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Abstract: The growing interest in refractory high-entropy alloys (HEAs) in the last decade is mainly
due to their thermal stability, outstanding mechanical properties, and excellent corrosion resistance.
However, currently HEAs are still not considered for use as common structural materials due to
their inherent drawbacks in terms of processing and machining operations. The recent progress
witnessed in additive manufacturing (AM) technologies has raised the option of producing complex
components made of HEAs with minimal machining processes. So far, this could be achieved by
using pre-alloyed powders of HEAs that were mainly produced by a conventional arc melting furnace
(AMF) in the form of small compounds that were transformed into powder via a gas atomization
process. To significantly reduce the production cost, the present study aims to analyze the ability to
synthesize HEA WTaMoNbV via a laser powder bed fusion (LPBF) process using mixed elemental
alloying powder as the raw material. For comparison, a counterpart alloy with the same chemical
composition was analyzed and produced by an AMF process. The microstructures of the tested alloys
were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM)
and X-ray diffraction (XRD) analyses. The physical properties were evaluated in terms of density
and mechanical strength, while the electrochemical behavior was assessed by potentiodynamic
polarization analysis. The results disclosed similarities in microstructure, physical properties and
electrochemical behavior between HEA WTaMoNbV manufactured by the proposed LPBF process
and its counterpart alloy produced by an AMF process.

Keywords: additive manufacturing; laser powder bed fusion; high-entropy alloys; refractory alloys

1. Introduction

The attractiveness of refractory high-entropy alloys (HEAs) as structural materials
stems from their outstanding mechanical properties, thermal stability, wear resistance and
corrosion performance in hostile environments [1–5]. Recently, refractory high-entropy
alloys have received significant attention in relation to high-temperature application in
aerospace, defense, and nuclear power generation industries [6]. In fact, they were desig-
nated to replace traditional Ni-based super-alloys in applications such as gas turbines, heat
exchangers, aerospace propulsion components, rocket engine nozzle [7]. HEAs are multi-
component systems that are composed from a small number of principal elements. They
are usually composed from at least five elements with individual atomic concentrations that
range between 5% and 35%. HEAs can produce solid phase solutions, mainly due to their
configurational entropy and ability to be adequately synthesized [8–10]. Conventionally,
HEAs are mainly produced in an arc melting furnace (AMF), but they may also be pro-
duced by mechanical alloying, plasma spark sintering and physical vapor deposition [11].
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Refractory HEAs are particularly difficult to process due to their high melting temperature,
high hardness, natural tendency to oxidize and toughness in machining operations [12].
Hence, there is great interest in finding ways to produce these alloys by additive manufac-
turing (AM) technologies, which could enable the production of complex components with
minimal machining processes [13–15].

The concept of using AM technologies to produce HEA components was initially intro-
duced by Kunce et al. in 2013 [16], and was later investigated by other researchers [17–20].
In general, the research relating to AM of HEA from pre-alloyed powder obtained mainly
by gas atomization [21–23] can be divided into three main categories: (i) powder bed fusion,
including laser powder bed fusion (LPBF) [24–26] and electron beam melting (EBM) [27,28];
(ii) direct energy deposition using blown powder deposition (BPD) [29–31]; and (iii) binder
jetting [32]. The use of spherical pre-alloyed powders tends to improve the row material
flowability as required in powder bed fusion processes [33].

In parallel, some initial AM efforts were dedicated to attempting to produce HEA
from a mix of elemental alloying powder composed of the following material systems:
Al0.5CrMoNbTa0.5 [34,35], NbMoTaW [8] and AlCoFeNiSmTiVZr [1]. However, the physi-
cal properties obtained in those studies were significantly inferior compared to AM samples
produced from pre-alloyed powders.

Senkov et al. [36] reported that they succeeded in producing the refractory HEA WTa-
MoNbV considered in this research by using the conventional vacuum AMF. Their results
demonstrated excellent mechanical properties and thermal stability at high temperatures
(1200 ◦C). A similar HEA composition in the form of WTaMoNb (without vanadium) was
also produced by an AM process from pre-alloyed material. Dobbelstein et al. [12] were the
first to produce this alloy with direct deposition technology in the form of a few consecutive
layers in 2016. Since then, only three further studies have been published [1,7,11], all with
the objective of achieving adequate solid solution synthesis with a BCC crystal structure.

