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Abstract

Big streaming data environment concerns a complicated scenario where data to be pro-
cessed continuously flow into a processing unit and certainly cause a memory overflow
problem. This obstructs the adaptation of deploying all existing classic sorting algorithms
because the data to be sorted must be entirely stored inside the fixed-size storage including
the space in internal and external storage devices. Generally, it is always assumed that the
size of each data chunk is not larger than the size of storage (M) but in fact the size of the
entire stream (n) is usually much larger than M. In this paper, a new fast continuous stream-
ing sorting is proposed to cope with the constraint of storage overflow. The algorithm was
tested with various real data sets consisting of 10,000 to 17,000,000 numbers and different
storage sizes ranging from 0.01nto 0.50n. It was found that the feasible lower bound of stor-
age size is 0.35n with 100% sorting accuracy. The sorting time outperforms bubble sort,
quick sort, insertion sort, and merge sort when data size is greater than 1,000,000 numbers.
Remarkably, the sorting time of the proposed algorithm is 1,452 times less than the sorting
time of external merge sort and 28.1767 times less than the sorting time of streaming data
sort. The time complexity of proposed algorithm is O(n) while the space complexity is O(M).

Introduction

Sorting is one of the fundamental algorithms of various applications such as fast searching,
computing quartiles, and finding duplicates of a given number set. Many previously proposed
classic sorting methods, e.g. quick sort, heap sort, and merge sort, are very efficient in terms of
time complexity. However, these methods are based on the strong conventional assumption
that the entire set of data must be stored in a processing memory, including internal and exter-
nal memory, during the sorting process. Storing the entire data set prior to the sorting process
is feasible if the data size does not overflow the physical capacity of memory. But due to the
present disruption of big data, it is impossible to retain the entire data set in the memory dur-
ing the sorting process. Big data are continuously generated in various applications such as
internet communication, sensor networks, and pattern cognition in artificial intelligence
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applications. Using massive data is a major issue in various branches of the computational sci-
ences [1-3]. As the growth of data size exponentially escalating [4-6], data computing and
analysis are becoming extremely difficult, resulting in the need for huge memory resources for
the sorting process and massive storage for storing the results [7, 8]. Current VLSI technologi-
cal development to increase the capacity of memory and storage falls behind the explosion of
data consumption demand [3, 9, 10]. The telecommunication industry, business intelligence,
data mining, cloud computing, mobile technology, and machine learning are confronted with
the issue of memory overflow crisis when processing huge amounts of data [11-14]. This
obstruction causes a severe data loss and induces the incorrect results for solving a problem.
Hence, a new sorting algorithm capable of handling memory overflow must be developed. The
time complexity of this algorithm must not exceed the worst time complexity of classic sorting
algorithms.

Although classic sorting algorithms such as bubble sort, insertion sort, merge sort, and
quick sort are popular, they have been improved to work faster. The time complexity is always
the main focus of improvement. Singh et al. [15] proposed a new algorithm, namely, RVA
sorting based on bubble sort and quick sort. The number of comparisons and the execution
time are less than those of the existing algorithms. Wild et al. [16] analyzed the speed of Yaro-
slavsky’s quick sort in terms of the number of comparisons, swaps, and bytecodes. The cost of
Yaroslavsky’s algorithm can be converged by a fixed-point equation. Agrawal and Sriram [17]
proposed a new technique called the Concom sorting algorithm based on a comparison and
counting method. The results of the execution time and comparison are better than bubble
sort and insertion sort. Osama et al. [18] proposed a mapping sorting algorithm based on map-
ping technique. The mapping is not related to comparison or swapping, but it approximates
temporary order by a linear equation. The wrong values at any positions are corrected through
swapping or rearranging steps. Vignesh and Pradhan [19] improved merge sort by using mul-
tiple pivots to sort data in the array. The time complexities of the best and worst cases are O(n)
and O(n log n), respectively. Idrizi et al. [20] modified the counting sort algorithm by reducing
the number of comparisons and the execution time. The sorting result surpasses quick sort,
bubble sort, and merge sort. Mohammed et al. [21] proposed bidirectional conditional inser-
tion sort that improves insertion sort and reduces the number of comparisons by using two
pivots as left-comparator and right-comparator. Goel and Kumar [22] proposed two new sort-
ing algorithms called Brownian motus insertion sort and Clustered binary insertion sort to
reduce the number of comparisons. The time complexity of first algorithms is O( °3/n) while
the second algorithm takes O(n log n). Omar et al. [23] generated a new algorithm called dou-
ble hashing sort based on mapping sort algorithm and hashing technique. The proposed algo-
rithm can reduce both the number of comparisons and the execution time. Recently, new
sorting algorithms have been proposed to handle big data with small primary memory size by
using new auxiliary space as secondary memory or hard disks to merge all sorted parts of big
data. Zushi and Goswami [24] proposed a new quadratic sorting algorithm by considering an
unsorted sequence as a set of disjoint sorted sequences. The execution time of the proposed
algorithm is more efficient than those of insertion sort, bubble sort, selection sort, and quick
sort. Gugale [25] proposed super-sort sorting algorithm by picking sorted sequence in
unsorted sequence. This concept can reduce the number of steps in sorting process. The time
complexity of worst case is O(n log n). Lee et al. [26] proposed ActiveSort for external sorting
using SSDs. The concept involves using ActiveSort to reduce the number of read/write opera-
tions. This can reduce the amount of write operations to 40.4% of the original value. Laga et al.
[27] proposed MONTRES, external sorting algorithm on SSDs to reduce the run time of sort-
ing process by decreasing read and write costs of input and output operations and the size of
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temporary data. Liang et al. [28] designed B*-sort, a new sorting algorithm, which can reduce
the amount of write traffic on Nonvolatile random access memory (NVRAM). Moreover, the
structure used in this algorithm is similar to the binary search tree, which takes the time com-
plexity of O(n log n). Arge and Thorup [29] studied I/O and RAM models to design I/O-effi-
cient as well as RAM-efficient priority queues, and they also analyzed the lower bounds of the
models. Kanza and Yaari [30] proposed a new external sorting method based on flash storage
that avoids writing to the hard disk. In addition, Elder and Goh [31] designed a new sorting
algorithm by a finite stack and an infinite stack on permutation sequence. Although this algo-
rithm can sort streaming data, the sorting result may be not correct in terms of order and
value.

It is noticeable that all classic sorting algorithms are designed by storing the entire data set
prior to the sorting process. This implies that the data size must be at most as large as the mem-
ory size. On the contrary, streaming data continuously enter into the memory as a chunk
whose size cannot exceed the memory size at any time. Obviously, any classic sorting algo-
rithm cannot achieve the accurate sort because the algorithm sorts only the data presently
stored in the memory. The rest of data not entering the memory are not sorted. One potential
solution to resolve the problem of classic sorting algorithms is to use external sorting. How-
ever, all external sorting algorithm must rely on the size of external storage. With current data
storage technology, the increase of storage size cannot keep pace with the increase of generated
data, such as internet data [32, 33].

Recently, Chaikhan et al. [34] proposed an algorithm called streaming data sort to continu-
ously sort incoming big streaming data by using a uniprocessor and only one internal fixed-
size working memory. The memory size is much smaller than the total streaming data size. No
external storage for storing overflowed data is required. The data flow into the working mem-
ory as a streaming chunk. After sorting the incoming data, these data are discarded and repre-
sented in forms of compact and single groups. The sorting time complexity is O(n), where # is
the size of streaming data and the space complexity is O(M), where M is the size of working
memory. Moreover, unlike the external sort, streaming data sort does not require any external
space for the merge process. Streaming data sort merges sorting results and current incoming
data based on a limited memory that exists at the beginning of the process, whereas the merg-
ing space, which is always much greater than the size of huge data, is strongly required for the
external sort. Although streaming data sort can efficiently solve the sorting problem with lim-
ited memory size, the algorithm is limited to some specific distances between any two consecu-
tive numbers and remains incapable of handling duplicate numbers. Let n be the size of
streaming data, M < n be the size of working memory, k > 1, and € > 0. The comparison of
existing sorting algorithms and our fast streaming data sort are shown in Table 1, which con-
tains eight columns: (1) compatibility with duplicate data, (2) stability, (3) compatibility with
streaming data, (4) extra storage needed, (5) working space, (6) time complexity, (7) correct
orders, and (8) correct values.

Data lifecycle [35-39] is another essential issue in data analysis and data mining. Each
datum passes various stages during its lifetime, starting from creation, analysis, and so on until
expiration, possibly due to being obsolete. In practice, any expired data must be removed from
the relevant database to gain available space and to keep the data up-to-date. Streaming data
also possess this lifecycle trait without exception. The method of streaming data sort [34] is
incapable of managing expired data after being sorted and captured in a compact representa-
tion. However, this issue is resolved in this study.

The rest of this paper is organized into the following sections. The “Studied Problems and
Constraints” section discusses the problem studied in this paper and the concerned con-
straints. The “Background” section summarizes the related works. The “Definitions and
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Table 1. Comparison of sorting algorithms on streaming data.

