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A B S T R A C T   

The function of a protein is most of the time achieved due to minute conformational changes in its structure due 
to ligand binding or environmental changes or other interactions. Hence the analysis of structure of proteins 
should go beyond the analysis of mere atom contacts and should include the emergent global structure as a 
whole. This can be achieved by graph spectra based analysis of protein structure networks. GraSp-PSN is a web 
server that can assist in (1) acquiring weighted protein structure network (PSN) and network parameters ranging 
from atomic level to global connectivity from the three dimensional coordinates of a protein, (2) generating 
scores for comparison of a pair of protein structures with detailed information of local to global connectivity, and 
(3) assigning perturbation scores to the residues and their interactions, that can prioritise them in terms of 
residue clusters. The methods implemented in the server are generic in nature and can be used for comparing 
networks in any discipline by uploading adjacency matrices in the server. The webserver can be accessed using 
the following link: https://pople.mbu.iisc.ac.in/.   

1. Introduction 

The three-dimensional structure of a protein is dictated by optimal 
non-covalent interactions between different amino acids in the chain. A 
Protein Structure Network (PSN) represents the structure of a protein at 
the backbone level by considering the c-alpha atoms or at the side chain 
level by considering the interactions of atoms in the side chains. To 
study gross characteristics such as domain identification and protein 
folding, backbone networks are handy. On the other hand, side chain 
networks are useful in tracking differences in interactions at local levels 
as well as their manifestation at the global level. Functional implications 
such as allosteric communication or the effect of ligand binding can be 
quantitatively inferred from the analysis of side chain networks. Protein 
structure networks are generally analysed by converting them into bi
nary matrices, by selecting the interactions above a specified cut-off 
value to create the edges. However, incorporation of the variations in 
strength of interactions is essential to obtain realistic insights in a 
network analysis. In the last few years, we have developed graph spec
tral methods, which are known to capture maximal information with 
minimal loss, to investigate weighted networks (Gadiyaram et al., 

2017). Further, we have demonstrated the utility of the methodology for 
protein structure comparison (Ghosh et al., 2017). Apart from standard 
parameters such as hubs, cliques, communities etc, the insight obtained 
by this approach is unique and has valuable information in terms of 
functions such as allostery (Gadiyaram et al., 2021). Recently, we have 
demonstrated the utility of the method in gaining insights to the struc
tural variability in protein structures (Prabantu et al., 2022). 

In this manuscript, we introduce GraSp-PSN, the first server to pro
vide a means to construct, analyse and compare weighted protein 
structure networks of side chain interactions, using graph spectra-based 
methods. Currently, many protein structures are being solved by various 
experimental techniques (RCSB-PDB). Further, the capability of 
modelling protein structures has exponentially increased by the machine 
learning (ML) methods such as AlphaFold (Varadi et al., 2022) with 
newer versions. We expect that our program GraSp-PSN will become a 
valuable tool in comparing the structures at a high resolution, given that 
all atoms are taken into account in the evaluation in a rigorous manner. 
Also, our program has the potential application in integrated models 
using AI/ML approaches. 

It is to be noted that the applicability of this program goes beyond 
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protein structure networks, by accepting weighted adjacency matrices 
as inputs from any domain of biology or from any other discipline. 

2. Materials and methods 

2.1. Protein structure network (PSN) 

Most of the common network parameters that are evaluated for side 
chain networks of protein structure are hubs, clusters, cliques, com
munities, clustering coefficient, centrality, and shortest paths. A detailed 
overview of analysis of various metrics from network methodology has 
been discussed in review articles (Bhattacharyya et al., 2015; Vish
veshwara et al., 2009) and references therein; They are also available in 
Webservers like GraProStr (S. Vijayabaskar et al., 2011), Wordom 
(Seeber et al., 2011) and NAPS (Chakrabarty and Parekh, 2016). The 
weighted protein structure network is generated by transforming the 
uniquely folded geometry of the proteins at the side-chain level to a 
two-dimensional weighted matrix. The edge between two residues in a 
protein can be weighed in various ways, for example, interaction energy 
obtained by atomistic simulations, surface complementarity or 
knowledge-based potentials. In GraSp-PSN weighted PSNs are con
structed based on interaction energy using geometric coordinates 
similar to the one suggested in, (Kannan and Vishveshwara, 1999) that is 
also the basis of edge strengths of several web servers (Graprostr, 
Wordom, NAPS). The edge weight is given by, 