The main challenge related to the composition of the HEA WTaMoNbV that was
selected mainly due to the high melting temperature of its elemental ingredients relates to
proper selection of the AM process parameters that can adequately synthesize this alloy.
This challenge is mainly due to the significant diversity in the thermal and physical proper-
ties of the alloying elements, as shown in Table 1. For example, the differences between the
melting temperatures of tungsten, on the one hand, and niobium and vanadium, on the
other, are 945 ◦C and 1512 ◦C, respectively, while the differences between their densities
are 10.68 and 13.14 gr/cm3, respectively. The aim of this study is to evaluate the possibility
of synthesizing refractory HEA WTaMoNbV via a LPBF process using mixed elemental
alloying powder as the raw material. This evaluation includes the preparation of a counter-
part alloy with the same chemical composition via a conventional AMF process to serve as
a reference. The ability to produce refractory HEA by LPBF will make it possible to create
complex geometry at reasonable cost.

Table 1. Typical physical properties of the considered refractory element.

W Ta Mo Nb V

Melting point (◦C) 3422 3017 2623 2477 1910

Density (gr/cm3) 19.25 16.65 10.28 8.57 6.11

2. Materials and Methods
2.1. Preparation of HEA WTaMoNbV Samples from Mixed Elemental Powder

Test specimens and a technology demonstrator component in the form of a turbine
blade were produced from HEA WTaMoNbV by an LPBF process [37] using a mixed
powder of the alloying elements. The LPBF facility included an EOS EOSINT M290 system
equipped with a 400 W Nd-YAG laser and pure argon as the protective gas atmosphere.
The powder used to produce the HEA WTaMoNbV was composed from mixed powders
of the alloying elements (W, Ta, Mo, Nb and V) with equal atomic amounts (20% each).
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The detailed chemical composition of the high-purity elemental powders in terms of ppm
impurities is shown in Table 2. The mixed powder was obtained by intensive stirring of the
pure elemental powders within a rotating sealed chamber for 6 h using a turning rate of
23 rpm until a homogenous mixed powder was obtained.

Table 2. Chemical composition of the pure elemental powders in terms of impurities [ppm].

C N O Mg Al Si P S Ca Ti V Cr Fe Ni Cu Se Nb Mo Sn Sb Ta W

Tungsten 25 20 10 85 10 13 55 - 15 - - - 30 50 35 20 - 30 7 18 - Bal.

Tantalum - - - - - 17 - - - 10 - - 14 18 - - - - - - Bal. 12

Molybdenum 35 16 50 2 3 9 10 10 - - - - 38 3 - - Bal. - - - 80

Niobium - - - <1 38 10 48 29 - - - 10 18 9 <1 - Bal. 8 <1 - - 72

Vanadium - - 1000 - 90 200 - - - - Bal. 70 1200 - - - - - - - - -

In order to attain adequate properties from the LPBF process, a large number of
AM sessions were carried out and designated as primary trials, intermediate trials and
advanced trials. The printing parameters of these trials were varied as follows: laser power
160–244 W, spot size 80 µm, scanning speed 300–700 mm/s, hatch spacing 0.10–0.12 mm,
building layer thickness 0.3 mm, energy density 38.1–162.7 [J/mm3] and final obtained
densities 38–95 [%], as shown in Table 3. The scanning direction was rotated 67 degrees after
each successive layer to attain optimal densification. The energy density was calculated
according to the following equation:

E =
P

V·h·t

where E—energy density, P—laser power, V—scanning speed, h—hatch spacing and t—building
layer thickness.

Table 3. Printing parameters of LPBF trials.

Laser Power [W] Scanning Speed
[mm/s]

Hatch Spacing
[mm]

Layer Thickness
[mm]

Energy Density
[J/mm3]

Final Density
[%]

Primary trials 160 700 0.12 0.03 38.1 38

Intermediate
trials 180 300 0.11 0.03 109.1 80

Advanced trials 244 300 0.10 0.03 162.7 95

As a reference, a counterpart HEA was produced with conventional technology us-
ing an AMF with the same mixed elemental powder that was used for the LPBF process.
The melting current and melting range capabilities of the AMF (Edmund Buhler GmbH
MAM1E-H180T) were 5–180 A and up to 4000 ◦C, respectively, and high-purity argon was
used as the protective gas atmosphere. The amount of the mixed elemental powder loaded
to the AMF was 12 g. Prior to this loading the mixed powder was compacted at room tem-
perature up to a green density of about 50% to obtain an adequately consolidated substance.