Sorting algorithms Compatibility with

duplicate data
Bubble sort Yes
Selection sort Yes
Insertion sort Yes
Quick sort Yes
Merge sort Yes
Heap sort Yes
External sorting Yes
Permutation sort Yes
[31]
Streaming data sort No
(34]
Fast streaming Yes
data sort

Stability Compatibility with Extra storage Working Time Correct Correct

streaming data needed space complexity orders values
Yes No No n+e o(n?) Yes Yes
No No No n+e o(n?) Yes Yes
Yes Yes No n+e on?) Yes Yes
No No No n+e o(n?) Yes Yes
Yes No Yes n+e O(nlgn) Yes Yes
No No No n+e O(nlgn) Yes Yes
Yes Yes Yes kn+ e N/A Yes Yes
Yes Yes Yes kn+e N/A No No
Yes Yes No <0.35n O(n) Yes Yes
Yes Yes No <0.35n O(n) Yes Yes

n is the total streaming numbers to be sorted, M < # is the limited size of working storage, k > 0, and € > 0.

https://doi.org/10.1371/journal.pone.0266295.t001

Notations” section defines the notations used in this paper. The “Concepts” section explains
the concepts of the proposed approach. The “Proposed fast streaming data sort Algorithms”
section provides the details of proposed algorithms. The “Experimental Results and Discus-
sion” section provides the experimental results for the proposed algorithms as well as the dis-
cussion of the results. The “Conclusion” section concludes the paper.

Studied problems and constraints

The basic studied problem in this paper focuses on the sorting of streaming data under the
constraints of limited working memory size and a uniprocessor similar to the problem studied
in [17]. Although the sorting algorithm in [34] can efficiently sort the streaming data under
the imposed constraints, it assumes that there are no duplicate data in the streaming input.
This assumption is impractical for many real-world data sets. Furthermore, the condition of
data lifecycle was not taken into account. On the contrary, this study concerns the issues of
duplicate data and data lifecycle as new constraints. Only integer data are considered, and any
sorted number with its order in the sorted sequence must be correctly recalled from its com-
pact group.

Background

Streaming data sort [34] proposed a sorting algorithm for large streaming data by representing
sorted sub-sequences in forms of compact groups so that the sorting process could be executed
under a limited working memory size on a uniprocessor. The compacting process is a major
concept of streaming data sort to efficiently represent the sorted data set to avoid memory
overflow. Four particular sub-sequences of type-1, type-2, type-3, and type-4 are compacted to
type-1 compact groups (u, W, type-2 compact groups (u, V)@, type-3 compact groups (u,
v)®, and type-4 compact groups (u, v)'*, respectively. Type-1 is a sub-sequence of data where
all differences between any two consecutive data are one. Type-2 is a sub-sequence of data
where the first difference is one and all differences of two consecutive data alternate between
one and two. Type-3 is a sub-sequence of data wherein the first difference is two and all differ-
ences of two consecutive data alternate between one and two. Finally, type-4 is a sub-sequence
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of data wherein all differences of any two consecutive data are two. For examples of the four
types compacted to compact groups: (1) a type-1 sub-sequence (14, 15, 16, 17, 18) is com-
pacted to a type-1 compact group (14, 18)" in which (15, 16, 17) are removed from memory
and called compressed data; (2) a type-2 sub-sequence (14, 15, 17, 18, 20) is compacted to a
type-2 compact group (14, 20)? and (15, 17, 18) are removed from memory; (3) a type-3 sub-
sequence (14, 16, 17, 19, 20) is compacted to a type-3 compact group (14, 20)® and (16, 17,
19) are removed from memory; (4) a type-4 sub-sequence (14, 16, 18, 20, 22) is compacted to a
type-4 compact group (14, 22)® and (16, 18, 20) are removed from memory. A compact
group of any type is invertible to the sub-sequence of type p where p is 1, 2, 3 and 4. For exam-
ple, (14, 20)(3) = (14, 16, 17, 19, 20). A result of compressing all data in memory usage at itera-
tion ¢ is called the compact set Q'”, which contains two member types: compact group and
single data. Note that type-p of any sub-sequence (w;, i1, Wiz, - . ., Wiyy) can be computed by

p=w.,+w, —2(w +1) where i € N. (1)

To create Q"*Y, the new incoming data in the (¢ + 1) iteration are investigated together
with single data and inversion of the compact group in QY. The inversion of the compact
group can be generated by the recalling process. Inserting incoming data into Q" affects the
sorting pattern of single data and compact groups in Q“*V. Fig 1 illustrates an example of 20
simple data points sorted by the streaming data sort algorithm, where the memory usage size is
10, which is half of the data size. Note that type-1 and type-4 have higher compression prece-
dence than type-2 and type-3.

Definitions and notations

Since this paper concerns the improvement of the algorithm in [34], the definitions of intro-
duced sequence types must be recapped here as follows.

Definition 1 Streaming data sequence D = (dy, d,, ds, . . ., d,,)), for 1 < n < 00, is a finite or
infinite sequence of integers to be sorted.

The streaming data enter the sorting process in the form of a consecutive chunk of data.
There are four types of relations among the data in each chunk, which are defined as follows.

Definition 2 [34] Type-1 sub-sequence Ty = (d,, . . ., d;;) C D is a sequence such that Vd,,
dip1 € Ty: |di— diy| = 1.

Definition 3 [34] Type-2 sub-sequence T, = (d,, . . ., d;x;) C D is a sequence such that Vd,.,,
divar1 €T5,0<a <I1-1:|diy,— disas1| = 1 when ais even and |d;,, — di\q11| = 2 when a is odd.

Definition 4 [34] Type-3 sub-sequence T5 = (d,, . . ., diy;) C D is a sequence such that ¥d, ,,
divar1 € T5,0<a <I1-1:|dy, — diyas1| =2 when ais even and |d;,, — d;, 51| = 1 when a is odd.

Definition 5 [34] Type-4 sub-sequence Ty = (d,, . . ., d;.;) C D is a sequence such that Vd,,
dip1 € Ty: |di — diy| = 2.

Definition 6 Insert position ins(-) of the i"" datum d into type-p compact group (u, v)® is
the order of location of d; with respect to all integers in the compact group (u, v). This position
is computed by the following equations:

QV";“JJr(di—u)mod?)Jrl for p=2,3
ins(d;) = (2)
[d";u-‘Jrl for p=4.
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Data, memory usage = 10

19 16 2 10 6 9 8 18 4 12 7 14 1 17
First iteration
type 4 type 2
(0 o _o 0)(0 ® ()
9 11 12 13 14
type 4 type 2 type 3
compress @ QQ _)Q Q _
12 16 19

empty memory = 4

Second iteration, add 7, 14, 1, 17

sort 1 7 14 17
+vae -1+ type 2 +t)pc 3+
Q 0000
8 9112 1619
recall -'2' 4,6,8119, 10,121 16, 18, 19

type 2 typel typed typel

conpres @ 0000 0O O

empty memory = 2

Third iteration, add 20, 11

sort 11 20
type 2 type 1l + type 4  typel +
eeoe00000
10 12,16 17 19
recall a3
type 2 type 1 type 1
compress 0 00 00O @
1 4 6 12 14 16 20 b———

empty memory = 3
Fig 1. A streaming data sort example.

https://doi.org/10.1371/journal.pone.0266295.g001

20 11 5 15 13 3

type 3

15 16 17 18 19 20

Fourth iteration, add 5, 15, 13
sort 5 13 15

type 2 + type 1 + + type 1

14 6[12 14 16[20
vecall 027 70,101 060715, 19,2
type 1
compress o !@_ -
1 2 4 20 | !
empty memory = 6
Fifth iteration, add 3
sort 3
+ type 1
1 2 4l20
vecall T4 86 70 1L 1313, 04 16,1617, 15, 16,70
type 1
compress @ @
1 20 ¢ !

empty memory = 8

Definition 7 Size of compact group (u, v)?’ denoted by |(u, v)**’| is the number of all possi-
ble existent integers inside the interval (u, v)? computed by the following equations:

v—u+1 for p=1
QLV;L[J—F(V—u)mOd?) for p=2
1| (v —u) mod3
) I it IS
[, 0) ] = 2 { 7 J + (3)
- - d3
2|” ”J+(V umods | p—s.
3 2
Y ; “ +1 for p=4.
Notably, if d; is in (u, )®, then |(u, d)® )| is the position of d; in (u, v).
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Definition 8 A new incoming datum d; is a duplicate of the already existent d; € (u, v)*? if d;
complies with one of the following conditions.

1. Ifu <d; <v for the type-1 compact group.

2. Ifu<d; <vand (d; — u)mod3 = 0 or 1 for the type-2 compact group.
3. Ifu < d; <vand (d; — u)mod3 = 0 or 2 for the type-3 compact group.
4. If u <d; <vand (d; - u)mod2 = 0 for the type-4 compact group.

