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O-linked β-N-acetylglucosamine (O-GlcNAc) is an abundant and essential intracellular

form of protein glycosylation in animals and plants. In humans, dysregulation of

O-GlcNAcylation occurs in a wide range of diseases, including cancer, diabetes, and

neurodegeneration. Since its discovery more than 30 years ago, great strides have

been made in understanding central aspects of O-GlcNAc signaling, including identifying

thousands of its substrates and characterizing the enzymes that govern it. However,

while many O-GlcNAcylated proteins have been reported, only a small subset of these

change their glycosylation status in response to a typical stimulus or stress. Identifying the

functionally important O-GlcNAcylation changes in any given signaling context remains a

significant challenge in the field. To address this need, we leveraged chemical biology and

quantitative mass spectrometry methods to create a new glycoproteomics workflow for

profiling stimulus-dependent changes in O-GlcNAcylated proteins. In proof-of-principle

experiments, we used this new workflow to interrogate changes in O-GlcNAc substrates

in mammalian protein trafficking pathways. Interestingly, our results revealed dynamic

O-GlcNAcylation of COPγ1, an essential component of the coat protein I (COPI) complex

that mediates Golgi protein trafficking. Moreover, we detected 11 O-GlcNAc moieties

on COPγ1 and found that this modification is reduced by a model secretory stress

that halts COPI trafficking. Our results suggest that O-GlcNAcylation may regulate the

mammalian COPI system, analogous to its previously reported roles in other protein

trafficking pathways. More broadly, our glycoproteomics workflow is applicable to myriad

systems and stimuli, empowering future studies of O-GlcNAc in a host of biological

contexts.
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INTRODUCTION

O-linked β-N-acetylglucosamine (O-GlcNAc) is a major, dynamic post-translational modification
(PTM), added by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) from serine
and threonine residues of intracellular proteins (1–7). O-GlcNAc is broadly conserved among
animals, plants and other organisms, and O-GlcNAcylation controls a wide range of cellular
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functions, such as nutrient sensing, metabolism and gene
expression (1–8). Importantly, aberrant O-GlcNAc cycling is
also implicated in numerous human diseases, including cancer
(2, 9–12), diabetes (13–16), cardiac dysfunction (17–20), and
neurodegeneration (21–24).

Despite this broad pathophysiological significance, major
questions about O-GlcNAc signaling remain. For example, O-
GlcNAcylation regulates diverse cellular processes and modifies
thousands of intracellular proteins, but only a small fraction of
substrates change their glycosylation status in response to any
given signal or condition (1–4, 25, 26). A central challenge in
the field is to identify the most functionally relevant O-GlcNAc
changes in response to a stimulus of interest. However, because
O-GlcNAc is a transient and sub-stoichiometric PTM, it can be
difficult to study with traditional molecular biology or genetics
alone.

To address this challenge, we previously reported a two-
step chemical biology method to tag and purify O-GlcNAc
substrates from live mammalian cells (27–31). Briefly,
cells are first metabolically labeled with a peracetylated N-
azidoacetylgalactosamine (GalNAz), a synthetic, azide-bearing
monosaccharide that is non-toxic and cell-permeable (28, 32).
GalNAz is accepted by sugar salvage and epimerase enzymes,
resulting in the biosynthesis of a nucleotide-azidosugar, “UDP-
GlcNAz,” which is used by OGT to install an “O-GlcNAz” moiety
onto its native substrates (28). O-GlcNAz can then be tagged
via chemical ligation to an alkyne-functionalized probe. Azides
and alkynes engage in a copper-catalyzed [3+2] cycloaddition,
often called “click chemistry,” that proceeds rapidly under
biocompatible conditions (33–36). The click reaction between
O-GlcNAz moieties and the alkyne probe provides exquisitely
specific labeling of OGT substrates with useful handles (e.g.,
biotin, fluorophores) for downstream analysis (27–31). Because
GalNAz treatment labels endogenous OGT substrates, it
affords time-resolved tagging of O-GlcNAcylated proteins,
without the need for a priori knowledge of their identities.
We have previously used this strategy to dissect the functional
role of O-GlcNAc in a variety of cell biological contexts
(28–31).

We envisioned combining GalNAz labeling with quantitative
proteomics to discover changes in O-GlcNAcylated proteins
in response to physiological stimuli, stresses, or other cues.
As a model cellular process for these proof-of-principle
experiments, we selected protein trafficking. More than a third
of mammalian proteins transit the secretory system to localize
to, and recycle from, specific subcellular locations, including
the endoplasmic reticulum (ER), Golgi, plasma membrane,
endosomes, lysosomes, and the extracellular space (37–39).
In most instances, dedicated protein machinery effects the
formation and trafficking of vesicles between discrete locations,
as in clathrin-mediated endocytosis from the plasma membrane
to endosomes (40), coat protein complex II (COPII)-facilitated
transport from the ER to Golgi (41–46), and COPI-mediated
trafficking among the Golgi cisternae and from the Golgi
to the ER (47–49). Properly regulated protein trafficking is
critical for cell and tissue physiology, particularly in professional
secretory cell types and organs, including the endocrine system.

Indeed, protein trafficking is essential in all eukaryotes and is
dysregulated in a wide range of human diseases (44–46).

While the fundamental biochemical steps of vesicle assembly
are relatively well understood for some systems (e.g., clathrin,
COPII, and COPI), much less is known about how vertebrate
cells dynamically adjust trafficking activity in response to
developmental cues, fluctuating signals, metabolic demands,
or stress (44–46). Interestingly, however, several studies have
implicated O-GlcNAc in regulating multiple protein trafficking
pathways. For example, key COPII proteins are O-GlcNAcylated
(28, 50–53), and we recently demonstrated that specific
glycosylation sites on Sec23A, a core COPII protein, are
required for its ability to mediate collagen trafficking in
both cultured human cells and developing vertebrate embryos
(54). Other studies have indicated a role for O-GlcNAc in
regulating synaptic vesicle trafficking and clathrin-mediated
endocytosis as well (55–63). Taken together, these reports
suggest that O-GlcNAc may be a broad regulator of protein
trafficking. However, the extent and functional effects of O-
GlcNAcylation in mammalian trafficking pathways remain
largely uncharacterized.