Iij = nij
/

Nij  

Here nij is the number of atom contacts between residues i and j and Nij is 
the maximum possible number of contacts between this pair of residues 
across a database of high-resolution protein structures. Weighted matrix 
representation captures the side-chain orientations with respect to each 
other. The normalization of the number of contacts with respect to the 
maximum possible contacts between two residues handles the huge 
variation in size and shape of the residues and weighs the interaction 
between them accordingly. The edge weights in this representation 
range between 0 and 1. A difference in edge weight between two resi
dues can occur in the case of residues moving apart from each other 
either due to the difference in side chain orientation or due to a change 
of the secondary structural separation. While the differences at the 
backbone level are routinely detected by various programs, the global 
conformational changes due to differences at side chain level are diffi
cult to capture. Indeed, the differences in the side chain interactions are 
involved in many biological functions such as allosteric communication 
due to ligand binding, transport of ions, molecules across membranes. 
By considering weighted side chain networks, perturbation induced 
conformational changes in the residues and their interactions can be 
studied more precisely from graph spectral methods. In addition, the 
deviations percolated to distal places in the protein structure can also be 
captured. 

2.2. Graph spectral approach to PSN analysis 

Graph spectral study involves the analysis of the eigen values and 
vectors of a given connectivity matrix. Historically it has been used in 
several disciplines, for instance to enumerate trees in electrical circuits 
(G Kirchhoff) or to find chemical isomers of a given formula (Graneau 
and Assis, 1994). Graph spectral applications to structural biology began 
in late 1990s on protein structure graphs with the amino acids in the 
polymer chain as nodes and their non-covalent interactions as edges. For 
example, the intrinsic dynamics of proteins (Bahar et al., 1997; Haliloglu 
et al., 1997) and characterization of their structural properties such as 
clusters, cluster centres, domains from backbone or side chain graphs 
(Vishveshwara et al., 2002) were extracted from the eigenvalues and 
vector components of connectivity matrices of non-covalent interaction. 
In the last two decades, a large number of studies has been done on PSN, 

characterising a number of metrics to address fundamental problems in 
biochemistry and structural biology. Currently data explosion has led to 
complex network studies with a phenomenal speed in several disci
plines, including biological networks, such as those based on 
intra-protein interactions, protein-protein/drug interactions, disease 
related networks and so on. This has also stimulated the development of 
a number of mathematical and computational techniques. In this 
context, we have revisited the spectral properties of PSN in detail, in 
order to obtain more biological insights. Specifically, we have developed 
methods (Gadiyaram et al., 2017) to obtain and analyse the spectra of a) 
Weighted network; b) Network comparison and c) Perturbation analysis 
of Networks (Gadiyaram et al., 2019) which are described below. 