Each condition is based on the fact that the distance between two consecutive integers in
each compact group must comply with the definitions 2, 3, 4, and 5. Thus, if a compact group
already contains d;, then another new incoming d; must be obviously congruent with the dis-
tance defined in either 2, 3, 4, or 5. To denote a datum d; with no duplicate and a datum with

some duplicates, a superscript (f) is attached to d; as d”, for f> 1, to count the duplicates of d;

in the corresponding compact group. Obviously, d" implies that d; has no duplicate.

Concepts

Streaming data sort [34] updates the present set of compact groups when a new incoming
datum d,, enters the sorting process by unfolding the relevant compact groups and rearranging
the data with d,,. After unfolding and rearranging data of the relevant compact group, a new
set of compact groups is updated next, possibly by merging or decomposing the present com-
pact groups. Obviously, these steps lengthen the sorting time. Another issue not considered by
Streaming data sort is data duplication. Unlike Streaming data sort, the steps of unfolding and
rearranging compact groups are eliminated. New steps are proposed by deploying Definition 6
with Definition 8 to speed up the sorting process as well as to handle data duplication.

Suppose that the working memory size is set to m and that there is only one incoming
datum d, at a time. Datum d,, is either inserted into one of the present compact groups or
becomes a single number by itself if it cannot be inserted into any compact group. At any time
t, there are two sets of interest: a set of compact groups called the compact set denoted by Q”
and a set of duplicates R”. At any time ¢, there exists a new incoming datum d,,. The concep-
tual steps to handle d,, and its duplicates are the followings.

1. Instead of unfolding the concerned compact group to obtain all numbers in the compact
group, the insert position of d, is directly computed by applying Definition 6.

2. Suppose d,, is inserted into compact group (u, v)®, Check whether (u, v)* is of types 2, 3,
or 4, then recursively split (1, v)? at position of d,, into smaller compact groups.

3. Test the duplicate condition by using Definition 8. If the condition is satisfied, then update
R®.

4. Merge any adjacent compact groups into one compact group if they have the same sub-
sequence type.

By splitting the current compact group into several smaller compact groups with reference
to the position of d,, the sorting algorithm can achieve faster speed than the speed of Streaming
data sort. Fig 2 illustrates an example of how the concept of fast streaming data sort works.
There are 21 numbers to be sorted. The size of working memory is set to m = 12. The incoming
data whose size is at most 12 flow into the working memory one chunk at a time.

The first incoming chunk includes 10 numbers with two duplicates: 2, 7, 2, 10, 6, 9, 8, 4, 6,
12. These data are sorted and compacted into two compact groups of types 1 and 4, and one
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Data 1 )
2 7 2 10 6 9 8 4 6 12 7 14 1 11 1 5 15 13 1 3 Seventh iteration, add 5
First iteration (?
tpe d type 1 0000 QW@
@ 0 000D ! @ 1 Q@ OQ OO Q@) _
@ l\@/: e 1 type 1 type 20N
duplicate data 2 duplicate data 6(2) transform @ @ ’1(3)72(72)79721777(2)‘
typed typel | typel type2 )
e QOQD@EE___ _ _ e ©QQ DO O 1 _
RW empty memory =5 QM R empty memory = 2
(a) L (8) Y,
N . - N
Second iteration, add 7 Eighth iteration, add 15
type 4 type r %@
typel type2y
Q@@ _ _ _ _ Q2@ OO @12 )
typc 4 type 1 & 1
ype type 2
duplicate @ ‘2 insert - - I1(27)727(27)767(277';&)‘
= R® ™ empty memory = 4 mser @ @ 9 @ @ @ @ ,,,,,,,,,,,
(b) type 1 type2)
mege (D Q@ D@ G122 1) _
Third iteration, add 14 @ o® R® empty memory — 2
type4d typel — ¥_ ()
COQO e
typed  type 1 Ninth iteration, add 13 )
e (@OQ D@ DE WHL?
— ) — — wpe2V |
Q® RO empty memory = 3 @ @ !1(2) 2_(2) 6_2) 7_(2)‘_ .
@ -
Fourth iteration, add 1
type 4 type r
—————— Q< R<9> empty memory = 4
e 4 tvpe L N ® d
wet 0O OO DR REE ) _ _
QW R®W  empty memory = 2 ( Tenth iteration, add 1 )
(d)
N A N type 1
Fifth iteration, add 11 -
g @ @ @ @ r1(2) 2(2) 5(2
typc 4 type ly
2(2) 62 (2) 7(2)|
VRO QL 1@ — || twtine © @@ B
ty pe 4 type r Q(m)
insert @ @ @ @ 2»(,21,6,(3),,7,(3)‘ E g
e 4 type 1 type 2 4 A

Eleventh iteration, add 3
Q<5> R<5> empty memory = 2 ¥V type 1

© QOO @@ _ _ _ _

Sixth iteration, add 1 t pe 1

type 4 type 1 type2)

-
2(?) 6 7(2)] type 1 typel |
0]©)0) l ______ )— — compress r1(3> 2 6@ 7))

type4 tvpel type

Q(6 R® empty memory = 1 Q(u) R(n)

(f) (k)

empty memory = 6

Fig 2. An example fast streaming data sort with 11 iterations from (a) to (k).
https://doi.org/10.1371/journal.pone.0266295.g002
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single number is assigned to the compact set QW =((2,6)®, (7, 10)V, 12) with the duplicate
set RV = (29, 6'?) as shown in Fig 2(a). The incoming numbers are circled. The less opaque
numbers are not currently incoming numbers, but only the numbers in the natural sequence.
Notice that only 7 out of 12 entries of memory are used. The second incoming chunk has

only one number, 7, which already exists in compact group (7, 10)™"). Datum 7 is a duplicate
according to Definition 8. Thus, the present compact set is still the same as before, i.e. Q¥ =
((2,6)®, (7,10)V, 12), but the set of duplicates is updated as R =(2®, 62, ﬁ), as illustrated
in Fig 2(b).

The third incoming chunk includes only number 14, which can be neither combined with
any previous single number to form a new compact group nor assigned to any existing com-
pact groups. This number is inserted behind datum 12. Therefore, Q® =((2,6)*, (7,10)V,
12, 14) and R® =(2?, 6@, 79, as shown in Fig 2(c). The fourth incoming number 1 is
inserted in front of data 2. The compact set and duplicate set are updated as Q* = (1, (2, 6
(7,10)V, 12, 14) and R = 2, 6?, 79)), as shown in Fig 2(d). The fifth incoming number
11 is inserted in front of datum 12 to form a new compact group of type 2, (11, 14)(2). There-
fore, Q¥ = (1, (2, 6)®, (7,10)", (11, 14)®) and R® = (2, 6'?, 7)), as shown in Fig 2(e).
The rest of the incoming numbers shown in Fig 2(f)-2(k) are handled by the same conceptual
procedure as previously described. It is remarkable that the memory space used by this sorting
process is much less than the available space.

)(4)

Proposed fast streaming data sort algorithm

The steps to construct each compact group are adopted from the algorithm proposed in [34].
The algorithms to handle duplicate data, merge compact groups, and remove expired data
based on the supportive Theorems are the following.

Main algorithm: Fast streaming data sort algorithm
Input: 1) a chunk of incoming numbers.
Output: (1) 0'® and (2) R'®.
. Set time t = 1.
. Obtain the first incoming chunk of numbers
. Create first compact set Q(”.
Create duplicate set R using Algorithm 1.
. t=t+ 1.
. While there exists a new data chunk do.
Insert each d; into 0'®" using Algorithm 2.
Merge some compact groups if possible.
Update duplicate set R using Algorithm 1.
10. t=t¢t+ 1.
11. EndWhile

The details of Algorithm 1 and Algorithm 2 are presented in the following sections.

W J o Ul bW

e

Handling data duplication

To determine whether d; entering the sorting algorithm at time ¢ is a duplicate of any previ-
ously sorted dj, the following two possible cases are analyzed. The first case is when d; already
exists in the compact set Q“™") as a single number. In this case, determining the duplication of
d; is simply performed by comparing d; with each single number in Q“™". The second case
occurs when d; is already covered in a compact group. In this case, the conditions stated in
Definition 8 are tested. For example, at time ¢ — 1, the following compact set {(6, 8)"", (9,
12)?, (16, 19)?®, (22, 26)™®} is formed and this chunk of incoming data 7, 10, 10, 18, 18, 18,
24, 24, 24, 24 enters the sorting algorithm at time t. Number 7 is declared as a duplicate of

compact group (6, 8)'”) by condition 1 of Definition 8 and number 7 is represented by 7.
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Number 10 is the duplicate of number 10 in compact group (9, 12)® because the second con-
dition (10 — 9)mod 3 = 1 is satisfied. Thus, number 10 is represented by 10®). Number 18 is a
duplicate of (16, 19)® because (18 — 16)mod 3 = 2 by condition 3, and number 24 is a dupli-
cate of (22, 26)™* because (24 — 22)mod 2 = 0 by condition 4. Both numbers are represented by
18™ and 24, respectively. The duplicate set R becomes R® = {7'?, 10, 18®, 24©)},
Let df*) be a duplicate of d; kept in duplicate set RV,
Algorithm 1: Updating duplicate set
Input: (1) d;. (2) 0", where t » 2.
Output: (1) R'®.
1. If d; is a duplicate in Q'*" then */ by definition 4 /*
2. 1Ifd” is in R‘“? then
3 Update duplicate count of d; by £ = f + 1.
4. Else
5 Insert d; in compact set Q(t) .
6 EndIf
7. EndIf

Inserting incoming numbers into compact groups

When a new incoming number is taken into the framework, this number may possibly be one
of the numbers in the number sequence of an existing compact group. If the incoming number
has type 1, it can be simply inserted at the front or at the rear of the corresponding compact
group. Otherwise, some prior process must be performed to form a new compact group or a
new set of compact groups by splitting them. Only type-2, type-3, and type-4 require this prior
process. When forming a new compact group of types 2, 3, and 4, it does not matter whether
the incoming number is a duplicate or not because each compact group just keeps track of the
existence of all numbers which are already sorted, and the number of duplicates is instead sep-
arately recorded in the duplicate set.