Here, we leverage GalNAz metabolic labeling and
quantitative proteomics to create a novel workflow for
identifying stimulus-induced changes in O-GlcNAcylated
proteins. In a pilot experiment, we used this glycoproteomics
workflow to investigate the role of O-GlcNAc in mammalian
protein trafficking. Our results indicate that COPγ1, an
essential component of the COPI complex, is dynamically O-
GlcNAcylated on up to 11 distinct sites under control conditions
but deglycosylated upon perturbation of protein secretion.
Our study is the first report of COPI protein O-GlcNAcylation
and suggests that O-GlcNAc may regulate mammalian intra-
Golgi and/or retrograde Golgi-to-ER protein trafficking. More
broadly, we expect that our glycoproteomics strategy will
be readily extensible to a wide spectrum of experimental
stimuli, conditions and systems beyond protein trafficking,
permitting the study of O-GlcNAc function in diverse biological
contexts.

MATERIALS AND METHODS

Chemical Synthesis
Thiamet-G and Ac4GalNAz were synthesized as described (28,
64) by the Duke Small Molecule Synthesis Facility. All other
chemicals were purchased from Sigma-Aldrich unless otherwise
indicated.

Cell Culture
Ramos cells were cultured in Roswell Park Memorial Institute
medium (RPMI) containing 10% fetal bovine serum (FBS),
100 units/ml penicillin, and 100µg/ml streptomycin in 5%
CO2 at 37◦C. FL5.12 (parental N6 and XL4.1 lines) were
cultured in RPMI containing 10% FBS, 100 units/ml penicillin,
100µg/ml streptomycin, 55µM β-mercaptoethanol, 2mM L-
glutamine, 10mM HEPES and 500 pg/ml recombinant mouse
IL-3 (eBioscience) in 5% CO2 at 37

◦C.
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Cell Viability Assays
Ten thousand Parental FL5.12 (N6) cells in 100 µl RPMI
were seeded into clear-bottom 96-well plates and treated with
a dose range of brefeldin A (BFA) for 4 or 24 h. Both MTS
(Promega, CellTiter 96 AQueous Proliferation Assay) and ATP
(Promega, CellTiter-Glo Luminescent Cell Viability Assay) assays
were performed according to the manufacturer’s instructions.
Independent replicates were evaluated by a 2 × 2 analysis of
variance (ANOVA), with BFA dose and treatment time as the
independent factors. Post-hoc tests for differences between BFA
doses and treatment times were conducted with Tukey’s honestly
significant difference (HSD) test using SAS/JMP software,
Version 13.0.0 (SAS Institute Inc.). Significance was defined as
p < 0.05 (two-tailed).

Alkyne-Biotin Click Reactions and Affinity
Purification
Cells were treated with 100µM GalNAz up to 24 h prior to
harvesting. After harvesting, cells were lysed in click buffer
(1% Triton X-100, 1% SDS, 150mM NaCl, 20mM Tris pH
7.4) supplemented with protease inhibitors, 5µM PUGNAc and
50µM UDP to inhibit hexosaminidases and OGT, respectively.
Click reactions were assembled on an ice bucket. The following
reaction components were added, in order, to the listed
final concentration: protein sample, 5mM sodium ascorbate,
25µM alkyne-biotin, 100µM Tris[(1-benzyl-1H-1,2,3-triazol-4-
yl)methyl]amine (TBTA), 1mM CuSO4. Reactions were mixed,
rotated gently at room temperature for 1 h and then quenched by
addition of 10mM EDTA (final). For immediate analysis, SDS-
PAGE sample buffer was added directly to reactions. For further
processing and affinity purification, unreacted alkyne-biotin
was removed by methanol-precipitation as follows. Reactions
were mixed with ice-cold methanol (10:1 methanol:sample by
volume). After mixing, samples were placed on dry ice or
incubated at −80◦C for 10min to increase protein precipitation
and then centrifuged at 17,000 g to pellet. Supernatants were
removed and pellets were resuspended inmethanol and placed on
ice. This process was repeated a total of four times. After the final
precipitation, the protein pellet was dissolved in 4M guanidine
in phosphate-buffered saline (PBS). Biotinylated proteins were
captured from the samples by incubating overnight at 4◦C with
gentle rotation with NeutrAvidin beads (ThermoFisher, Pierce
High Capacity NeutrAvidin Agarose). The following day, beads
were washed three times with the following buffers, in order: 4M
guanidine in PBS, 5M NaCl in H2O, 6M urea in PBS, and 1%
SDS in PBS. Captured proteins were eluted by boiling in 2X SDS-
PAGE sample buffer. Reserved input samples in 4M guanidine
were buffer-exchanged into SDS-PAGE buffer via spin column
(BioRad, Bio-Spin 6).

Immunoblotting (IB)
IBs were performed via standard methods as previously
described (54). The following primary antibodies were used:
mouse monoclonal anti-tubulin (T6074, Sigma-Aldrich;
1:100,000), mouse monoclonal anti-biotin (B7653, Sigma-
Aldrich, 1:2,000), mouse monoclonal anti-nucleoporin p62

(610498, BD Biosciences, 1:2,000), mouse monoclonal anti-
COPγ1 (sc-393977, Santa Cruz Biotechnology, 1:1,000),
mouse monoclonal anti-O-GlcNAc antibody 18B10 (MA1-038,
ThermoFisher; 1:1,000), mouse monoclonal anti-O-GlcNAc
antibody RL2 (SC-59624, Santa Cruz Biotech; 1:500). The
following secondary antibody was used: goat anti-mouse
IgG (1030-05, horseradish peroxidase (HRP)-conjugated,
SouthernBiotech; 1:10,000).

SILAC Labeling
RPMI 1640 medium lacking L-lysine and L-arginine
(ThermoFisher) was supplemented with 10% dialyzed and
heat-inactivated FBS (Corning), 1% penicillin/streptomycin
and amino acids. “Heavy” medium was supplemented with
12.5mg 13C15

6 N4-arginine, 12.5mg 13C15
6 N2-lysine, and 5mg

proline per 500ml. “Light” medium was supplemented with
12.5mg arginine, 12.5mg lysine, and 5mg proline per 500ml.
Proline supplementation prevents conversion of arginine to
proline (65). XL4.1 cells were passaged for at least 7 doublings in
either heavy or light SILAC medium to achieve >99% isotope
incorporation. Isotope incorporation was verified via MS at the
Duke Proteomics Facility. Full proteomics data are available as
Excel files in the Supplemental Material.