2.2. Microstructure Analysis

Microstructure analysis was carried out by scanning electron microscopy (SEM) (SEM-
JEOL 5600, JEOL Ltd., Tokyo, Japan), equipped with an energy-dispersive X-ray spec-
troscopy (EDS) sensor [38] for localized chemical composition detection. The metallo-
graphic preparation included polishing up to 0.04 µm. The presence of secondary phases
was evaluated by X-ray diffraction (XRD) analysis using a RIGAKU-2100H X-ray diffrac-
tometer with CuKα [39]. The diffraction parameters were 40 KV/30 mA and a scanning
rate of 2◦/min. For high-resolution observation, transmission electron microscopy (TEM)
characterization was carried out using an analytical electron microscope (JEOL JEM-2100F,
Jeol Ltd., Tokyo, Japan) facility operating at 200 kV. This observation included bright
field (BF) analysis, selected area electron diffraction (SAED), and EDS. For microstructural



Materials 2022, 15, 4043 4 of 15

investigation at the center of indentations, electron-transparent cross-section lamella speci-
mens were meticulously prepared with a dual-beam focused ion beam microscope (FEI,
Verios-460 L, Hillsboro, OR, USA).

2.3. Assessment of Physical Properties and Environmental Behavior

The physical properties of the additively manufactured HEA WTaMoNbV samples
were evaluated in terms of mechanical properties and density. For statistical reference, the
mechanical properties were measured 5 times for each test, including Vickers hardness,
measured by SM1016 TecQuipment Ltd., Nottingham, UK, and compression strength us-
ing a Hounsfield H25KT testing machine with a crosshead-speed of 0.5 mm/min. The
environmental behavior in terms of electrochemical analysis by potentiodynamic polariza-
tion was carried out using a Bio-Logic SP-200 potentiostat (BioLogic Science Instruments,
Seyssinet-Pariset, France), equipped with Ec-Lab software—V11.18 [40]. This assessment
was implemented using a standard three-electrode cell with saturated calomel (SCE) as
the reference electrode. The scanning rate of the potentiodynamic polarization analysis
was 0.5 mV/s and the corrosive environment was in the form of a 3.5% NaCl solution at
ambient temperature. Prior to the electrochemical analysis, the test samples were cleaned
in an ultrasonic bath for 5 min, followed by washing with alcohol and air drying.

3. Results
3.1. Powder Analysis

General views of the different elemental powders used to produce the mixed HEA
WTaMoNbV powder as the raw material for the LPBF process are shown in Figure 1.
Although the size distribution of the different particles was between 20–70 µm, the average
particle size was between 40–50 µm, as shown in Table 4. It should be pointed out that
the irregularity in the shapes of the different alloying particles assists in attaining a more
unified and compacted powder mix.
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Figure 1. General views of the elemental powders used to produce the HEA WTaMoNbV by
LPBF process.

Table 4. Pure elemental alloying powders—particle size and distribution.

W Ta Mo Nb V

Average particle size (µm) 40 45 35 50 45

Particle size distribution (µm) 20–55 25–45 20–40 28–70 20–50
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3.2. Chemical Composition Analysis and Macroscopic Structure Examination

The average chemical compositions of HEA WTaMoNbV produced by the LPBF
process and its counterpart alloy produced by conventional AMF are shown in Table 5.
As expected, both alloys showed similar chemical composition with relatively small de-
viations (less than 3.9%at) from the designated composition of 20% for each alloying
element. The chemical composition was measured in five different areas in the sample.
The highest standard deviation of Ta (21%) shows non-homogeneous compositions of the
different elements.

Table 5. Average chemical compositions of samples produced by LPBF and AMF processes.

W Ta Mo Nb V

LPBF sample 20.1 ± 3.0 23.9 ± 5.2 18.6 ± 1.3 18.4 ± 1.1 18.9 ± 1.9

AMF sample 18.8 ± 2.9 23.1 ± 1.2 19.7 ± 1.5 17.6 ± 2.1 20.8 ± 3.5

The typical macrostructure of HEA WTaMoNbV produced by various LPBF trials is
shown in Figure 2a–c along with the macrostructure of the counterpart alloy produced
by AMF, shown in Figure 2d. This reveals a significant difference between the primary
LPBF trials and the advanced LPBF trials in terms of inherent defects, mainly in the form of
lack-of-fusion and porosity [41]. Apparently, the relatively large amount of binding defects
found in the primary LPBF trials can be related to inadequate fusion of consecutive powder
layers [42]. This can be attributed to the insufficient local energy density that is required
for proper layer fusion [43]. The differences between the primary, on the one hand, and
the intermediate and advanced LPBF trials, on the other, in terms of densities, were 38%
and 95%, respectively. Comparatively, the macrostructure of the samples obtained by the
advanced LPBF trials was relatively similar to that of the counterpart alloy obtained by the
AMF process. Hence, all further analyses introduced by this study only relate to samples
produced by the advanced LPBF trials.
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3.3. Microstructure Analysis