The ways to split compact groups of type-2, type-3, and type-4 compact groups into smaller
compact groups after inserting a new number are completely different due to the unequal dis-
tances between any two consecutive numbers of each type. Furthermore, the size of each com-
pact group measured in terms of the total numbers being compacted in the compact group is
also important for splitting the compact group. There are two trivial cases for which compact
groups cannot be split. The first case is when the size of the type-2 compact group is either 3 or
4. The second case is when the size of the type-3 compact group is 3. For other non-trivial
cases, the type of compact group can be changed to another type after the insertion as the result
of distance change between two consecutive numbers in the compact group. Notice that both
type-2 and type-3 compact groups become type-1 compact groups after insertion. For example,
suppose that an incoming number 16 is inserted into type-2 compact group (14, 18)' of size |
(14, 18)(2)| = 4. After insertion of 16 into (14, 18)®, the compact group becomes (14, 18)™M
because the distance between two consecutive numbers is 1. If incoming datum 15 is inserted
into type-3 compact group (14, 17)®, then (14, 17)® becomes (14, 17)V. Obviously, the type-2
and type-3 compact groups are always transformed to type-1 compact groups after inserting
incoming d;

In the general case, the results of inserting an incoming datum into type-2, type-3, and
type-4 compact groups can be split into smaller compact groups which are classified into two
categories: (1) the type-1 compact group and (2) the non-type-1 part which may be either a sin-
gle number or a mixture of compact group of type-2, type-3, and type-4. For example, an
incoming 16 is inserted into (11, 17)®. If the size of |(11, 17)®] = 5 > 4, which is not a trivial
case, and ins(16) = 5, then the type-1 part is (14, 17)V and the non-type-1 part consists of two
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single data: 11 and 12. Therefore, (11, 17)? transforms to 11, 12, (14, 17)". For another exam-
ple, an incoming 12 is inserted into (11, 19)®. If |(11, 17)®”)| = 5 > 4, not a trivial case, and ins

(12) = 2, then the type-1 part is (11, 14)V and the non-type-1 part is (16, 19)®. Therefore, (11,
17)® transforms to (11, 14), (16, 19)®.

Theorem 1 A non-type-1 part containing single data is generated after inserting an incoming
number d; into a type-2 compact group (u, V)@, ifins(d;) is equal to one of the following positions
{5, |, ?] = 3, |, | - 2}.

Proof: There are three cases to be considered, depending on ins(d;) of the type-2 compact
group (u, v)(z), as follows.

Case 1:ins(d;) = 5. Let (u, v)® =d; - 5,d;—4,d; - 2,d; = 1,d; + 1, d; + 2, d; + 4, . . ., v where
u=d;— 5. d;is inserted between d; — 1 and d; + 1. Then, sub-sequence d; - 2,d; — 1, d; + 1,

d; + 2 is transformed to type-1 compact group (d; - 2, d; + 2)". Since u = d;, — 5and u + 1 = d;
—4, uand u — 1 are single data in the non-type-1 part and sub-sequence d; + 4, . . ., v is trans-
formed to type-2 compact group (d; + 4, v)®. After insertion, (1, v)® is transformed to u,
u+1,(d;i—2,di+2)", (d; +4,v).

Case 2: ins(d;) = |(u, v)(2)| —3.Letw, VP =u,...di-4,d-2,d-1,d;+1,d;+2,d; +4,
d; + 5, where v = d; + 5. d; is inserted between d; — 1 and d; + 1. Then, sub-sequence d; — 2,
d;—1,d; d; + 1, d; + 2 is transformed to type-1 compact group (d; — 2, d; + 2)V. Since v=d; + 5
andv—1=d;+4,v—1and v are single data in the non-type-1 part and sub-sequence 4, . . .,

d; - 4 is transformed to type-2 compact group (u, d; — 4)®. After insertion, (u, v)? is trans-
formed to (u, d; — 4)?, (d; - 2,d; +2)", v 1, .

Case 3: ins(d;) = |(u, v)(2)| —2.Let WP =u,...di—4,d-2,d,—1,d;+1,d;+2,d; + 4,
where v = d; + 4. d; is inserted between d; — 1 and d; + 1. Then, sub-sequence d; - 2, d; — 1, d;,
d;+1,d; + 2 is transformed to type-1 compact group (d; — 2, d; + 2)'V. Since v = d, + 4, v is a sin-
gle datum in the non-type-1 part and sub-sequence u, . . ., d; — 4 is transformed to type-2
compact group (u, d; — 4)@._ After insertion, (u, v)? is transformed to (u, d; — 4)?, (d; - 2,
di+2)M,v.

Theorem 2 The non-type-1 part is generated after inserting an incoming number d; into a
type-3 compact group (u, v)®, if ins(d;) is equal to one of the following positions {4, |(u, v)®| - 3,
[(u, v)®| - 2}.

Proof: This proof is similar to Theorem 1.

Case 1: When ins(d;) = 4, then (1, )¥ =d, - 4,d, - 2,d; - 1, di+ 1, d;+ 2, d; + 4, .. ., v
where u = d; — 4. Sub-sequences d; — 2,d; - 1,d;,d; + 1,d; + 2and d; + 4, . . ., v are transformed
to (d;— 2, d; +2)" and (d; + 4, v)®, respectively. u is a single datum in the non-type-1 part.
After insertion, (u, v)® is transformed to u, (d; — 2, d; + 2)V, (d; + 4, v)®.

Case 2: ins(d;) = |(u, v)(3)| —3.Then, (u, V)P =u, .., di-4,d;-2,d;—1,d;+ 1, d; + 2,
d;+4,d; + 5, where v=d; + 5. Sub-sequences d; - 2,d; — 1,d;;d; + 1,d;+2and u, ..., d; — 4 are
transformed to (d; — 2, d; + 2)" and (u, d, — 4)®, respectively. v — 1 and v are single data in
the non-type-1 part. After insertion, (u, v)® is transformed to (u, d; — 4)®, (d; - 2, d; + 2)V,
v—1,v.

Case 3: ins(d;) = |(u, v)(3)| —2.Then, (u,V)® =u,...di—4,d;—2,d;,—1,d;+ 1,d; + 2,

d; + 4, where v =d; + 4. Sub-sequences d; — 2,d;— 1,d;, d; + 1,d; + 2and u, . . ., d; — 4 are trans-
formed to (d; — 2, d; + 2)M and (u, d;—4)®), respectively. v is a single datum in the non-type-1
part. After insertion, (u, v)® is transformed to (4, d; — 4)®, (d; - 2, d; + 2)V, v.

Theorem 3 The non-type-1 part is generated after inserting an incoming datum d; into a
type-4 compact group (u, v), if ins(d;) is equal to one of the following positions {3, |(u, v)| - 2,
[(u, V)| = 1}.

Proof: This proof is similar to Theorem 1.
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Table 2. Summary of insertion position and the sequence of insertion in forms of split compact groups.

Type-p Insert position new resultant split compact groups
ins(d;) (u, v)®
2 3 (u, v)m
(Trivial')
2 5 wu+1,(di-2,d+2)P, (d;+4,v)?
2 [, v)®| -3 (, di— 4P, (di—2,d; +2)V,v—1,v
2 [, v)®| -2 (u, di— 9, (d;-2,di+2)D, v
2 others (,d; = 4P, (d; -2, d; +2)Y, (d; + 4, v)®
3 2 (u, v)V
(Trivial®)
3 4 u, (d; — 2, d; + 2)D, (d; + 4, v)®
3 [, v)®| - 3 (, di— 4, (di—2,d; +2)V,v-1,v
3 [, v)®| - 2 (u, di— 9P, (d;-2,di +2)Y, v
3 others (,d; = 0P, (d; -2, d; +2)Y, (d; + 4, v)®
4 3 u, (di = 1, d; + DD, (d; + 3, v)@
4 |G, )] - 2 (,d;=3) d; - 1,d;+ D)V, v-2,v
4 [, V)| - 1 (,d; = 3)?, (di - 1,d; + DD, v
4 others (u,d;=3)P, (d; - 1, d; + DV, (d; + 3, )@

Trivial' refers to the case in which the size of the type-2 compact group is either 3 or 4. Trivial® refers to the case in
which the size of the type-3 compact group is 3.

https://doi.org/10.1371/journal.pone.0266295.t002

Case 1:ins(d;) = 3, and then (1, VY =d, - 3,d;— 1, d; + 1,d; + 3, ..., vwhere u = d; - 3.
Sub-sequences d; — 1,d;, d; + 1 and d; + 3, . . ., v are transformed to (d; - 1, d; + 1) and (d;
+3, v)(4), respectively. u is a single datum in the non-type-1 part. After insertion, (u, v)(4) is
transformed to u, (d; — 1, d; + )Y, (d; + 3, v)®.