Subcellular Fractionation
Cells were washed once with cold PBS and resuspended in 5ml
of ice-cold Buffer A (1.5mMMgCl2, 10mMKCl, 10mMHEPES,
pH 7.9) supplemented with protease inhibitors, 5µM PUGNAc
and 50µM UDP. Cells were lysed using a pre-chilled Dounce
homogenizer and ∼30 strokes with a tight pestle. Cell integrity
was monitored using a hemocytometer. After Douncing, samples
were centrifuged at 228 g for 5min at 4◦C, yielding a crude
cytoplasmic fraction (supernatant) and a crude nuclear fraction
(pellet). Crude nuclear fractions were resuspended in 3ml of
Buffer S1 (0.35M sucrose, 0.5mM MgCl2) supplemented with
protease inhibitors, PUGNAc and UDP, layered over a cushion
of Buffer S3 (0.88M sucrose, 0.5mM MgCl2) and centrifuged at
2,800 g for 10min at 4◦C to obtain a pure nuclear pellet. Crude
cytoplasmic fractions were centrifuged at >400,000 g for 1 h at
4◦C to obtain a pure cytoplasmic fraction (supernatant). Pure
nuclear pellets were lysed in click buffer and pure cytoplasmic
fractions were supplemented with appropriate concentrations of
click buffer ingredients.

Proteomic Analysis of BFA-Induced
Changes in O-GlcNacylated Proteins
XL4.1 cells were seeded at 500,000 cells/ml the day before
treatment. Cells were treated with 100µM GalNAz alone for
2 h, then 500 ng/ml BFA or DMSO (vehicle) was added, and
cells were harvested 4 h later. Heavy- and light-labeled cells
were pooled 1:1, washed twice with cold PBS and fractionated
as above. Protein amounts were quantified by BCA Assay
(ThermoFisher) and 2mg of nuclear or cytoplasmic protein was
processed further. Alkyne-agarose beads (Click Chemistry Tools)
were washed three times in click buffer. Protein samples were
precleared with 150 µl bead volume of washed alkyne-agarose
beads with gentle rotation for 2 h at room temperature. After
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preclearing, supernatants were removed and combined with 50
µl of equilibrated alkyne-agarose beads, 5mM sodium ascorbate,
100µM TBTA and 1mM CuSO4. Reactions were rotated at
room temperature for 2 h and then quenched by addition of
10mM EDTA. Beads were washed sequentially with three 1ml
washes of each of the following: 1% SDS, 20mM Tris pH
7.4; 1% SDS, 10mM dithiothreitol (DTT), 20mM Tris pH 7.4;
1X PBS; 8M urea; 1X PBS; 6M guanidine hydrochloride; 1X
PBS; 5M NaCl; 1X PBS; 10X PBS; 1X PBS; 20% isopropanol;
20% acetonitrile; 50mM ammonium bicarbonate. Washed beads
were stored at 4◦C in 100 µl 50mM ammonium bicarbonate
until they were submitted for on-bead trypsin digestion, LC-
MS/MS analysis and quantification at the Duke Proteomics
Facility.

Sample Preparation and Nano-Flow Liquid
Chromatography Electrospray Ionization
Tandem Mass Spectrometry (LC-MS/MS)
Analysis of SILAC Samples
Samples immobilized on alkyne-agarose beads were washed
three times with 50mM ammonium bicarbonate, pH 8.0
and suspended in 30 µl 50mM ammonium bicarbonate, pH
8.0 supplemented with 0.1% Rapigest SF surfactant (Waters).
Samples were reduced with 5mM DTT for 30min at 70◦C
and free sulfhydryls were alkylated with 10mM iodoacetamide
for 45min at room temperature. Proteolytic digestion was
accomplished by the addition of 500 ng sequencing grade trypsin
(Promega) directly to the beads with incubation at 37◦C for 18 h.
Supernatants were collected following a 2-min centrifugation
at 1,000 rpm, acidified to pH 2.5 with trifluoroacetic acid and
incubated at 60◦C for 1 h to hydrolyze the remaining Rapigest.
Insoluble hydrolyzed surfactant was cleared by centrifugation
at 15,000 rpm for 5min. Samples were dried using vacuum
centrifugation and resuspended in 20 µl of 2% acetonitrile/0.1%
formic acid. Two microliters of each sample was subjected to
chromatographic separation on a Waters NanoAquity UPLC
equipped with a 1.7µm BEH130 C18 75µm I.D. X 250mm
reversed-phase column. The mobile phase consisted of (A) 0.1%
formic acid in water and (B) 0.1% formic acid in acetonitrile.
Following a 5 µl injection, peptides were trapped for 5min on
a 5µm Symmetry C18 180µm I.D. X 20mm column at 20
µl/minute in 99.9% A. The analytical column was held at 5% B
for 5min, then switched in-line and a linear elution gradient of
5% B to 40% B was performed over 90min at 300 nl/minute.
The analytical column was connected to a fused silica PicoTip
emitter (New Objective) with a 10µm tip orifice and coupled
to a QExactive Plus mass spectrometer through an electrospray
interface. The instrument was set to acquire a precursor MS
scan from m/z 375–1,600 with r = 70,000 at m/z 400 and a
target AGC setting of 1e6 ions. In a data-dependent mode of
acquisition, MS/MS spectra of the 10 most abundant precursor
ions were acquired at r= 17,500 at m/z with a target AGC setting
of 5e4 ions. Max fill times were set to 60ms for full MS scans
and 60ms for MS/MS scans with minimum MS/MS triggering
thresholds of 5,000 counts. For all experiments, fragmentation
occurred with a higher-energy collisional dissociation setting

of 27% and a dynamic exclusion of 60 s were employed for
previously fragmented precursor ions.