XRD analysis results for HEA WTaMoNbV produced by the LPBF process and its
counterpart AMF alloy are shown in Figure 3. This reveals that the diffraction patterns of
both alloys were similar, apart from differences in peak intensities that could be related to
the relatively preferred orientation of the LPBF samples. Both alloys were composed of a
single solid phase solution with a BCC crystal structure, as obtained by Zhang et al. [44], and
had a similar lattice parameter of 3.2 Å. In addition, small peak shifts were observed in the
LPBF samples in comparison to the AMF sample. The shifting of these peaks can be related
to normal residual stresses that are produced during the additive manufacturing process.
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Figure 3. X-ray diffraction analysis of HEA WTaMoNbV produced by AMF and LPBF processes.

Typical microstructures of HEA WTaMoNbV produced by the LPBF process are shown
in Figure 4. In general, this reveals the presence of a single solid phase solution with a
relatively fine grain size (average size 10 µm). In addition, it shows the differences between
the microstructure in the XY plane (printing path—top cross section view) and in the
XZ plane (printing direction—front cross section view). The difference in the diffraction
intensities between the XY plane and the XZ plane is indicative of preferred orientation due
to epitaxial solidification, as expected from additively manufactured processes. However,
the XRD results showed no significant sign of preferred orientation between the printing
path and the printing direction. Furthermore, the zoom-out view (Figure 4a) along with
local chemical composition analysis (Table 6) exposed differences in the distribution of
tungsten. This was manifested by a relatively high amount of W (37.6%) in bright grains
shown in Area 1 compared to only 15% of W in a neighboring site (Area 2). This can
be attributed mainly to the relatively high melting temperature and high density of W
compared to other alloying elements. In addition, minor cracks were observed in some
parts of the LPBF sample, with a maximum crack density of 6.4 × 10−7 µm−2.

Table 6. Local chemical compositions (at. %) by EDS analysis, related to Figure 4a.

W Ta Mo Nb V

Area 1 37.6 ± 0.4 11.9 ± 2.4 11.5 ± 0.5 20.6 ± 0.5 18.4 ± 0.2

Area 2 15.0 ± 1.0 24.8 ± 5.3 19.3 ± 0.6 19.4 ± 0.4 21.6 ± 0.2



Materials 2022, 15, 4043 7 of 15
Materials 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. Microstructure of HEA WTaMoNbV produced by LPBF in terms of SEM backscattered 
electron mode: (a,b) XY plane, (c,d) XZ plane. 

Table 6. Local chemical compositions (at. %) by EDS analysis, related to Figure 4a. 

 W Ta Mo Nb V 
Area 1 37.6 ± 0.4 11.9 ± 2.4 11.5 ± 0.5 20.6 ± 0.5 18.4 ± 0.2 
Area 2 15.0 ± 1.0 24.8 ± 5.3 19.3 ± 0.6 19.4 ± 0.4 21.6 ± 0.2 

Typical microstructures of the counterpart alloy produced by the AMF process are 
shown in Figure 5. Although the counterpart alloy also presents a single solid phase solu-
tion structure, its grain size was significantly increased compared to the LPBF samples 
(average size 25 µm). In addition, Figure 5c, along with the local composition analysis 
(Table 7), reveals a significant depletion of W at grain boundaries, accompanied by a sub-
stantial increase in V in this region. This phenomenon can be attributed to the relatively 
low melting temperature of V, which consequently solidified at the end of the solidifica-
tion process, and hence was found to prefer grain boundaries. As supporting evidence, 
the phase compositions at high magnification with corresponding EDS maps are shown 
in Figure 6. This clearly demonstrates that the grain boundary mostly contains V and Nb, 
with relatively low concentration of W. 
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electron mode: (a,b) XY plane, (c,d) XZ plane.