Case 2: ins(d;) = |(u, V)| = 2, then (u, V)™ = u, .. ., d; - 3,d; = 1,d; + 1,d; + 3, d; + 5, where
v=d;+5.Sub-sequences d; — 1,d;,d;+ 1 and u, . . ., d; — 3 are transformed to (d; — 1, d; + H»
and (1, d; — 3)™, respectively. v — 2 and v are single data in the non-type-1 part. After inser-
tion, (1, v)® is transformed to (u, d; - 3)®, (d; = 1, d; + DV, v =2, v.

Case 3: ins(d;) = |(u, )®| = 1, then (u, V¥ =u, .. ., d; - 3,d; — 1, d; + 1, d; + 3 where v = d
+ 3. Sub-sequence d; — 1,d;, d; + 1 and u, . . ., d; — 3 are transformed to (d; - 1, d; + W and
(u,d; - 3)®, respectively. v is a single datum in the non-type-1 part. After insertion, (, V@ is
transformed to (u, d; — 3), (d; - 1, d; + 1)'(1)), v.

If ins(d;) does not conform with Theorems 1, 2, and 3, then a set of compact groups is gener-
ated without the existence of any single number as follows. Type-2 compact group (u, v)® is
transformed to (1, d; — 4)?, (d; - 2, d; + 2)V, (d; + 4, v)®. Type-3 compact group (u, P is
transformed to (1, d; — 4)®, (d; - 2, d; + 2)V, (d; + 4, v)®. Type-4 compact group (u, )@
is transformed to (u, d; — 3)™, (d; = 1, d; + DV, (d; + 3, v)¥. Table 2 summarizes the splitting
of type-2, type-3 and type-4 compact groups as a result of inserting d;. The steps to generate a
new compact set after insertion are provided in the following Algorithm 2. Let (1, )’ denote
the corresponding compact group of type-p for inserting the incoming d;.

Algorithm 2: Generating a new compact set after insertion
Input: (1) d; and (2) compact set Q(t_l), where t 2 2.
Output: (1) a new set of compact groups o'v),
1. Find the corresponding compact group (u, Vv)

for inserting d;.
2. Case:
3. 1: d; is in (u, v)

P} where p € {2, 3, 4}

(2)
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~ o U

8.
9.
v

14.
15.
16.
17.
18.
19.
20.
21.

\%4

26.
27.
28.
29.
30.
31.

V.

32.
33.
34.
35.

36.

10.
11.
12.
13.

2: d; is in (u, v

22.
23.
24.
25.

If | (u, v) ®| = 3 then /*trivial case*/
Split (u, v)‘® into (u, v) ‘*.
ElseIf ins(d;) = 5
Split (u, v) ® into u, u+1, (d; - 2, d; +2)Y, (d; + 4,
V)(D.
ElseIf ins(d;) = |(u, v)?| - 3
Split (u, v) ¥ into (u, d; - 4)®, (d;s -2, d; +2), v -1,

ElseIf ins(d;) = |(u, v) @ | - 2
Split (u, v) ® into (u, d; - ), (d; - 2, d; +2)V, v.
Else
split (u, v)® into (u, d; - 4)?, (d; -2, d; + 2)Y, (d;
+4, v)?,
End
)(3)‘
If |(u, v) ®| = 3 then /*trivial case*/
Split (u, V)(a into (u, V)(U.
ElseIf ins(d;) = 4
Split (u, v)® into u, (d; - 2, d; + 2)Y, (d; + 4, v)?.
ElseIf ins(d;) = |(u, v)®| -3
Split (u, v)® into (u, d; - 4, (d; -2, ds + 20, v-1,

ElseIf ins(d;) = |(u, v) ¥ | - 2

Split (u, v) ©® into (u, d; - 4, (d; - 2, d; +2), v.
Else

Split (u, v)® into (u, d; - 4), (d; - 2, d; + 20, (d;

+4, v)?,
EndIf
3: d; is in (u, v) 4,
If | (u, v)®| = 3 then
Ssplit (u, v) “® into u, (d; - 1, d; + 1), (d; + 3, v) ‘¥,
ElseIf ins(d;) = |(u, v) | -2

Split (u, v)® into (u, d; - 3)™, (d; -1, ds + 1), v - 2,

ElseIf ins(d;) = |(u, v) Y| -1
Ssplit (u, v) “ into (u, d; - 3)®, (d; - 1, d; + 1),
Else
Split (u, v)*® into (u, d; - 3)™, (d; -1, d; + 1)V, (d;
+ 3, V)(“.
EndIf

37. EndCase

Merging compact groups

After compact group splitting, it is possible that some compact group (u, v)® can be merged
with a single number s to reduce the consumed memory space. The merging conditions of all
types of compact groups are the following.

1

2

. Ifu-s=1andp=1,thensand (u, )P are merged into (s, v

)(1{

. Ifu-s=2andp=2,thensand (u, V)P are merged into (s, .

. Ifu-s=1andp=3,thensand (u, )P are merged into (s, v)

@

. Ifu-s=2andp=4,thensand (u, )P are merged into (s, nW,

. Ifs—v=1andp=1,then (4, v)® and s are merged into (, s)W.

. Ifs—v=(v-u)mod3 + 1< 2,and p =2, then (u, )® and s are merged into (4, $)@.
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7. Ifs—v=(v—-u+2)mod3 < 2,and p = 3, then (4, P and s are merged into (4, D
8. If s—v=2and p =4, then (4, v)® and s are merged into (4, 5)@W.

Another possibility is that two compact groups can be merged into one compact group. The
conditions for merging any two compact groups (u;, v1)®1) and (uy, v,),), where vy < u,, are
defined as follows.

I. Ifu, — v =1and p; = p, = 1, then (uy, v)?)) and (uy, v,)?,) are merged into (u;, v,) W,

2. Ifu, — vy =2 = (v; — uy + 1)mod 3 and p; = p, = 2, then (uy, v;)?;) and (5, v,);) are
merged into (uy, v,)@.

3. Ifuy—v; = 1= (v, — uy + 1)mod 3, p; = 2, and p, = 3, then (uy, v;),) and (u,, v,),) are
merged into (uy, v,)@.

4. Iffuy, — vy =2=(v; —u; +2)mod 3, p; = 3, and p, = 2, then (u;, v))®) and (uy, v,)%,) are
merged into (u, ).

5. ffuy—vi=1=(v; —u; +2)mod 3 and p; = p, = 3, then (u;, v)®) and (1o, v,)®,) are
merged into (uy, ).

6. If uy — v; = 2 and p; = p, = 4, then (uy, v1)?}) and (1, v,)?,) are merged into (u;, v,) .

For example, the result of merging (4, 8)® and (10, 12)? is (4, 12)® because 10 — 8§ =2 =
(8 —4 + 1)mod 3. Note that merging two compact groups depends on the order of compact
groups in a compact set.

Removing expired single numbers from the compact set

Various applications in streaming data mining and data life cycle management must occasion-
ally remove some expired data from the storage or database. Actually, removing any data from
a sorted sequence when the whole sequence is kept in storage is rather simple. However, in
cases of sequences sorted with limited storage size, removing any data from the sorted
sequence is not as simple because the whole sorted sequence is transformed into a set of com-
pact groups and single numbers. Streaming data sort [34] does not support data removal from
a compact set during the sorting process.

The process of data removal from a compact set is proposed in this fast streaming data sort.
A removed datum is denoted by d., while a set of deleted data is denoted by D. There are two

removal cases. The first case is that d, is a single number in a compact set. In this case, d, can
be directly removed from the compact set without affecting the components of other compact

groups. For the second case, &,. is a member of a compact group (u, v)*. Removing c?,. from

(u, v)® splits (u, v)® into two parts: the left part L and right part R with respect to d.. Depend-
ing upon the type of compact group, the set of numbers in parts L and R can be expressed by
the following Theorems.