Raw LC-MS/MS data files were processed in Mascot distiller
(Matrix Science) and then submitted to independent Mascot
database searches (Matrix Science) against SwissProt (Mus
musculus taxonomy) containing both forward and reverse entries
of each protein. Search tolerances were 5 ppm for precursor
ions and 0.02 Da for product ions using trypsin specificity with
up to two missed cleavages. Carbamidomethylation (+57.0214
Da on Cys) was set as a fixed modification, whereas oxidation
(+15.9949 Da on Met) and O-GlcNAcylation (+203 Da on
Ser/Thr) were considered variable modifications. All searched
spectra were imported into Scaffold (Proteome Software) and
protein confidence thresholds were set using a Bayesian statistical
algorithm based on the PeptideProphet and ProteinProphet
algorithms, which yielded a peptide and protein false discovery
rate (FDR) of 1%.

SILAC data were processed using Rosetta Elucidator as
previously described (66–68) with the following modifications.
Database searching in Mascot used a SwissProt mouse database
(downloaded on 4/21/11) with an equal number of reverse
entries, 5 ppm precursor and 0.02 Da product ion tolerances
and variable modifications on Met (oxidation), Arg (+10), and
Lys (+8). Data were annotated at a 1% peptide FDR using the
PeptideTeller algorithm. Quantification of labeled pairs required
that both members were identified.

Immunoprecipitation (IP)
Cells were washed twice with cold PBS and lysed in IP lysis
buffer (1% Triton X-100, 150mM NaCl, 1mM EDTA, 20mM
Tris-HCl pH 7.4) supplemented with protease inhibitors, 5µM
PUGNAc and 50µMUDP. Lysates were probe-sonicated, cleared
by centrifugation and quantified by BCA protein assay. IPs
were performed on 1–5mg total protein. Cleared lysates were
adjusted to a final total protein concentration of ∼1 mg/ml
using IP lysis buffer. For every 1mg of protein lysate used, 3
µg of mouse monoclonal anti-COPγ1 (sc-393977, Santa Cruz
Biotechnology) antibody was added and rotated overnight at 4◦C.
The following day, 50 µl equilibrated protein A/G UltraLink
Resin (ThermoFisher) was added to the lysate and rotated at
room temperature for 1 h. Beads were washed three times with
1ml of IP lysis buffer and then eluted in 2X SDS-PAGE sample
buffer with boiling. Eluents were analyzed via IB.

Cloning
The COPγ1-myc-6xHis construct was generated by amplifying
the open reading frame of the human COPγ1 cDNA (Harvard
PlasmID Repository) by PCR and ligating it into the HindIII and
NotI sites of pcDNA4/myc-6xHis (Invitrogen) using standard
methods.

Transfections
293T cells plated at ∼50% confluence were transfected the
following day as previously described (54). In brief, 750 µl of
prewarmed OPTI-MEM was placed into 1.5ml tubes with 45
µl of TransIT-293 transfection reagent (Mirus), vortexed briefly,
and incubated for 15min at room temperature. Next, 15 µg of
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human COPγ1-myc-6xHis DNA was added to the tube, vortexed
briefly, and incubated for 15min at room temperature. After the
final incubation, the mixture was added dropwise to the cells.
Cells were harvested 48 h after transfection.

Tandem Purification of COPγ1-myc-6xHis
293T cells transfected with COPγ1-myc-6xHis were treated 8 h
prior to harvest with 50µM Thiamet-G and 4mM glucosamine
to enhance O-GlcNAcylation. Cells were harvested in cold PBS
and lysed in IP lysis buffer supplemented with 0.1% SDS, protease
inhibitors, 5µM PUGNAc and 50µM UDP. Lysates were probe
sonicated, cleared by centrifugation, and quantified by BCA
protein assay according to the manufacturer’s instructions. Myc
IPs were performed on∼100mg of total protein for MS analysis.
Cleared lysates were adjusted to a final protein concentration
of 2 mg/ml using IP lysis buffer supplemented with 0.1% SDS,
protease inhibitors, 5µM PUGNAc, and 50µM UDP. Three
micrograms of mouse monoclonal anti-c-myc (9E10, BioLegend)
per mg of total protein was added and rotated overnight at 4◦C.
The following day, 50 µl of washed protein A/G UltraLink Resin
(53133, ThermoFisher) was added and the mixture was rotated
at room temperature for 1 h. Beads were washed three times with
1ml of IP lysis buffer with 0.1% SDS and eluted twice in 500 µl
using Ni-NTA wash buffer (8M urea, 300mM NaCl, 1% Triton
X-100, and 5mM imidazole) with rotation at room temperature.
The two 500 µl elutions were pooled, 50 µl of washed 6xHisPur
Ni-NTA resin (88223, ThermoFisher) was added to the eluate and
the mixture rotated for 2 h at room temperature. The Ni-NTA
resin was washed three times with 1ml of Ni-NTA wash buffer
and eluted in 8M urea plus 250mM imidazole.

LC-MS/MS Analysis of COPγ1
O-GlcNacylation
Purified COPγ1-myc-6xHis was separated by SDS-PAGE and
Coomassie-stained. Stained bands of the correct molecular
weight were subjected to standard in-gel trypsin digestion
(https://genome.duke.edu/sites/genome.duke.edu/files/In-
gelDigestionProtocolrevised_0.pdf). Extracted peptides were
lyophilized to dryness and resuspended in 12 µl of 0.2%
formic acid/2% acetonitrile. Each sample was subjected to
chromatographic separation on a Waters NanoAquity UPLC
equipped with a 1.7µm BEH130 C18 75µm I.D. X 250mm
reversed-phase column. The mobile phase consisted of (A) 0.1%
formic acid in water and (B) 0.1% formic acid in acetonitrile.
Following a 4 µl injection, peptides were trapped for 3min
on a 5µm Symmetry C18 180µm I.D. X 20mm column at
5 µl/minute in 99.9% A. The analytical column was then
switched in-line and a linear elution gradient of 5% B to 40%
B was performed over 60min at 400 nl/minute. The analytical
column was connected to a fused silica PicoTip emitter (New
Objective, Cambridge, MA) with a 10µm tip orifice and
coupled to a QExactive Plus mass spectrometer (Thermo)
through an electrospray interface operating in data-dependent
acquisition mode. The instrument was set to acquire a precursor
MS scan from m/z 350 to 1,800 every 3 s. In data-dependent
mode, MS/MS scans of the most abundant precursors were
collected following higher-energy collisional dissociation (HCD)

fragmentation at an HCD collision energy of 27%. Within
the MS/MS spectra, if any diagnostic O-GlcNAc fragment
ions (m/z 204.0867, 138.0545, or 366.1396) were observed, a
second MS/MS spectrum of the precursor was acquired with
electron transfer dissociation (ETD)/HCD fragmentation using
charge-dependent ETD reaction times and either 30 or 15%
supplemental collision energy for ≥2+ precursor charge states.
For all experiments, a 60-s dynamic exclusion was employed for
previously fragmented precursor ions.