2.3. Network comparison 

The topological connections in networks are generally inferred 
through a number of measures. Specific metrics are evaluated depending 
on the real problem addressed. For instance, communication paths are 
calculated in transport systems or to investigate allosteric communica
tion in protein structures, while hubs, cliques, communities are evalu
ated to identify rigid or flexible regions. However, a rigorous and 
analytical method of identifying node clustering is unique to graph 
spectral methods. Node clustering refers to grouping of nodes such that 
nodes in each group are related more among themselves compared with 
nodes in other groups. The clustering of nodes can be obtained from 
graph spectral decomposition of networks which involves obtaining ei
genvalues and eigenvectors of adjacency or Laplacian matrix of the 
network (Sistla et al., 2005). Nodes of the same cluster have closer nu
merical values in the Fiedler vector (eigenvector corresponding to the 
second smallest eigenvalue) components. Therefore, sorted Fiedler 
vector components are used to obtain node clustering in the network. In 
many instances, functions of networks are due to specific patterns in 
node clustering or changes in those patterns. For example, the backbone 
topology and the residue-residue interactions differ only slightly be
tween the active and inactive states of transmembrane regions of GPCR 
structures. However, the node clustering difference in the structures 
correlates with their functions (Gadiyaram et al., 2021). Further, 
network comparison becomes more formal by comparing the differences 
at the eigenvector level. Detailed methodology of network comparison 
(Gadiyaram et al., 2017) and an overview (Gadiyaram et al., 2019) are 
provided elsewhere. A brief description of network comparison scheme 
and its utility in evaluating the influence of perturbation is provided in 
the next two sections. 

2.3.1. Network similarity score (NSS) 
Recent developments in protein structure analysis involve compari

son of weighted protein structure networks and capturing changes in 
residue clustering using graph spectral methods. Network similarity 
scoring scheme (NSS) is based on the spectra of normalized Laplacian 
matrices, which normalises the entire network with respect to the degree 
and volume of the nodes and therefore makes the comparison effortless 
across different networks (even for weighted networks). The scheme can 
not only compare networks which are very much similar to each other 
but can also serve as a clustering technique to group them in a large pool 
of networks. This technique has been introduced to validate and study 
protein structures (Ghosh et al., 2017). The sensitivity of NSS allows an 
in-depth analysis of small structural changes occurring at various levels 
of protein structure organisation. It considers both local and global 
changes of a chosen protein with respect to a reference protein. The 
global changes are efficiently captured by comparing node clusters, a 
technique which is unique to graph spectra-based schemes like NSS and 
is elusive to standard structure validation techniques. 

NSS comprises of three components which capture differences at 
various levels - (1) Correspondence Score (CRS) capturing global level 
changes, (2) Eigenvalue Weighted Cosine Score (EWCS), quantifies the 
differences in local node clustering, (3) Edge Difference Score (EDS), 
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quantifies edge weight differences between the networks. An explana
tion of the formulae and their significance are detailed in (Gadiyaram 
et al., 2017). However, a brief explanation of the mathematical formu
lation of the components of NSS between two networks, say A and B is 
given below. 

Let A and B be the adjacency matrices of network A and network B of 
size n (number of nodes is n), let M be the difference of the two adja
cency matrices A and B, and ||M||F be the Frobenius Norm of the dif
ference matrix M, then Edge Difference Score (EDS) is given by 

EDS=
‖M‖F̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
∑

edge weightA ×
∑

edge weightB)
√ (1) 

The eigenvectors of the normalized Laplacian matrices of networks A 
and B are aligned by considering the maximum of cosine values between 
all eigenvectors of A and all eigenvectors of B. The cosine between the 
vectors is given by 

cosine
(
θij
)
=

(
EvecA

i .EvecB
j

)

⃦
⃦EvecA

i

⃦
⃦
⃦
⃦
⃦EvecB

j

⃦
⃦
⃦

i, j ϵ N, 1≤ i, j ≤ n (2) 

The difference at local clustering level (with in node groups) is 
calculated by EWCS, which is the weighted sum of deviations of cosine 
values from 1 (which is optimal in the case of perfect match of the 
vectors), the weights considered by dominance of the associated 
eigenvalues. 

EWCS=
∑(

1 − cosine
(
θij
))2

|1 − EvalA||1 − EvalB|
∑

|1 − EvalA||1 − EvalB|
(3)  

Where EVeci
A is the ith eigenvector of network A and EVecj

B is the ith 
eigenvector of network B, which is aligned with EVeci

A. EvaliA and EvaliB 

are the eigenvalues of EVeci
A and EVeci

B. 
The global difference which is the change in the node clusters is 

captured by the shift in the alignment of the eigenvectors. This is 
captured by CRS, which is Spearman’s correlation between the indices 
of aligned eigenvectors. 