Theorem 4 Let L be a set of a left part for removing a datum d. from a compact group (u,
WO If|(1,d)?| € Z and |(u,d,)?| < 3, then

L={le{uu+1,u+2}|u)? ez} (4)

Theorem 5 Let R be a set of a right part for removing a datum d. from a compact group (u,
WO I |(u,d,)?| € Z and |(u,v)?| — |(u,d.)?| < 2, then

R={re{v—2,v—1,v}|(u,n)"]| € Z}. (5)
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Theorem 6 Let L be the left part for removing a datum d, from a compact group (u, v)®. If
|(u,d)?| € Z and |(u,d.)?"| > 3, then L has one of the following compact group forms:

(u,d. — 1)V forp=1

[ (u,d. —a)®  forp=2 6)
(u,d, —b)®  forp=3
(u,d, —2)"  for p=4

wherea = 1+ |(u,d,)?|mod 2 and b = 1 + (|(u,d,)"'| + 1)mod 2.

Theorem 7 Let R be a right part for removing a datum d, from a compact group (u, v)®. If
|(u,d)?| € Z and |(u,v)"”)] — |(u,d,)"’| < 2, then R has one of the following compact group
forms:

(d +1,v)" forp=1

R— (d, +a, )" forp=2 7
(d + b, forp=3
(d, +2,v)" for p=14

wherea = 2 — |(u,d.)?|mod2 and b = 2 — (|(u,d,)"'| + 1)mod2.

For example, number 25 is removed from (23, 31)"). By Theorem 4, |(23, 25)"| < 3 and
the numbers in L are {23, 24}. For R, |(23, 31)"| - (23, 25)"’| > 2 and R = (26, 31)" by Theo-
rem 7. Therefore, removing 25 from (23, 3)® splits the compact group into L = {23, 24} and
R=(26,31)". Another example is removing number 26 from (23, 31)®. Since |(23, 26)(3)| <3
and (23, 31)(3)| - (23, 25)(3)| > 2, the numbers in L are {23, 25} by Theorem 4 and R = (28,
31)® by Theorem 7. Therefore, the compact group (23, 31) is split by number 26 into L =
{23, 25} and R = (28, 31)®. Notice that, with the terms of 4 — a and 4 — b in Theorem 7, the

type of compact group after removing d, will be changed from type 2 to type 3 and vice versa.

Experimental results and discussion

Three important issues concerning the performance of the proposed algorithm were evaluated.
The first issue regards the execution time of the proposed sorting algorithm versus the working
memory size in terms of percentage of total experimented data size. The second issue focuses
on the fluctuation of working memory space with respect to the given number of numbers to
be sorted. The fluctuation indicates the bound of the actual size of working memory required
to achieve the sorting process. The third issue concerns the execution time when there are
duplicates. The performance of the fast streaming data sorting algorithm was compared with
streaming data sort, classic sorting algorithms, and external merge sort. The proposed algo-
rithm was implemented by MATLAB R2021a and run on 3.2 GHz Intel Core i5 6500 and 8 GB
of 2133 MHz RAM with the 64 bit Windows 10 platform. The details of each issue are the
following.

Sorting time versus data size and working memory size

One million random numbers were sorted by the proposed algorithm and the sorting time
was evaluated by varying the size of working memory in terms of percentage of total experi-
mented data size. Different sorting time versus different working memory size is illustrated in
Fig 3. There are two experiments conducted in this section. The first experiment was
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Fig 3. The execution time of fast streaming data sort with respect to the setting of working memory size in terms of percentage of total
data size (1,000,000 numbers).

https://doi.org/10.1371/journal.pone.0266295.9003

conducted to observe whether or not the sorting time increases almost linearly according to
the accumulated amount of incoming numbers when the size of working memory is fixed.
Each line in Fig 3 denotes the sorting time versus the size of the incoming chunk based on a
fixed working memory size. The second experiment was conducted to observe the effect of
working memory size on the sorting time. It is remarkable that when the size of working mem-
ory increases, the sorting is reduced. For example, the sorting time when the size of working
memory is 50% of the total data size is less than the sorting time when the size of working
memory is 30% of the total data size. This is because more incoming numbers can enter the
sorting process, thus causing the sorting time to decrease.

The sorting speed of the fast streaming data sort was compared with the sorting speed of the
streaming data sort, which is capable of sorting streaming data. Table 3 shows the comparison
of execution time between fast streaming data sort and streaming data sort. Each percentage
number denotes the size of working memory in terms of the percentage of the total amount of
data to be sorted. Each bold number in each gray cell is the sorting time of fast streaming data
sort, which is obviously 28.1767 times faster than the sorting time of streaming data sort on
average. The time complexity of fast streaming data sort is still O(n).

Furthermore, the sorting speed of fast streaming data sort was also compared with the
speeds of many classic sort algorithms. Although this comparison is inappropriate because of
the distinguished constraints imposed by fast streaming data sort and classic sorting algo-
rithms, this comparison can be fairly justified when the size of working memory approaches
the size of the data set. For classic sorting algorithms, the entire data set must be stored inside
the working memory, which may refer to only internal storage or the combination of internal
and external storage, during the sorting process. Table 4 shows the sorting time of the pro-
posed algorithm and four other classic sorting algorithms, i.e. bubble sort, quick sort, insertion
sort, and merge sort. The working memory size of the proposed algorithm is restricted to 35%,
50%, 75%, and 98.5% of data size. Notice that when the size of working memory is increased, it
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Table 3. Comparison of sorting time between fast streaming data sort and streaming data sort when varying different sizes of working memory in terms of the per-
centages of total amount of data.

Data size Time (sec) of fast streaming data sort Time (sec) of streaming data sort
50% 45% 40% 35% 50% 45% 40% 35%

100,000 4.3338 4.9884 5.5894 6.9066 124.8196 137.7921 160.3303 190.7497
250,000 11.4705 12.3407 13.9405 17.1341 324.145 356.7402 422.1132 480.4968
400,000 17.1907 19.8813 22.3061 27.3360 498.5432 547.7929 645.2144 747.6058
550,000 24.3549 26.8283 30.4382 37.4500 680.8660 753.8266 901.9769 1027.8510
700,000 30.9219 34.1581 38.9551 49.1797 861.3885 958.9641 1139.8098 1312.4261
850,000 37.0885 41.9728 47.9061 59.0234 1051.8819 1169.8349 1390.2639 1612.7994

1,000,000 45.0412 50.5456 56.9898 70.2029 1238.8804 1379.0245 1643.9551 1873.0513

https://doi.org/10.1371/journal.pone.0266295.t003

Table 4. Comparison of sorting time between fast streaming data sort and four classic sorting algorithms.

Data size The execution time (sec)
Fast streaming data sort Bubble sort Quick sort Insertion sort Merge sort
35% 50% 75% 98.5%
10° 0.3738 0.3193 0.2345 0.1524 0.0144 0.0222 0.0085 0.0123
10" 0.9601 0.6843 0.3690 0.1756 13513 0.1434 0.4739 0.0272
10° 6.2055 3.7647 1.9997 0.2913 126.3189 1.4645 50.1042 0.1494
10° 58.1738 34.4192 17.5550 1.4446 N/A 19.4219 N/A 1.4890
107 593.6722 330.6568 181.5882 13.1480 N/A 218.5080 N/A 16.1969

https://doi.org/10.1371/journal.pone.0266295.t004

implies that a larger incoming data chunk size can be stored in the working memory, thus
speeding the sorting as illustrated in Fig 3. Each of the underlined numbers in each gray cell of
Table 4 represents the execution times of four classic sorting algorithms that are slower than
fast streaming data sort for some restricted working memory. Regardless of any memory size,
the speed of fast streaming data sort exceeds those of bubble sort and insertion sort when data
size is 1 x 10 or greater. N/A denotes excessively long processing time. The sorting time of
fast streaming data sort, when the data size is at least 1 x 10° and the size of working memory is
set to at least 75% of data size, is less than the sorting time of quick sort. However, when the
data size is at least 1 x 10° and the size of working memory is set to 98.5% of the data set, its
speed is faster than the speed of merge sort.

Four classic sorting algorithms do not require any extra storage. This means that they are
not suitable for coping with large data sets. External sorting resolves this problem by deploying
a very large external storage in addition to the internal working memory to store the over-
flowed data. Thus, it is interesting to compare the sorting speed of fast streaming data sort with
the speed of external sorting restricted by different sizes of working memory defined in terms
of percentage of the entire data size. Table 5 shows the sorting times of fast streaming data sort
and external merge sort when varying the size of working memory to 35%, 50%, 75%, and

Table 5. Comparison of sorting times of fast streaming data sort and external merge sort.

Data size Time (sec) of fast streaming data sort Time (sec) of external merge sort
50% 45% 40% 35% 50% 45% 40% 35%
10° 0.3738 0.3193 0.2345 0.1524 2.6021 2.2978 2.2204 2.1301
10* 0.9601 0.6843 0.3690 0.1756 38.0198 37.4343 35.6365 35.525
10° 6.2055 3.7647 1.9997 0.2913 298.8189 392.2904 417.2926 422.9222

https://doi.org/10.1371/journal.pone.0266295.t005
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98.5% of the data size. It is obvious that fast streaming data sort is faster than external merge
sort in all circumstances. In particular, when the memory size is set to 98.5% of data size and
the data set includes 1 x 10° numbers, the sorting time of fast streaming data sort is 1,452 times
less than the sorting time of external merge sort.