Raw LC-MS/MS data files were processed in Proteome
Discoverer (Thermo Scientific) and then submitted to
independent Mascot searches (Matrix Science) against a
SwissProt database (human taxonomy) containing both forward
and reverse entries of each protein (20,322 forward entries).
Search tolerances were 5 ppm for precursor ions and 0.02
Da for product ions using semi-trypsin specificity with up
to two missed cleavages. Both y/b-type HCD and c/z-type
ETD fragment ions were allowed for interpreting all spectra.
Carbamidomethylation (+57.0214 Da on C) was set as a fixed
modification, whereas oxidation (+15.9949 Da on M) and
O-GlcNAc (+203.0794 Da on S/T) were considered dynamic
mass modifications. All searched spectra were imported into
Scaffold (v4.3, Proteome Software) and scoring thresholds were
set to achieve a peptide FDR of 1% using the PeptideProphet
algorithm. When satisfactory ETD fragmentation was not
obtained, HCD fragmentation was used to determine O-GlcNAc
residue modification, using the number of HexNAcs identified
in combination with the number of serines and threonines in the
peptide.

RESULTS

We designed a new quantitative glycoproteomics strategy to
discover changes in O-GlcNAcylated proteins in response to
physiological stimuli, stress, or other cues. In this workflow
(Figure 1), cells are first labeled with “light” 12C6

14N2-lysine
and 12C14

6 N4-arginine or “heavy”
13C6

15N2-lysine and
13C6

15N4-
arginine, in a standard stable isotope labeling of amino acids
in cell culture (SILAC) quantitative proteomics protocol (69,
70). Next, all cells are metabolically labeled with a short pulse
of GalNAz to prime the biosynthesis of UDP-GlcNAz. Then,
one cell population is treated with the stimulus of interest,
leaving the other as a control. All cells are then mixed, nuclear
and cytoplasmic extracts are prepared by standard biochemical
fractionation (to separate O-GlcNAc from secretory pathway
glycans) and labeled O-GlcNAc substrates are covalently ligated
to alkyne-functionalized agarose beads via a click reaction,
permitting extremely stringent washing. Finally, the captured and
washed glycoproteins are trypsinized on-bead, and the resulting
peptides are analyzed by SILAC mass spectrometry (MS)
proteomics, providing an unbiased quantitation of stimulus-
dependent changes in O-GlcNAcylated proteins.

For our pilot glycoproteomics studies, we selected the murine
pro-B cell line FL5.12, subclone XL4.1 (71–73), because it is a
model system for B lymphocyte activation, a process that vastly
expands the protein trafficking burden through cell proliferation
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FIGURE 1 | Glycoproteomics workflow. First, cells are stably labeled with either “heavy” (red) or “light” (blue) arginine and lysine to create two distinctly labeled

populations, per standard SILAC protocols. Next, cells are treated with GalNAz for a brief period to allow incorporation into endogenous OGT substrates, while limiting

the labeling of “housekeeping” proteins. One cell population is treated with a stimulus, inducing changes in O-GlcNAcylation, while the other remains an untreated

control. Both cell populations are mixed, fractionated to remove secretory pathway glycans, and covalently ligated to an alkyne-functionalized agarose bead via a click

reaction. After extremely stringent washing, the covalently captured glycoproteins are trypsinized on-bead and the resulting peptides are analyzed by quantitative

SILAC MS proteomics.

and augmented immunoglobulin secretion (74, 75). Previous
work has also indicated that lymphocyte activation induces
dramatic changes in global O-GlcNAcylation (76–78). Taken
together, these reports suggested that O-GlcNAc might regulate
protein trafficking in activated lymphocytes. We incubated XL4.1
cells with GalNAz or vehicle only and captured labeled proteins
using our glycoproteomics workflow. Initial MS analysis revealed
the strong enrichment of many knownO-GlcNAcylated proteins,
including numerous nucleoporins (79) and host cell factor 1
(HCF1) (80–82) (Figure 2). We concluded that our method
specifically captured O-GlcNAcylated proteins, as intended.

Next, we sought to use our glycoproteomics workflow
to identify O-GlcNAcylation changes that are functionally
important in protein trafficking. We reasoned that a short
GalNAz pulse followed by a stimulus would afford the
preferential labeling of de novo, stimulus-dependent changes

in glycoproteins, whereas longer incubations would also
label unchanging, background “housekeeping” glycoproteins, as
evidenced by the enrichment of nucleoporins after long GalNAz
incubation (Figure 2). We first verified that we could label
endogenous XL4.1 glycoproteins with brief GalNAz incubations.
We treated cells with GalNAz for various times and then
reacted lysates with alkyne-biotin to label O-GlcNAc substrates.
Anti-biotin immunoblot (IB) revealed that endogenous XL4.1
glycoproteins were labeled as early as 2 h after GalNAz treatment
(Figure 3A). We therefore selected 2 h as a pre-stimulus GalNAz
incubation time for our subsequent experiment. Next, as
a model stimulus to perturb protein secretion, we selected
brefeldin A (BFA), a well-characterized fungal metabolite that
inhibits COPI and, secondarily, COPII vesicle trafficking (83–
85). We hypothesized that secretory pathway disruption by
BFA would trigger changes in O-GlcNAcylation events that
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FIGURE 2 | XL4.1 cells were treated with either DMSO vehicle or 100µM GalNAz for 24 h and processed via the glycoproteomics workflow. To confirm enrichment,

proteins with fewer than 25 spectral counts were excluded, and the remaining proteins were rank-ordered by the ratio of spectral counts from the vehicle and GalNAz

samples (low to high). Table displays the top 25 proteins ranked this way. Commonly O-GlcNAcylated substrates (e.g., nucleoporins, HCF1) were identified exclusively

in the GalNAz-treated samples, confirming the selective enrichment of endogenous OGT substrates by the workflow. Complete proteomics datasets are available as

