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Abstract

Purpose: The 4D-CT data used for comparing a patient’s ventilation distributions before and after lung radiotherapy
are acquired at different times. As a result, an additional variable – the tidal volume (TV) – can alter the results.
Therefore, in this paper we propose to normalize the ventilation to the same TV to eliminate that uncertainty.
Methods: Absolute ventilation (AV) data were generated for 6 stereotactic body radiation therapy (SBRT) cases
before and after treatment, using the direct geometric algorithm and diffeomorphic morphons deformable image
registration (DIR). Each pair of AV distributions was converted to TV-normalized, percentile ventilation (PV) and low-
dose well-ventilated-normalized ventilation (LDWV) distributions. The ventilation change was calculated in various
dose regions based on the treatment plans using the DIR-registered before and after treatment data sets. The
ventilation change based on TV-normalized ventilation was compared with the AV as well as the data normalized by
PV and LDWV.
Results: AV change may be misleading when the TV differs before and after treatment, which was found to be up to
6.7%. All three normalization methods produced a similar trend in ventilation change: the higher the dose to a region
of lung, the greater the degradation in ventilation. In low dose regions (<5 Gy), ventilation appears relatively improved
after treatment due to the relative nature of the normalized ventilation. However, the LDWV may not be reliable when
the ventilation in the low-dose regions varies. PV exhibited a similar ventilation change trend compared to the TV-
normalized in all cases. However, by definition, the ventilation distribution in the PV is significantly different from the
original distribution.
Conclusion: Normalizing ventilation distributions by the TV is a simple and reliable method for evaluation of
ventilation changes.
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Introduction

Pulmonary ventilation P is defined as the fractional lung
volume change during respiration [1] and can potentially be
used as a surrogate for lung function change after the course
of radiation therapy. Ventilation distribution matrix can be
derived from four-dimensional CT (4D-CT) images using
deformable image registration (DIR) [2-4]. Promising results
have been reported on the ventilation data correlation between
the 4D-CT and Xenon-enhanced CT [5]. The latter measures
regional ventilation by observing the contrast gas, Xenon,

wash-in or wash-out rate on serial CT images and is
considered the gold standard for regional ventilation imaging
[6]. However, Xenon gas is expensive and this modality is still
technically challenging. Thus it is not commonly used clinically.

Currently, pulmonary ventilation imaging is mostly done
using nuclear medicine techniques [7,8]. One of the
advantages of ventilation data derived from 4D-CT, over
nuclear imaging, is that they are quantitative. The values of
ventilation for each voxel in the 4D-CT are determined by the
volume changes between the end expiration and end
inspiration phases of the 4D-CT. The volume changes can be
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calculated based on the Hounsfield unit (HU) change [2], by
Jacobian of the deformation matrix [3], or directly
(geometrically) using the deformation information [4].

Studies have been proposed to compare ventilation changes
due to radiation treatment [9,10]. For such studies, at least two
sets of 4D-CT are needed, one before and one after the
radiation treatment.

The ventilation data derived from 4D-CT are based on the
volume or Hounsfield unit (HU) number change between the
end expiration and end inspiration phases. As a result, the
volume or HU change depends on how deep the patient
breathes when the 4D-CT is taken. The ventilation change
would be misleading if the tidal volume (TV) changes between
the two scans. One way to make the ventilation data
comparable between different data sets is to change the
ventilation distribution to a relative percentile distribution [11].
The idea is similar to the cumulative dose-volume histogram. If
a certain percentage lung volume is covered by a certain
ventilation value and below, this ventilation value is converted
to the corresponding percentage value of the lung volume in
the percentile distribution. Percentile distribution is appropriate
for comparing ventilation derived from different image
modalities, such as 4D-CT and single photon emission
tomography (SPECT), due to the semi-quantitative nature of
the SPECT ventilation data. However, as will be shown later,
this method considerably alters the ventilation distribution
shape.

Another method is normalizing ventilation to the value of the
low-dose well-ventilated volume [10]. The ventilation in the low-
dose and well-ventilated (LDWV) regions should be stable
throughout the treatment. In the study by Vinogradskiy et al.
[10], the low-dose region was set at dose < 5 Gy and the well-
ventilated region was set at ventilation > 50%. This method
works well if there is good reproducibility of the ventilation
distribution in the low dose region. However, as pointed out by
Vinogradskiy et al., there were some ventilation variations in
the low dose region in weekly images, potentially making this
normalization method unreliable.