Memory usage

The fluctuation of memory usage can be separated into three stages for analysis. In the begin-
ning stage, the size of memory usage depends on the random order of incoming data. The
trend of fluctuation is positive. In the second stage, some single data may appear during the
sorting process. When new incoming data enter, they may be inserted into some previous com-
pact groups or combined with the other single data to generate new compact groups. Some of
these compact groups can be merged if they are in consecutive order. After merging some com-
pact groups, the available memory space increases. The trend of fluctuation thus possibly
changes in this stage. In the last stage, almost all early incoming data form partially complete
sequences. The new incoming data fulfill the existing compact groups or concatenate with
some single data to form new compact groups. Some of these compact groups can be further
merged into new compact groups. Thus, the actual size of memory usage is rapidly reduced.
Fig 4 illustrates the memory usage for compact groups and single data sets at each time step of
the proposed algorithm with different sizes of working memory defined in terms of percentage
of data size. When the size of working memory increases, the chance to form only one compact
group is higher than having small working memory size because of the higher probability of
obtaining consecutive numbers. The shape of each fluctuation curve is similar to a capsized
hook. This reason for this shape phenomenon was discussed in [34]. There are four curves as a
result of setting different sizes of working memory (35%, 40%, 45%, and 50%). It is remarkable
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Fig 4. Fluctuation in number of compact groups and single data for the proposed algorithm at several memory sizes for one million data points.
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that a larger size of working memory requires fewer time steps to accomplish the sorting result.
The rationale for this behavior can be analyzed in the following Theorem.

Theorem 8 When the size of working memory increases, the time steps of the fluctuation
curve decrease.

Proof: There are two scenarios in Fig 5 of different sizes of working memory, i.e. n; < n,, to
be discussed. The same set of incoming n numbers is sorted in both scenarios. The first sce-
nario includes one currently existing compact group containing m numbers. After compacting
these m numbers into a compact group, only 3 entries of memory space are required to repre-
sent the compact group. Since 3 < #y, the rest of working memory space is n; — 3 = n;. Next,
a set of consecutive a < n; numbers enters the sorting process. These a numbers can be com-
bined with the current compact group to form a new compact group. The rest of the working
memory can be filled by selecting #; — a from # — m — a numbers. The number of ways to

n—m—a

select n;—a is equal to . All n; numbers can be permuted in n,! ways. Thus, the
n, —a

probability of having a numbers in the working memory in the first scenario is as follows.
n—m-—a
n,—a (8)

(n—m)!

n,!

prob, =

nl(n—m—a)!

= ©)

(n, —a)l(n—m—n)!(n—m)!

For the second scenario, the probability of having a numbers in the working memory in the
second scenario is as follows.
([(n—m—a
1,
: n,—a (10)

- T (11)

Since ny < ny, prob; < prob,.
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Fig 6. Snapshot of sorting time change when there exists a mixture of 100 non-duplicate numbers and 100
duplicate numbers.

https://doi.org/10.1371/journal.pone.0266295.9006

Data duplication

This section consists of two experiments to observe the gradient of sorting time when there are
duplicates. The first experiment was conducted by using one synthetic data set. The data set
consists of 100 non-duplicate numbers and 100 duplicate numbers. The size of working mem-
ory was set to 50 units. All non-duplicate numbers were equally divided into 4 chunks entering
the sorting process one chunk at a time from time step 1 to time step 4. After that, a chunk of
numbers with size as large as the available working memory was fed into the sorting process.
The snapshot of each time step is shown in Fig 6. The first four steps show the run times of 100
non-duplicate data. Steps 5-104 illustrate the run time when only one duplicate number enters.
The rate of run time change of non-duplicate data shown in the red area is greater than the
rate of run time change of duplicate data shown in the blue area. After sorting all non-dupli-
cate numbers, the run time change of duplicate numbers is almost linear and constant.

The second experiment concerning duplicate numbers was conducted by using real data
sets containing duplicates. Three real-world data sets from kaggle.com, i.e. Delhi Weather
Data [40], Artificial Lunar Landscape Dataset [41], and Continue Playing Game [42], were
included in the experiment. The properties of attributes in these data sets are shown in
Table 6. To relate the types of sub-sequences as defined previously, the distance average (Delta
average) between two consecutively sorted input numbers is reported in Table 6. Four

Table 6. Description of three real-world data sets.

Data sets Number of data Delta average Minimum Maximum Area
Delhi Weather Data
Dew point 100,369 0.98 -24 75 Weather
Humidity 100,233 7.18 4 243 Weather
Pressure 99,843 0.74 929 1033 Weather
Temperature 100,317 1.63 1 90 Weather
Artificial Lunar Landscape Dataset
Length 18,867 50.74 21 720 Image
Height 18,867 34.61 21 480 Image
Continue Playing Game
Hero_id 17,485,730 23.93 21 720 Game

https://doi.org/10.1371/journal.pone.0266295.t006
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Table 7. The time consumption, memory size for storing sorted data, and the ratio of data size to memory size for storing sorted data for three real-world data sets.

Data sets Sorting time (sec) for different working memory sizes | Final memory size used after sorting all data | Ratio of data size to memory size used

50% of data |35% of data

Delhi
Dew point 0.18
Humidity 0.28
Pressure 0.28
Temperature 0.24
Artificial Lunar Landscape Dataset
Length 0.48
Height 0.45
Continue Playing Game
Hero_id 1.52

https://doi.org/10.1371/journal.pone.0266295.t007

0.19
0.34
0.33
0.27

0.58
0.52

1.46

1% of data |0.1% of data

0.78 5.65 49 2,048
3.31 15.23 103 973
1.29 11.88 171 589
1.43 8.12 52 1,929
5.72 Overflow 420 283
3.73 Overflow 210 566
3.37 14.95 65 269,011

different working memory sizes were set to 0.1%, 1%, 35%, and 50% of total input data size.
The sorting time in seconds of each data set is reported in Table 7. When the working memory
size was set to 0.1% of total input data, none of the data sets except the Artificial Lunar Land-
scape data set could be sorted, as indicated by the word Overflow, because all spaces in the
working memory were occupied by the compact groups and a set of single numbers after
incoming data chunks. The final size of working memory used after sorting all data is also
reported in column 6. Notice that the final size of working memory used is much smaller than
the actual size of the sorted data set because the sorted data were compacted in the form of a
compact set. For example, data set Dew point contains 100,369 numbers. After sorting, the size
of final used memory is only 49 entries. The last column summarizes the ratio of data size to
the final used memory size. In the case of Dew point, this ratio is 100, 369/49 ~ 2, 048.

Time complexity analysis

There are four main parts included in this analysis. Let M be the working memory size, and H
be the remaining size of working memory after the sorting process for each incoming chunk
of h numbers. Generally, the remaining size is very small in comparison with the size of work-
ing memory and the total number of streaming data #, i.e., H < M < n, as shown in Fig 7.
The first part is the process of forming a compact set Q”, where t is the number of itera-
tions. The time complexity of this part is O(M). The second part is to update duplicate data. h
data must be analyzed to find their appropriate positions for insertion. The time complexity
for updating duplicate data is O(h log M). The third part is to insert & data into a compact set.
The time complexity is O(h log M). If a datum d; is inserted into a compact group, d; and the
compact group are transformed into a new compact group with time complexity of O(1).
Therefore, the time complexity of the third main part is max{O(h log M), O(h log M) + O(1)} =

< M >

H QW

<>

h

Fig 7. Constraint on the limitation of working memory size, H < M < n.

https://doi.org/10.1371/journal.pone.0266295.9007
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O(h log (M)). The last part is to merge members in compact set Q. The merging algorithm is
based on linear searching, and its time complexity is O(M). In total, the time complexity of n
data is O(M) + O(nh log M)+ O(nh log M))+ O(nM). Because h and M are constant, the time
complexity of fast streaming data sort is O(n).

Working space analysis of duplicate data

In streaming data sort [34], the lower bound of working memory size for correctly sorting
non-duplicated #n numbers is 0.35#x. In the case of duplication, suppose that each number has
only one duplicate, which indicates that there are 21 numbers to be sorted. Obviously, if
streaming data sort is applied, then the size of working memory must be set to

0.35 x 2n = 0.7n. However, the size of working memory used by the proposed fast streaming
data sort is less than 0.7x. This is because all non-duplicate # numbers can be sorted first by
setting the size of working memory to 0.35x. All duplicates do not need to be sorted, but only
stored in a duplicate set R as discussed in Algorithm 1. Each duplicate requires one entry in
set R, Since there are n duplicates, the size of set R is only 7 and the minimum size of work-
ing memory needed by fast streaming data sort is at least 0.35n + n. This amount is equal to
L3nin — (.67 or 67% of the data size. After the sorting process is finished, there must be only
one compact group, which uses only two entries of memory space to represent the compact
group, and # entries for storing all n duplicates.

