has revealed the 3D structure of an increasing 
number of proteins, which in turn has facilitated 
the analysis of protein interactions. For proteins 
with unknown dimensions, 3D modeling and 
docking analysis methods have enabled 
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predictions of protein interactions including pre-
diction of bonds between antibodies and anti-
gens with the highest affinities.79

The application of in silico studies to the design of 
epitope-based vaccines is also relatively simple 
and does not require complex skills. The neces-
sary tools used are also widely available for free 
and can be accessed easily. The immune epitope 
database (IEDB) provides tools for the prediction 
of epitopes that are recognized by B cells and T 

cells, as well as for analyzing epitope characteris-
tics for more complete and reliable prediction 
results. This database and its associated tools 
have often been used in studies in which epitopes 
were predicted for vaccine development,22,63 per-
haps because the resource is easy to use. The 
main disadvantage of using in silico studies to 
develop epitope-based vaccines is that all predic-
tions are computationally based on approaches 
involving mathematics, chemistry, and biology; 
thus, the accuracy never reaches 100%. In a 

Table 2. T-cell epitope prediction tools.

Tool Description URL

EpiMatrix Based on protein binding efficiency with MHC 
class I and II

http://www.epivax.com/

FRAGPREDICT Based on proteasome cleavage site binding score http://www.mpiib-berlin.mpg.de/
MAPPP/cleavage.html

Immune Epitope 
Database 
and Analysis 
Resource (IEDB)

Prediction based on analysis of proteasomal 
processing, TAP transport, and MHC class I and 
II binding

http://www.immuneepitope.org/

MHCPred Based on the binding value of MHC/peptide or 
TAP/peptideIC50

http://www.jenner.ac.uk/

MMBPred Determination of high-affinity MHC binding 
peptide that undergoes mutations

http://www.imtech.res.in/
raghava/mmbpred/

NetChop Based on the immunoproteasome cleavage site http://www.cbs.dtu.dk/services/
NetChop/

NetCTL Based on the combination of MHC subtype 
binding values, Tap transport and proteasome

http://www.cbs.dtu.dk/services/
NetCTL/

NetMHC Based on the binding propensity of peptides to 
different HLA alleles using ANN

http://www.cbs.dtu.dk/

ProPred-1 Based on peptide binding efficiency with MHC I http://www.imtech.res.in/
raghava/propred1

SYFPEITHI Based on motif binding to MHC class I and II http://www.syfpeithi.com/

TAPPred Based on binding affinity with TAP protein http://www.imtech.res.in/
raghava/tappred/

RANKPEP Predicts peptide binders to MHC I and MHC 
II molecules using position specific scoring 
matrices (PSSMs)

http://imed.med.ucm.es/Tools/
rankpep.html

Epijen Based on the immunoproteasome cleavage site 
and TAP binding affinity

http://www.ddg-pharmfac.net/
epijen/EpiJen/EpiJen.htm

nHLAPred Based on the hybrid approach of artificial neural 
networks (ANNs) and quantitative matrices (QMs)

http://crdd.osdd.net/raghava/
nhlapred/
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biological system, there can be unpredictable 
interactions since proteins are dynamic macro-
molecular complexes. Protein 3D conformations 
are prone to changes in the physical environment, 
such as changes in charge and pH, which disrupt 
the structure and activity of the protein including 
its binding with other proteins.80 Antibodies are 
also proteins that are specific to certain antigens; 
changes in one residue alone prevent recognition 
by these antibodies. To improve the accuracy of 
epitope prediction, it is necessary to analyze MDs 
to validate the binding of antibodies to receptors. 
By improving accuracy in this manner, the effec-
tiveness of vaccines is also expected to be 
improved.

Conclusion
Based on our reviews, the immunoinformatic 
tools are very valuable tools for predicting and 
evaluating the epitopes for vaccine candidate 
development. These tools undeniably are becom-
ing the most informative and advantageous device 
for vaccine design.
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