Supplemental Material.
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FIGURE 3 | (A) XL4.1 cells were treated with DMSO vehicle or 100µM GalNAz for the indicated times. Cell lysates were subjected to click reactions with an

alkyne-biotin probe and analyzed by IB. GalNAz incorporation is evident as soon as 2 h after treatment. Tubulin is a loading control. (B,C) Parental FL5.12 N6 cells

were treated with the indicated doses of BFA for 4 or 24 h and mitochondrial function (B) (n = 2) and ATP levels (C) (n = 3) were measured. Marked decreases in

mitochondrial function and ATP content occurred with ≥500 ng/ml BFA treatment for 24 h, but no changes were observed at those doses after 4 h. In each assay,

values were normalized to vehicle-treated control. Error bars are standard error of the mean. *p < 0.05 compared to control (DMSO) by Tukey’s HSD.

regulate trafficking under homeostatic or stress conditions. To
determine the lowest BFA dose that caused strong disruption
of the secretory pathway, we treated apoptosis-sensitive parental
FL5.12 N6 cells with a range of BFA concentrations for 4 or
24 h and measured cellular ATP and mitochondrial function
(Figures 3B,C). In these experiments, 500 ng/ml was the lowest
BFA dose that caused significant toxicity after 24 h while having
little effect on cell viability after only 4 h (Figures 3B,C). We
therefore selected 4 h of 500 ng/ml BFA as a treatment condition
to disrupt protein trafficking without inducing the potentially
confounding effects of downstream cell death.

We next performed proof-of-principle experiments with
BFA and our glycoproteomic workflow. We treated SILAC-
labeled XL4.1 cells with GalNAz for 2 h, followed by 500 ng/ml
BFA (heavy-labeled cells) or vehicle control (light-labeled
cells) for an additional 4 h. Then, we mixed the intact cells,
derived nuclear and cytoplasmic subcellular fractions, captured
GalNAz-labeled proteins and analyzed BFA-dependent changes
in O-GlcNAc substrates. We calculated the fold-enrichment
of every protein in our control (DMSO) vs. BFA-treated
SILAC populations (1,253 nuclear and 792 cytoplasmic IDs)
(Figure 4A). Overall, BFA barely altered the abundance of the
vast majority of captured proteins, as expected, with 99% of
both nuclear and cytoplasmic IDs changing<4-fold (Figure 4A).

However, 1 nuclear and 7 cytoplasmic proteins were enriched
at least 4-fold in the BFA sample vs. control, and 8 nuclear
and 3 cytoplasmic proteins were depleted at least 4-fold in
the BFA-treated sample. Similar results were obtained in an
independent biological replicate performed with the amino acid
and treatment pairings reversed (i.e., heavy/DMSO, light/BFA)
(Figure 4B).

We next applied stringent filters to the data from both
biological replicates to identify candidate BFA-dependent
changes in O-GlcNAcylated proteins. First, we compared
BFA-induced fold-changes across biological replicates and
retained only protein IDs with concordant changes (up or down)
across replicates. Then, we retained only nuclear proteins with
a fold-change magnitude >2, and only cytoplasmic proteins
with a fold-change magnitude >1.5. (A less stringent filter
was placed on the cytoplasmic fraction because it exhibited
fewer total protein IDs and lower-magnitude fold-changes
overall). After applying these filters, we identified 80 nuclear
and 17 cytoplasmic proteins displaying consistent, BFA-
dependent changes across both experiments (Figure 4B).
Interestingly, several of these proteins participate directly in
protein trafficking, including the COPI protein COPγ1 (depleted
2.27- and 2.078-fold, respectively, from the BFA samples in
the two biological replicates) and the retromer component
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FIGURE 4 | Glycoproteomics workflow detects global BFA-induced changes in O-GlcNAcylated proteins. Data for nuclear and cytoplasmic proteins are displayed as

a log2 transform of the ratio of detected intensities from the DMSO and BFA samples, as described previously (66–68). (A) In the first biological replicate, 1,252

nuclear and 792 cytoplasmic proteins were identified. (B) In the second biological replicate, 1,703 nuclear and 1,262 cytoplasmic proteins were identified. (C) The

nuclear and cytoplasmic proteins exhibiting concordant BFA-dependent changes (up or down) across biological replicates were rank-ordered by the magnitude of the

fold-change between DMSO and BFA samples, as described previously (66–68). Tables list the top 15 nuclear and cytoplasmic proteins from each biological replicate

by this ranking. Some proteins appear in both tables but at different positions, reflecting rank-order in each case. (D) Representative MS spectra from one SILAC

biological replicate, depicting light and heavy versions of the COPγ1 peptide SIATLAITTLLK. Complete proteomics datasets are available as Supplemental Material.
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FIGURE 5 | (A) Ramos cells were treated with 100µM GalNAz or DMSO

vehicle for 6 h, followed by 500 ng/ml BFA or DMSO vehicle for an additional

4 h, and then harvested. Nuclear and cytoplasmic fractions were prepared,

subjected to click reactions with an alkyne-biotin probe and incubated with

streptavidin beads for enrichment. Beads were washed and eluted proteins

were analyzed by IB. Nuclear fraction IBs from a representative experiment are

shown. Nucleoporin-62, a heavily O-GlcNAcylated protein, is a control for

equal loading (input lanes) and biotin enrichment (pulldown lanes). Band

intensities in the COPγ1 IB were quantified in ImageJ, normalized to control

(DMSO, input lane) and listed below. The ratio of pulldown:input for each

treatment was calculated as a measure of COPγ1GalNAz modification and is

given in the graph at the right. Consistent with the glycoproteomics results,

COPγ1 levels were reduced after BFA treatment, indicating a reduction in

O-GlcNAcylation. Similar results were obtained with XL4.1 cells (not shown).

(B) Ramos (left) and XL4.1 (right) cells were treated with 50µM Thiamet-G or

DMSO vehicle for 8 h and lysates were subjected to anti-COPγ1IP and

analyzed via IB.