CRS= 1 −
6
∑

(Index EvecA − Index EvecB)
2

n(n2 − 1)
(4)  

Where, n is the size of these networks and IndexEvecA and IndexEvecB are 
the indices of n pairs of aligned eigenvectors of networks A and B with 
maximum cosine values. 

The final form of NSS is as shown below (Gadiyaram et al., 2017): 

NSS=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

EDS2 + EWCS2 + (1 − CRS)2
√

(5) 

It should be noted that lower NSS reflects higher similarity between 
two networks. NSS between two networks (specifically protein structure 
networks) can be calculated using GraSp-PSN, details of which are dis
cussed in Section 3. 

2.3.2. Network perturbation score 
The product of all the interactions between the components of a 

network leads to complex behaviour of the network. Identifying crucial 
components that are responsible for maintaining the integrity of net
works is essential, to understand the emergent properties of networks or 
to control them. This is achieved by systematically perturbing (elimi
nating) nodes/edges and comparing the perturbed network with the 
original network. Recently developed method ranks the participation of 
nodes and edges in a network using perturbation analysis and identifies 
crucial players contributing to the integrity of the network (details 
provided in (Gadiyaram et al., 2019). Unlike earlier methods that 
evaluate perturbation in a network based on the variation in centralities 
or paths, this method uses the graph spectral based Network Similarity 
Score (NSS, Section 2.3.1) to quantify the change occurred in a network 

due to perturbation in it. Perturbation scores can be calculated at node 
level (Node perturbation score, NPS) or at edge level (Edge perturbation 
score, EPS). 

To calculate node perturbation scores for nodes in a network A of size 
n, each node (i) in A is perturbed and the resultant network (Ai) is 
compared with the original network (A) using NSS, resulting NSS(i). 
Perturbation of a node is done by deleting, all edges connected to that 
node. Hence, the node still remains in the network as an isolated node. 
We will still be comparing a network of size n with another network of 
size n. Normalization of the resultant NSS values of all nodes between 
0 and 100 results in node perturbation scores. 

Node perturbation score (NPS) for a node i is calculated as 
(Gadiyaram et al., 2019): 

NPS(i) =
NSS(i) − NSSmin

NSSmax − NSSmin
(6)  

where NSSmin and NSSmax denote the minimum and maximum of NSS(i) 
of all nodes (1 to n) in the network. Edge perturbation scores of edges in 
a network are obtained in a similar way by deleting each edge (e) in the 
network, obtaining NSS(e). Edge perturbation score (EPS) for a given 
edge e is given by: 

EPS(e) =
NSS(e) − NSSmin

NSSmax − NSSmin
(7)  

where NSSmin and NSSmax denote the minimum and maximum NSS 
values respectively considering all edges in the network. The nodes or 
edges with higher perturbation scores (approaching 100) are the ones 
whose perturbation will cause more change in the network and hence 
are crucial. NPS and EPS of nodes and edges in a network (or protein 
structure network) can be calculated using GraSp-PSN. Details regarding 
the input and results are discussed in Section 3. 

3. Outline of the server 

The webserver GraSp-PSN can be accessed using the following link: 
https://pople.mbu.iisc.ac.in/. GraSp-PSN accepts protein structure in 
RCSB PDB format as input and provides backbone network and weighted 
side chain network, corresponding edgelists, node - residue mapping 
file, Fiedler vector and Pymol session files containing residue clustering 
using Fiedler vector. The layout of the server is depicted in Fig. 1 and the 
usage of the server is explained in detail in the tutorial file available on 
the website. Apart from PDB format files, GraSp-PSN also accepts ad
jacency matrices as input. This enables users to input protein structure 
networks obtained from various other definitions or networks from any 
discipline and perform graph spectra-based analysis. 