This paper introduces a simple method that normalizes
ventilation data from 4D-CT to the TV. This is a straightforward
method for comparing two ventilation volumes because, by
definition, there is a linear correlation between the ventilation
value and TV. A similar normalization method using the
average Jacobian values inside lungs was applied by Du et al.
[12], in which the Jacobian method was employed in the
ventilation calculation.

Methods

Deformable image registration (DIR) and patient data
The use of the patient data in this study followed a Moffitt

Cancer Center’s Scientific Review Committee (SRC) and
University of South Florida Institutional Review Board (IRB)
approved protocol. Consent form was waived since this was a
retrospective study using de-identified images of patients who
have completed radiation therapy.

There are many different DIR algorithms used in research
and clinical applications [13-21]. In this study diffeomorphic

morphons (DM) [13] was used to generate deformation
matrices. This DIR method was recently shown to be the most
accurate one among a number of algorithms [22]. In its
validation study, the average target registration error (TRE) for
normal end-expiration-to-end-inspiration registration with one
standard deviation (SD) was 1.4± 0.6 mm [22].

The deformation matrices were calculated between the end
inspiration phase (0%) and end expiration phase (50%) of the
4D-CT for 6 lung cancer patients who had pre- and post-
radiation treatment 4D-CT scans. Each of the patients was
treated with stereotactic body radiation therapy (SBRT) to 50
Gy in 5 fractions. The deformation matrices were used to
calculate the ventilation distributions.

Ventilation calculation
The direct geometric algorithm, called ΔV method [4,23], was

used for the ventilation calculations. Each CT voxel can be
represented by a cuboid. The 8 vertices that compose the
cuboid are changed to create a 12-face polyhedron. The
polyhedron is still comprised of the 8 corresponding vertices.
Any hexahedron can be divided into 6 tetrahedrons (Figure 1).
The volumes of the cuboid and the deformed cuboid are the
sums of the volumes of their 6 corresponding tetrahedrons.
DIR establishes the correspondence between these vertices. In
the local volume change calculation step, the volume of each
voxel is calculated using the corresponding vertices of each
respective polyhedron.

The fundamental volume calculation is based on the volume
calculation for each tetrahedron. The coordinates of the 4
vertices of a tetrahedron are used to determine its volume:

V= b−a ⋅ c−a × d−a / 6 (1)

where a, b, c, d are the vertices’ coordinates expressed as
vectors. The volumes of the six tetrahedrons are summed up to
generate the volume of the given polyhedron.

Pulmonary ventilation P is defined as the fractional volume
change in respiration [1]:

P=ΔV /V (2)

where V is the local volume at expiration and ΔV is the
volume change from expiration to inspiration.

Considering two CT image sets, one taken at normal end
expiration and the other taken at normal end inspiration, the
volume of each voxel at expiration is determined simply by the
CT voxel size. The voxels then expand during inspiration. The
boundary of each voxel in the expiration image set is deformed.
Deformable image registration determines the new boundaries.
The volume calculation program calculates the volume of the
deformed voxel. The volume change ΔV is the volume
difference between the deformed voxel at inspiration and the
original voxel at expiration.

Tidal volume calculation and ventilation normalization
Tidal volume is calculated by integrating the local volume

change ΔV over the entire lung volume. For two 4D-CT sets,
taken before and after treatment, there are two TVs from the
ventilation calculations: TV1 from the pre-treatment data set
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and TV2 from the post-treatment one. In the normalization
process, the pre-treatment ventilation distribution is not
changed, while the post-treatment ventilation distribution is
normalized to TV1 by applying a multiplication factor, TV1/TV2,
to every voxel in the lungs. After this normalization, both
ventilation data sets have the same tidal volume, TV1, thus
removing the final result dependency on the TV. In this study,
two sets of ventilation data were compared using this
normalization method for each patient.

The LDWV normalization method was used for comparison.
The average ventilation value in the dose < 5 Gy and
ventilation > 50% regions in the lungs was used to normalize
the ventilation distribution for each data set. For the post-
treatment data sets, in order to accurately use the dose in the <
5 Gy regions, the ventilation distribution was mapped to the
pre-treatment CT using DIR and the normalization factor was
then calculated based on the mapped distribution.

The absolute ventilation (AV) data derived from DIR and 4D-
CT were also converted to the relative percentile ventilation
(PV) distribution. Thus four sets of ventilation distributions were
generated for each patient for the ventilation change study: AV,

LDWV- normalized, PV and TV-normalized. The ventilation
change data were calculated in 4 dose regions based on the
treatment plans: <5 Gy, between 5 and 20 Gy, between 20 and
30 Gy, and >30 Gy.