Typical microstructures of the counterpart alloy produced by the AMF process are
shown in Figure 5. Although the counterpart alloy also presents a single solid phase
solution structure, its grain size was significantly increased compared to the LPBF samples
(average size 25 µm). In addition, Figure 5c, along with the local composition analysis
(Table 7), reveals a significant depletion of W at grain boundaries, accompanied by a
substantial increase in V in this region. This phenomenon can be attributed to the relatively
low melting temperature of V, which consequently solidified at the end of the solidification
process, and hence was found to prefer grain boundaries. As supporting evidence, the
phase compositions at high magnification with corresponding EDS maps are shown in
Figure 6. This clearly demonstrates that the grain boundary mostly contains V and Nb,
with relatively low concentration of W.
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Table 7. Local chemical compositions (at. %) by EDS analysis; related to Figure 5c.

W Ta Mo Nb V

Point 1 22.7 ± 2.1 22.0 ± 3.6 25.0 ± 0.4 16.7 ± 0.3 13.6 ± 0.3

Point 2 0 ± 0 51.9 ± 4.1 0 ± 0 7.4 ± 0.2 40.8 ± 0.2

Point 3 0 ± 0 4.2 ± 1.2 0.7 ± 0.3 28.1 ± 0.4 66.9 ± 0.5
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The general microstructure of HEA WTaMoNbV produced by the LPBF process,
as obtained by TEM analysis, is shown in Figure 7a. This high-resolution observation
demonstrates the presence of sub-grains, with a size of about 500 nm, that compose the
alloy matrix. Furthermore, evidence of high-density dislocations was also observed, and is
probably due to common internal stresses inherently generated by the LPBF process. In
addition, relatively small precipitates with a size of 60–80 nm and with a nearly spherical
shape were dispersed along the intergranular boundaries, as shown in Figure 7b. It should
be pointed out that this spherical precipitate was not identified by the XRD analysis,
probably due to its relatively reduced amount (less than 2%). The chemical composition of
those precipitates included a large amount of V (33%at) and a relatively depleted amount
of W (7.9%at), as shown in Table 8. This observation complies with the outcome of the
SEM analysis, from which it was concluded that the relatively low melting temperature
of V makes this element more favorable to solidification at grain boundaries during the
end stage of the solidification process. The electron diffraction image shown in Figure 7c
corroborates the presence of a BCC crystal structure with Im3m symmetry. However, the
precipitate structure was not decoded, due to the difficulty in finding different ordinations
of the particle and the lack of literature on this aspect.

Table 8. Local chemical compositions (at. %) by EDS analysis, related to Figure 6a.

W Ta Mo Nb V

Point 1 7.9 27.1 10.1 21.7 33.2

Point 2 26.6 22.4 21.1 18.4 11.7
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3.4. Physical Properties Assessment

The examined physical properties of HEa WTaMoNbV produced by the LPBF process
were similar to those of the counterpart AMF alloy, being about 1.6% lower in terms of
density, while its hardness was slightly reduced, as shown in Table 9.

Table 9. Mean densities and hardness of HEa WTaMoNbV obtained by LPBF vs. its counterpart alloy
produced by AMF process.

Mean Densities (gr/cm3) Hardness (HV10)

LPBF sample 10.83 674 ± 48

AMF sample 11.01 719 ± 53

The mechanical properties of HEa WTaMoNbV produced by LPBF and AMF as
expressed in terms of its compressive stress–strain curve are shown in Figure 8. The
ultimate compressive strength of the LPBF sample was slightly higher than the counterpart
AMF sample, as shown in Table 10. Both alloys presented relatively brittle compressive
stress–strain curves with significantly reduced elongation. For reference consideration, a
similar result for the AMF sample was presented by Senkov et al. [36].
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Figure 8. Compressive stress–strain curves of HEA WTaMoNbV produced by LPBF and
AMF processes.

Table 10. Statistical deviations of the mechanical properties of the printed WTaMoNbV HEA and
reference AMF WTaMoNbV HEA.

HEA WTaMoNbV Produced by
LPBF

HEA WTaMoNbV HEA
Produced by AMF

Ultimate Compressive Strength
(UCS) [MPa] 1391 ± 166 1107 ± 43

Young’s modulus [GPa] 15 ± 2 21 ± 3

The fracture failure analysis of the LPBF and AMF samples obtained by SEM revealed
a relatively brittle fracture with a transgranular morphology, as shown in Figure 9a,b
and Figure 10, respectively. In addition, Figure 9c,d indicates that the fracture surface
contains typical LPBF defects, such as porosity and un-melted powder particles that induce
brittleness. The higher compressive strength and more brittle fracture of the LPBF alloy
may be related to differences in the microstructure and solidification defects and in the
finer grain size.
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Figure 10. Fractography analysis of HEA WTaMoNbV produced by AMF process, showing trans-
granular fracture.