Vps35 (depleted 3.582- and 2.412-fold from the BFA samples),
or are regulators of membrane protein quality control, such
as the AAA+ ATPase torsinA (enriched 2.069- and 2.466-fold
in the BFA samples) and the ubiquitin E3 ligase NEDD4,
which is also a known O-GlcNAc substrate (depleted 3.838-
and 3.058-fold from the BFA samples) (Figures 4C,D and
Supplemental Material) (86–101). We concluded that our
glycoproteomics workflow identified candidate BFA-dependent

changes in O-GlcNAc substrates that may impact on protein
trafficking.

From our filtered glycoproteomics data, we selected COPγ1
for further validation experiments because of its well-established
role in protein trafficking. COPγ1 is a core component of the
heteroheptameric COPI complex, which is recruited to Golgi
membranes by the small GTPase ADP ribosylation factor 1 (Arf1)
to mediate vesicle formation and trafficking within the Golgi
or to the ER (49, 102, 103). COPγ proteins interact with cargo
adaptors in the Golgi membrane, with Arf GTPase-activating
proteins and with other COPI components in the coat itself
(49, 88, 89, 92). COPγ is highly conserved across eukaryotes and
is essential for in vitro COPI vesicle formation and for viability
in budding yeast (49, 104, 105). While phosphorylation, arginine
methylation, and ubiquitination of COPγ1 have been observed in
several studies (106–116), O-GlcNAcylation of COPγ has never
been reported.

To confirm our MS results with COPγ1, we GalNAz-labeled
XL4.1 or Ramos cells (a human B cell line) in the presence or
absence of BFA treatment, performed click reactions with alkyne-
biotin, purified O-GlcNAc substrates by streptavidin affinity
chromatography and analyzed the results by IB (Figure 5A).
Consistent with our glycoproteomics results, anti-COPγ1 IB
indicated that BFA treatment reduced the O-GlcNAcylation
of COPγ1 without causing dramatic effects on total COPγ1
levels (Figure 5A). To extend these results to natural O-
GlcNAc, we immunoprecipitated (IP-ed) endogenous COPγ1
from XL4.1 or Ramos cells and observed that it was recognized
by anti-O-GlcNAc monoclonal antibodies (Figure 5B). This
signal was specific, because treatment of cells with Thiamet-
G, a small molecule inhibitor of OGA (64), increased both
global O-GlcNAc signal and anti-O-GlcNAc immunoreactivity
of COPγ1 (Figure 5B). We concluded that endogenous COPγ1
is dynamically O-GlcNAcylated in mammalian cells under
homeostatic conditions, and deglycosylated upon disruption of
protein trafficking by BFA.

As a first step toward characterizing the function of COPγ1
O-GlcNAcylation, we expressed and purified epitope-tagged
human COPγ1 to homogeneity from human cells and used
MS to map O-GlcNAc-modified residues. We detected 11 O-
GlcNAc moieties across six unique peptides and unambiguously
assigned five glycosylation sites: T132, S134, T135, T552, and
S554 (Figure 6A and Supplemental Material). COPγ1 is highly
conserved between human and mouse (97.3% identical and
99.4% similar), and all candidate O-GlcNAc sites that we
identified are identical between the orthologs (Figures 6A,B).
The candidate O-GlcNAc sites occur in several regions of the
COPγ1 protein, with most lying within the last HEAT repeat
of the adaptin N-terminal domain or in the appendage domain
(Figure 6B). The appendage domain interacts with ARFGAP2,
which binds the α/β/ε COPI subcomplex and influences vesicle
uncoating, suggesting that O-GlcNAcylation in this domain
could influence these functions (88). Finally, we modeled the
observed O-GlcNAc sites onto crystal structures of COPγ1 in the
COPI coat “triad” complex (Figures 6C,D) (PDB: 5A1U) (117).
Interestingly, the T552 and S554 glycosylation sites of COPγ1
lie close to COPβ1-binding interface and might impact on this
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FIGURE 6 | (A, left) Myc-6xHis-tagged human COPγ1 was tandem-purified to homogeneity from transfected 293T cells and analyzed via ETD/HCD-MS. Peptide

sequence, number of O-GlcNAc moieties detected, and number of serine and threonine residues are displayed for tryptic peptides exhibiting glycosylation. (A, right)

Alignment of human and mouse COPγ1 regions with unambiguously assigned O-GlcNAc modification sites, denoted in red. Human and mouse COPγ1 are 97.3%

identical and are 99.4% similar. All O-GlcNAc sites identified on human COPγ1 are conserved in the mouse ortholog. (B) Schematic depicting candidate O-GlcNAc

sites on the COPγ1 domain structure. The C-terminal appendage domain contains an ARFGAP2-interacting region and binds the α/β/ε COPI subcomplex. (C)

Interface of COPγ1 (green) and COPβ1 (blue), with potential O-GlcNAc sites in red, from the previously reported structure of the COPI triad (PDB: 5A1U) (117). (D)

Zoomed view from (C) (black box) of the COPγ1/COPβ1 interface. T552 and S554, two unambiguously assigned O-GlcNAc sites on COPγ1, lie in close proximity to

COPβ1. Complete proteomics datasets are available as Supplemental Material.

interaction, which is essential for COPI function (117). Taken
together, our BFA andMS results suggest that site-specific COPγ1
O-GlcNAcylation may promote or license its activity in the COPI
pathway.

DISCUSSION

O-GlcNAc is a highly dynamic PTM that modifies thousands
of nuclear, cytoplasmic and mitochondrial proteins. While the
number of identified O-GlcNAc substrates continues to rise, the
specific functions of O-GlcNAc on most proteins are elusive
and assessing stimulus-triggered changes in O-GlcNAcylated
proteins remains a significant challenge in the field. Here, we
report a novel glycoproteomics workflow enabling the proteome-
wide identification and quantification of changes in O-GlcNAc-
modified proteins and use it to discover cycling O-GlcNAcylation

of mammalian COPγ1 as a candidate regulatory event in Golgi
protein trafficking.