Results

Figure 2 shows an example of the dose, ventilation and
ventilation change distributions. More negative ventilation
change, or decreased ventilation, can be seen in the high dose
region in this case. The ventilation change distributions (lower
row in Figure 2) were calculated using different normalization
methods. The difference between the distributions of LDWV
and TV normalization methods is not distinct without
quantitative analysis.

Figure 3A shows the ventilation changes within the volume
receiving 5 to 20 Gy for a patient using different ventilation
datasets. The pre- and post-treatment PV data are also shown.
By definition, the PV distribution is flat between 0 and 1 for the
total lungs, very different from the other 3 sets of ventilation
data. In this 5 to 20 Gy dose region, the PV distribution was not

Figure 1.  Any hexahedron can be divided into 6 tetrahedrons.  (A) A cuboid can be divided into 6 tetrahedrons. (B) The
corresponding deformed cuboid is composed of 6 deformed tetrahedrons.
doi: 10.1371/journal.pone.0084083.g001

Figure 2.  A coronal view of a typical case of ventilation change.  Dose distribution is displayed in (A) and the absolute
ventilation distribution before treatment is shown in (B). Absolute, LDWV normalized, percentile and TV normalized ventilation
change distributions are shown in (C), (D) (E) and (F) respectively.
doi: 10.1371/journal.pone.0084083.g002
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exactly flat, but the flat distribution can be observed, especially
for the pre-treatment data (Figure 3B). By comparing two PV
distributions, we conclude that in this case, most of the positive
ventilation change came from the low ventilation region while
the negative change is associated with the high ventilation area
(Figure 3B).

The post-treatment ventilation data were mapped to the pre-
treatment data set by DIR between the corresponding phases
of the two 4D-CT datasets. The tumor volume was excluded
from the analysis. As expected, the shapes of the distributions
are about the same for the absolute, LDWV- and TV-
normalized data sets, since the difference between the three
data sets is only the normalization value, while the one for the
percentile data set is different. For this patient, the TV in the
second 4D-CT was 6.7% larger than in the first one. The AV
change curve is shifted in the positive direction compared to
TV- and LDWV-normalized curves. Based solely on the AV
change data, ventilation appears to improve after treatment.
This is obviously an artifact caused by the slightly larger TV in
the after-treatment 4D-CT scan. After the TV normalization, the
ventilation change is mostly negative (worse after treatment).

Figure 4 shows the ventilation change versus dose region
curves for the 6 studied cases with 4 different ventilation data
sets. Only one out of the six cases showed increasing
ventilation change (improving) with increasing dose (case1).
The other 5 cases showed worsening ventilation with increased
dose. In low dose regions (<5 Gy), ventilation appears
relatively improved after treatment due to the relative nature of
the normalized ventilation. Notice that the dose region under 5
Gy is the largest one while the over 30 Gy region is the
smallest, usually with a two orders of magnitude volume
difference between them. This is why in the percentile and TV-
normalized ventilation figures a mostly small ventilation change
in the <5 Gy region balances out the larger changes in other 3
dose regions. Table 1 lists the ventilation change versus dose
region values for the 4 ventilation data sets.

In Figure 4, a negative ventilation change was found in all
dose regions for two cases (case 4 and 6) for the LDWV-
normalized ventilation. The reason for this violation of the
relative nature of the normalized data was the inconsistence of
the normalization factor used in the LDWV normalization. Table

2 lists the normalization factor variation between the LDWV
and TV methods for the 6 cases. In the table, F1/F2 is the
normalization factor ratio of the 1st ventilation data (before
treatment) to the 2nd (after treatment) used in the LDWV
normalization method, while TV1/TV2 is the TV ratio of the
corresponding two data set. The % difference in the table was
calculated as (F1/F2 - TV1/TV2)×100/(TV1/TV2). In theory,
F1/F2 should follow TV1/TV2. For case 4 and 6, the F1/F2
value was smaller than TV1/TV2 value by 4.5% and 4.7%
respectively. As a result, the post treatment ventilation data
were normalized to a relatively large value, which caused
“degraded” ventilation in all dose regions.

A Dice similarity coefficient, DSC(A, B) = 2×|A∩B|/(|A|+|B|),
was calculated between the volumes on which the LDWV
normalization factor was based for the pre- and post-treatment
ventilation data sets. The median value was 0.574 with the
range of 0.466 to 0.591. This indicates that the ventilation in
the low dose region is not very stable.