3.5. Environmental Behavior Assessment

The environmental behavior of HEA WTaMoNbV obtained by the LPBF process ver-
sus that of its counterpart AMF alloy in terms of potentiodynamic polarization analysis
is shown in Figure 11, along with the derived electrochemical parameters introduced in
Table 11. This indicates that both alloys showed excellent corrosion resistance with a
typical active–passive transition mode [45,46]. In addition, due to the relatively increased
roughness of the LPBF alloy, its passivation stability manifested by current density fluc-
tuations was reduced. Regarding the passivation current, although the counterpart AMF
alloy showed relatively reduced current density, the break potential of the LPBF alloy that
signified the transition to the transpassive state and breakdown of the passive film [47]
was higher. This basically means that although the passivation of the AMF alloy is easier to
obtain, its stability is reduced. As a result, the localized corrosion attack of the LPBF alloy
in terms of pit dimensions was reduced compared to the AMF alloy, as shown in Figure 12.
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Table 11. Electrochemical parameters derived from polarization curves shown in Figure 10 along
with Tafel extrapolation for evaluating the corrosion rate.

LPBF Sample AMF Sample

ECorr (v) −0.126 −0.085

ICorr (µA) 1.759 2.936

I passivation (mA) 0.020 0.012

Corrosion rate (mmpy) 0.0014 0.0014
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4. Discussion

This basic feasibility analysis addresses the question of whether HEA WTaMoNbV
can be adequately produced via the LPBF process using mixed elemental alloying powder
as the raw material. In fact, the more fundamental question is whether the proposed LPBF
process is capable of adequately synthesizing the alloying elements of HEA [12] in a similar
manner to that obtained using a conventional AMF process [36].

The attained results clearly demonstrated that the macrostructure and phase com-
position of samples produced by LPBF were similar to those obtained by its counterpart
AMF alloy. In both cases, the alloys were composed of a single solid-phase solution with
a BCC crystal structure with similar lattice parameters, as expected according to Kang
et al. [48]. In terms of microstructure, both alloys showed differences in the distribution of
tungsten and an increased amount of vanadium at grain boundaries. This can mainly be
related to the relatively low melting temperature of vanadium (1910 ◦C) versus tungsten
(3422 ◦C), which consequently causes vanadium to solidify at grain boundaries during the
final phase of the solidification process. Additional reasons for the elemental distribution
in the case of the LPBF process may be related to differences in the shape and size of the
powder particles. Their irregular size can affect the laser beam operation differently, and
consequently influence the solidification process. This may relate, for example, to the rela-
tively Ta size deviation (standard deviation of 20%). The combination of the high melting
temperature (3017 ◦C) of Ta and the relatively large shape deviation can lead to uneven
distribution. Hence it is believed that using spherical powders may improve the flowability
of the powder and consequently increase homogeneity. The physical properties in terms of
density as well as the mechanical properties in both the LPBF alloy and its counterpart AMF
alloy were similar. The relatively increased compressive strength of the LPBF sample could
be related to the relatively reduced grain size, due to inherent rapid solidification charac-
teristics. In terms of environmental behavior, both alloys showed outstanding corrosion
resistance and adequate passivation characteristics, as expected [1,5,7,11]. Nevertheless,
the small differences in the corrosion mechanism of the two alloys related to the relatively
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non-homogeneous characteristics of the LPBF sample and inherent printing defects. This
was visually manifested by the relatively increased number of small pits in the LPBF alloy
compared to the counterpart AMF alloy, although the total mass loss of the two alloys
were similar.

Altogether, this study was able to basically analyze and demonstrate the feasibility
of producing HEA WTaMoNbV by an LPBF process from mixed elemental alloying pow-
der. However, additional experimental work is required to further optimize the printing
parameters to obtain improved properties and microstructure characteristics, mainly in
terms of printing defects. This may also include post heat treatments that may upgrade the
homogeneity of the LPBF alloy, as well as its synthesis characteristics.

5. Conclusions

a. The synthesis of HEA WTaMoNbV via the laser powder bed fusion (LPBF) process
using mixed elemental alloying powder was demonstrated as feasible because of its
similar microstructure, physical properties and electrochemical behavior compared to
its counterpart alloy produced by the conventional arc melting furnace (AMF) process.

b. In both cases, the alloys were composed of a single solid phase solution, with a BCC
crystal structure with similar lattice parameters.

c. Further experimental work is needed to continue to optimize the printing parame-
ters of the LPBF process along with possible a post-heat-treatment process to rectify
inherent printing defects.
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