Fig. 2 shows the usage of the network analysis tool. Users can 
download the networks and also visualise the graphs using the cysto
scape plugin. Parameters such as hubs, cliques and clusters can also be 
selected and their neighbourhood can be analysed. NSS between a pair 
of structures with a detailed list of NSS components (Fig. 3) and 
perturbation scores of a structure with respect to nodes (NPS) and edges 
(EPS) can also be obtained (Fig. 4). The user interface was developed in 
PHP and CSS and the backend implemented using perl, cgi and shell 
scripts. Scripts for NSS and NPS run using the open source mathematical 
package ‘Octave’. 

4. Applications 

Accurate structure validation of proteins is of extreme importance in 
studies like structure prediction and analysis of molecular dynamic 
simulation trajectories. NSS has been demonstrated to better quantify 
differences in connectivity between residues in models compared to that 
of reference structure. One such example from CASP submitted models 
to target TR821 is shown in Fig. 5. In model TS216_1, the two domains of 
the protein come closer and atom contacts are formed between 
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sidechains from the two domains, leading to green-yellow cluster and a 
highly connected orange cluster, which are not present in the native. 
Fiedler vector components sorted according to native values shows more 
deviations for this model (TS216_1). The table at the bottom of the figure 
shows that NSS, with its higher score for this model is able to capture this 
deviation, while RMSD is unable to distinguish them. 

NPS and EPS have been evaluated on protein structures of muscarinic 
acetylcholine receptors (a member of G-Protein Coupled Receptors), 
bringing out several aspects of perturbation effect, which has been 
elusive from conventional methods of analysis. Fig. 6 shows an agonist 
bound receptor (PDB ID: 4MQS) with residues showing top NPS values 
(left) and interactions between residues showing top EPS values (right). 

Fig. 1. Layout of the server. There are three modules in this server, namely, Protein structure network analysis (PSN), Network similarity score (NSS) and Network 
perturbation score (NPS). All the modules can use a sidechain-based network, backbone structure network or an adjacency matrix of the graph as input. An 
interaction cut-off can also be used in the PSN module. 

Fig. 2. The protein structure network analysis (PSN) module is for the network analysis of protein structures that is submitted as input. One can generate the 
constructed adjacency matrix, edge list between nodes of protein structure and even fielder vectors. The network can also be visualised using the built-in cystoscope 
plugin using customisable features. 
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The functional importance of these residues and interactions has been 
correlated with experimental data, giving an indication of the potential 
of perturbation scores as a predictive tool to identify players that are 
responsible for an action in a global context. 

5. Conclusion 

GraSp-PSN facilitates unique graph spectra-based analysis and 
comparison of protein structures. These methods have wide range 

applications in protein model validation, studies of long-range com
munications in allostery, functional analysis of proteins etc. Apart from 
protein structure analysis, its utility is under progress in analysing 
protein-protein interactions and homologous families. Networks from 
other disciplines can also be analysed using the server by uploading 
adjacency matrices in the server. In view of the scenario where a huge 
number of structures are generated using AI/ML methods and integra
tive modelling, GraSp-PSN plays an important role in the coming days 
for analysis, validation and selection of protein structure models. 

Fig. 3. The Network similarity score (NSS) module compares any pair of protein structures and computes the network similarity score and its components. The 
weighted PSNs that are constructed for the comparison of proteins of equivalent length are downloadable from here. 

Fig. 4. The Network perturbation score (NPS) module computes the node perturbation score and edge perturbation scores for all nodes and edges. The final output 
table can be downloaded to analyse the importance of each node or edge in the network. 
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Fig. 5. On the left panel, side chain clustering of CASP11 Target TR821 native (top), TS216_1 (middle) and TS396_3 (bottom). On the right panel, (top) sorted Fiedler 
vectors of the native and the two models plotted (Bottom) RMSD and NSS scores of the models, compared with the native. 
Gadiyaram et al. (2019). 

Fig. 6. An agonist bound muscarinic acetylcholine receptors (a member of G-Protein Coupled Receptors) (PDB ID 4MQS) with residues showing top NPS values (left) 
and interactions between residues showing top EPS values (right). 
Ghosh et al. (2017). 
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