The TV-normalized ventilation change data closely follow the
PV data (Figure 4). The AV data slightly overestimated the
ventilation change due to the larger TV in the post-treatment
4D-CT scans (5 out of 6 cases, Table 2). The LDWV-
normalized ventilation data were not reliable when the
ventilation in the low-dose regions varied.

Discussion

Originally, the TV-normalization method divides the
ventilation values by the TV, which is numerically large, as it is
obtained by integrating the local volume change ΔV over the
entire lung. As a result, the TV-normalized ventilation values
are very small numbers, which makes the presentation and
interpretation of the results difficult. By renormalizing the
ventilation data to the TV of the first data set, the numerical
values are restored. Furthermore, ventilation data from
sequential 4D-CT scans can be compared directly since the
ventilation distribution no longer depends on the TV. Although
the PV distribution is also independent of the TV, the shape of
that distribution is substantially different (flat ventilation-volume
distributions as shown in Figure 3B).

Figure 3.  Ventilation and ventilation change distributions in the volume receiving 5 to 20 Gy for a typical case using
different ventilation datasets.  (A) Ventilation change distributions. Abs stands for absolute, pct for percentile, LDWV for low-dose
well-ventilated normalized, TV for TV-normalized. The vertical dash line represents the value of no change. (B) Percentage
ventilation distribution for the same case. vent1 stands for the pre-treatment ventilation, vent2 for the post-treatment ventilation.
doi: 10.1371/journal.pone.0084083.g003
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The TV calculation using the deformation matrix is
straightforward and easy to implement in the ventilation
calculation programs. Even if other ventilation calculation
algorithms are used, it is straight forward to calculate the tidal
volume based on the ventilation distribution. Thus the TV
normalization method can be applied when other ventilation
calculation algorithms are used in this kind of studies. The
calculation of the TV normalized ventilation is also quicker than
the conversion to PV distribution.

The normalization method proposed in this paper is similar to
the one used by Du et al. [12]. When the Jacobian method is
applied, the average Jacobian value over the lung is a
straightforward quantity obtained from the calculation. Thus the
ratio of the average Jacobian values can be naturally used for
normalization. However, the ΔV approach is the most direct
way of quantifying ventilation according to the definition. If this
method is chosen, the TV is the quantity determined by the
calculation and the ratio of the TV values can be easily used for
normalization, while the Jacobian is not readily available.

Figure 4.  Ventilation change versus dose region curves for the 4 different ventilation data sets for all the 6 cases
studied.  LDWV stands for low-dose well-ventilated and TV for tidal volume.
doi: 10.1371/journal.pone.0084083.g004

Table 1. Ventilation change versus dose region.

Data set Absolute LDWV Percentile TV
<5Gy Median 0.028 0.006 0.001 0.002
<5Gy Range -0.020−0.084 -0.039−0.036 -0.002−0.013 -0.004−0.005
5-20Gy Median 0.021 -0.002 -0.001 -0.004
5-20Gy Range 0.009−0.035 -0.059−0.038 -0.064−0.043 -0.046−0.032
20-30Gy Median -0.006 -0.031 -0.028 -0.030
20-30Gy Range -0.040−0.076 -0.070−0.088 -0.115−0.102 -0.097−0.095
>30Gy Median -0.026 -0.031 -0.059 -0.046
>30Gy Range -0.040−0.081 -0.100−0.093 -0.145−0.125 -0.111−0.101

doi: 10.1371/journal.pone.0084083.t001

Table 2. Normalization factor variation between LDWV and TV normalization methods.

Case 1 2 3 4 5 6
LDWV F1/F2 1.026 0.968 1.017 0.923 0.992 0.923
TV1/TV2 1.016 0.933 0.995 0.967 0.987 0.968
% difference 0.97 3.77 2.19 -4.52 0.47 -4.72

doi: 10.1371/journal.pone.0084083.t002
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Because of the inconsistency in the average ventilation in the
LDWV region, the LDWV-normalized ventilation is generally not
reliable and is not recommended.

The goal of this paper was to introduce the TV normalization
method for a ventilation change study of the ventilation data
acquired at different times. A large cohort of patients is being
analyzed in an ongoing study at our institution.

Conclusions

An effective way of removing the tidal volume dependence of
the ventilation data derived from 4D-CT is normalizing the
absolute pre- and post-treatment ventilation data to the same

tidal volume. Compared to the other normalization methods,
the TV-normalized ventilation data consistently removes the
tidal volume dependence and follows the absolute ventilation
distribution closely, and therefore it should be a useful tool in
ventilation change studies for patients undergoing
radiotherapy.
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