Several proteomics-compatible approaches for enriching
natural O-GlcNAc exist, including lectin weak-affinity
chromatography (LWAC), chemical modification of O-GlcNAc
moieties (e.g., β-elimination followed by Michael addition)
and chemoenzymatic methods that harness an engineered
galactosyltransferase (9, 59, 81, 82, 118–134). Each of these is
a well-established and powerful tool for elucidating O-GlcNAc
signaling. Our glycoproteomics workflow leverages GalNAz
metabolic labeling, which complements these methods in
important ways. In our approach, a pulse of GalNAz is added
to cultured cells only shortly before the stimulus of interest,
permitting the preferential enrichment and characterization of
relatively new glycosylation changes. Therefore, our workflow
provides time resolution and reduces the labeling of long-
lived, unchanging O-GlcNAc moieties (e.g., on the nuclear

Frontiers in Endocrinology | www.frontiersin.org 11 October 2018 | Volume 9 | Article 606

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Cox et al. O-GlcNAcylation in COPI Vesicle Trafficking

pore complex) that could otherwise dominate the proteomics
results (Figure 2). In addition, our workflow affords the
covalent capture of O-GlcNAcylated proteins onto a solid
matrix, allowing extremely stringent washing conditions to
remove unglycosylated proteins. Although the individual
components of our strategy have been reported previously,
we have assembled them into a new and optimized workflow
in which the proteome-wide profiling of stimulus-dependent
O-GlcNAc changes in SILAC-labeled cells can be performed
by one worker in as little as 1 week. Moreover, our workflow
can be implemented in any cell type or organism that supports
azidosugar and SILAC labeling, and can be used to study a wide
range of stimuli, stresses or other experimental comparisons.
We anticipate that this method will be a useful addition to the
quantitative analysis of O-GlcNAc signaling.

In pilot experiments, we used our workflow to address
the role of O-GlcNAcylation changes in mammalian protein
trafficking, using BFA as an established tool compound. These
studies identified the dynamic glycosylation of COPγ1 in
mammalian cells (Figures 4–6 and Supplemental Material), and
validation experiments demonstrated that endogenous COPγ1
is reversibly modified by natural O-GlcNAc atleast 11 sites,
confirming the utility of our approach in characterizing native
signaling pathways (Figures 5, 6). (We note that numerous Golgi
proteins partitioned to the “nuclear” sample in our fractionation
procedure, likely explaining the presence of COPγ1—see full
proteomics datasets in the Supplemental Material).

COPI trafficking relies on the guanine nucleotide exchange
factor GBP1 to exchange GDP for GTP on Arf1 (47–49,
102, 103). Arf1 undergoes a conformational change upon
GTP binding, inserting an N-terminal amphipathic α-helix
into the Golgi membrane (49, 102, 103). Membrane-bound
Arf1 then recruits the stable heteroheptameric COPI coat
complex, which includes COPγ1 (49, 102, 103, 135). The
assembling COPI heteroheptamers also undergo a major
conformational change, promoting oligomerization of the coat
complex and eventual vesicle formation and scission (117,
135, 136). BFA perturbs protein trafficking by stabilizing
an abortive intermediate of the Arf1 complex, disrupting
both the COPI and, subsequently, the COPII pathways (83–
85).

Our results suggest that COPγ1 glycosylation may regulate
protein trafficking within or from the Golgi. Consistent with
this hypothesis, a prior proteomics study identified a putative
biochemical interaction between OGT and the COPI component
COPε (137). The authors proposed that O-GlcNAc might govern
intra-Golgi vesicle transport, although no direct glycosylation
of any COPI protein was demonstrated (137). The precise
biochemical and functional effects of O-GlcNAcylation on
COPγ1 remain to be determined, but our results, combined
with prior reports, suggest several possibilities. First, because O-
GlcNAc can regulate protein-protein interactions in a variety
of contexts (138), glycosylation may affect the interaction of
COPγ1 with specific binding partners, such as COPβ1, COPζ,
Arf1, or p24 cargo adaptors (49, 105, 139–143). Consistent with
this notion, our MS site-mapping revealed O-GlcNAcylation
on two sites, T552 and S554, located in close proximity

to the interface with COPβ1 in the COPI triad structure
(Figures 6C,D) (117). Addition of one or more bulky O-GlcNAc
moieties in this region of COPγ1 may alter this interaction,
which is essential for COPI function. Second, O-GlcNAcylation
of COPγ1 may promote or inhibit one of the significant
conformational changes that occur during COPI coat assembly
(49, 102, 103, 117, 135, 136, 142, 143). Third, O-GlcNAcylation
of COPγ1 may regulate the membrane recruitment of the
heteroheptameric complex. We have previously demonstrated an
analogous role for O-GlcNAc signaling in the COPII pathway,
as OGA inhibition impairs the membrane recruitment of the
COPII proteins Sec31A and Sec23A (54). Fourth, O-GlcNAc
may regulate COPγ1 through cross-talk with other PTMs.
Interestingly, five of the candidate O-GlcNAc sites we identified
on COPγ1 (S356, S554, T718, T723, and S725) are also reported
phosphorylation sites (144). Therefore, COPγ1 function may be
regulated by the well-documented, complex interplay between
O-GlcNAcylation and O-phosphorylation (2, 145–149). Our site-
mapping data have paved the way for future studies to test
these hypotheses, and experiments with single and compound
glycosylation site mutants are currently underway to determine
the impact of COPγ1 O-GlcNAcylation in live-cell trafficking
assays.

While many excellent studies have dissected the structures
and functions of the core COPI machinery (49, 142, 143), much
less is known about how this critical pathway is regulated by
mammalian cells in response to rapidly changing physiological
and pathological signals. PTMs likely serve as one important
mode of COPI regulation. Indeed, several proteomics studies
have reported phosphorylation, ubiquitination and arginine
methylation of COPγ in particular (107–116), and one study
provided functional evidence that phosphorylation of COPβ

and COPγ influences coatomer assembly or membrane
recruitment (106). Therefore, COPI trafficking may be
governed in part by COPγ PTMs. Our results indicate
that O-GlcNAc may be a functionally important PTM in
the COPI system as well. Moreover, we detected putative
BFA-dependent O-GlcNAc changes on proteins operating
in distinct parts of the secretory pathway, including Vps35,
torsinA, and NEDD4 (Figure 4), and previous studies have
implicated O-GlcNAcylation in other vesicle transport
pathways beyond COPI as well (28, 50–63). Based on these
observations, we propose that O-GlcNAcylation may be a
widespread mode of dynamic regulation in mammalian protein
trafficking.
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