Discussion

Even though fast streaming data sort effectively sorts streaming data under the working mem-
ory limitation, there are two concerns about its limitation. First, the working memory size is
35% of the input data size. This means the proposed algorithm can reduce the working mem-
ory size up to 65%. On the other hand, the number of incoming data that can be handled by
the proposed algorithm is up to ;1= = 2.86 times the working memory size without upgrading
the memory space. Second, the proposed algorithm was designed for integer data, but it can be
applied to sort floating-point numbers by multiplying each floating number with 107, for an
integer constant a. The value of a must be predetermined from the number of digits in decimal
part.

Conclusion

A new sort concept is presented in order to greatly hasten the process of streaming data sort
with limited working memory size and to efficiently cope with duplicate data and data life-
cycles without increasing the time complexity as reported in [34]. Instead of unfolding each
compact group to insert new incoming numbers in their correct orders, the computational
concepts of insert position, size of compact group, and detecting duplicates are developed to
eliminate those unnecessary steps proposed in [34]. Several relevant theorems were established
to support the proposed concepts of new streaming data sort under new constraints. The new
sorting algorithm named fast streaming data sort can achieve the time complexity of O(n),
where 7 is the total amount of input numbers, and the space complexity is equal to 35% of all
incoming non-duplicate numbers, which is the possible lower bound. With duplicates, how-
ever, the space complexity can be at most 67% of all incoming non-duplicate and duplicate
numbers.

The results were compared with several classic sorting algorithms and external merge sort
on streaming data sort and analyzed with respect to large synthetic and real-world data sets.
The sorting time of the proposed algorithm is 28.18 times less than streaming data sort. The
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proposed algorithm is faster than bubble sort and insertion sort when the size of input data is
greater than 10,000 and faster than quick sort and merge sort when the size of input data is
greater than 1,000,000. Moreover, the proposed algorithm is 1,452 times faster than external
merge sort. Therefore, the proposed algorithm can achieve a remarkably faster sorting speed
in comparison with the compared algorithms, even though memory overflow may occur in
those classic sorting algorithms.

Theoretically, most of existing sorting algorithms cannot be applied to streaming data when
working memory size is less than the size of incoming data. Although some algorithms are
designed to cope with this situation, the sorting result is obtained with approximate orders
and values. However, fast streaming data sort can sort streaming data and generate the sorting
result with the exact orders and values on the entire streaming sequence by using only 35% of
data size as the size of available working memory. In the other hand, if the memory capacity is
limited, fast streaming data sort is robust to overflow issue caused by increasing incoming data
rather than other existing algorithms. In practical point of view, fast streaming data sort can be
applied to several real-world applications as follows.

1. Reducing the searching time of enormous input data by using search algorithm on the sort-
ing result in compact group form.

2. Finding order statistics, quartile, decile, and percentile of huge streaming data in social net-
work applications on mobile phones, data cleaning, or data querying.

3. Examining duplicate data to reduce cost of storing data, to find error detection of systems,
or to delete data in the data cleaning process.

Although fast streaming data sort can cope with the duplicate streaming data under the lim-
itation of working memory less than the size of input data, there are two issues to be consid-
ered in the future work as follows.

1. Adding or improving new patterns of compact sequence to generate new compact group
types that can be adopted to all different consecutive numbers.

2. Developing a compression procedure for compact groups with several data types, for
instance, floating point number or text string, resulting in compatibility of data in many
areas such as business, forecasting, logistics, and science.

Author Contributions

Conceptualization: Suluk Chaikhan, Suphakant Phimoltares, Chidchanok Lursinsap.
Data curation: Suluk Chaikhan.

Formal analysis: Suluk Chaikhan, Suphakant Phimoltares, Chidchanok Lursinsap.
Investigation: Suluk Chaikhan, Suphakant Phimoltares, Chidchanok Lursinsap.
Methodology: Suluk Chaikhan, Chidchanok Lursinsap.

Project administration: Suphakant Phimoltares.

Software: Suluk Chaikhan.

Supervision: Suphakant Phimoltares, Chidchanok Lursinsap.

Validation: Suphakant Phimoltares, Chidchanok Lursinsap.

Visualization: Suluk Chaikhan.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266295  April 5, 2022 23/25


https://doi.org/10.1371/journal.pone.0266295

PLOS ONE

Fast continuous streaming sort in big streaming data environment under fixed-size single storage

Writing - original draft: Suluk Chaikhan.

Writing - review & editing: Suphakant Phimoltares, Chidchanok Lursinsap.

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

Xu LD, Duan L. Big data for cyber physical systems in industry 4.0: a survey. Enterprise Information
Systems. 2019; 13(2):148-169. https://doi.org/10.1080/17517575.2018.1442934

Rao TR, Mitra P, Bhatt R, Goswami A. The big data system, components, tools and technologies: a sur-
vey. Knowledge and Information Systems. 2019; 60(3):1165-1245. https://doi.org/10.1007/s10115-
018-1248-0

Ghorbanian M, Dolatabadi SH, Siano P. Big data issues in smart grids: a survey. IEEE Systems Jour-
nal. 2019; 13(4):4158-4168. https://doi.org/10.1109/JSYST.2019.2931879

Nadikattu RR. Research on data science, data analytics and big data. INTERNATIONAL JOURNAL OF
ENGINEERING, SCIENCE AND. 2020; 9(5):99-105.

Seng JKP, Ang KL. Multimodal emotion and sentiment modeling from unstructured big data: chal-
lenges, architecture, techniques. IEEE Access. 2019; 7:90982-90998. https://doi.org/10.1109/
ACCESS.2019.2926751

LiuY, Bi S, Shi Z, Hanzo L. When machine learning meets big data: a wireless communication perspec-
tive. IEEE Vehicular Technology Magazine. 2020; 15(1):63-72. https://doi.org/10.1109/MVT.2019.
2953857

Lv Z, Li X, Lv H, Xiu W. BIM big data storage in WebVRGIS. IEEE Transactions on Industrial Informat-
ics. 2020; 16(4):2566—2573. https://doi.org/10.1109/T11.2019.2916689

Francis J, Bian L. Deep learning for distortion prediction in laser-based additive manufacturing using big
data. Manufacturing Letters. 2019; 20:10—14. https://doi.org/10.1016/j.mfglet.2019.02.001

Olivera P, Danese S, Jay N, Natoli G, Peyrin-Biroulet L. Big data in IBD: a look into the future. Nature
Reviews Gastroenterology & Hepatology. 2019; 16(5):312—-321. https://doi.org/10.1038/s41575-019-
0102-5 PMID: 30659247

Fernandez-Basso C, Francisco-Agra AJ, Martin-Bautista MJ, Dolores Ruiz M. Finding tendencies in
streaming data using big data frequent itemset mining. Knowledge-Based Systems. 2019; 163:666—
674. https://doi.org/10.1016/j.knosys.2018.09.026

XuL, Shao G, CaoY, Yang H, Sun C, Zhang T, et al. Research on telecom big data platform of LTE/5G
mobile networks. In: 2019 IEEE International Conferences on Ubiquitous Computing & Communica-
tions (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Network-
ing and Services (SmartCNS). IEEE; 2019. p. 756-761.

Salih BA, Wongthongtham P, Zajabbari B, et al. Towards a methodology for social business intelligence
in the era of big social data incorporating trust and semantic analysis. In: Proceedings of the Interna-
tional Conference on Data Engineering 2015 (DaEng-2015). Springer; 2019. p. 519-527.

Rjoub G, Bentahar J, Wahab OA. BigTrustScheduling: Trust-aware big data task scheduling approach
in cloud computing environments. Future Generation Computer Systems. 2020; 110:1079-1097.
https://doi.org/10.1016/j.future.2019.11.019

Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical appli-
cations. Current opinion in neurobiology. 2019; 55:152—159. https://doi.org/10.1016/j.conb.2019.02.
006 PMID: 30999271

Singh R, Kumar V, Shrivastava A, Kumar S, Tiwari A. RVA sorting based on bubble & quick sort tech-
nique. In: Proceedings of the 2014 International Conference on Information and Communication Tech-
nology for Competitive Strategies; 2014. p. 1-6.

Wild S, Nebel ME, Neininger R. Average case and distributional analysis of dual-pivot quicksort. ACM
Transactions on Algorithms (TALG). 2015; 11(3):1—42. https://doi.org/10.1145/2629340

Agrawal A, Sriram B. Concom sorting algorithm. In: 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT). vol. 01. IEEE; 2015. p. 229-233.

Osama H, OmarY, Badr A. Mapping sorting algorithm. In: 2016 SAI Computing Conference (SAl).
IEEE; 2016. p. 488—491.

Vignesh R, Pradhan T. Merge sort enhanced in place sorting algorithm. In: 2016 International Confer-
ence on Advanced Communication Control and Computing Technologies (ICACCCT). IEEE; 2016.
p. 698-704.

Idrizi F, Rustemi A, Dalipi F. A new modified sorting algorithm: a comparison with state of the art. In:
2017 6th Mediterranean Conference on Embedded Computing (MECO). IEEE; 2017. p. 1-6.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266295  April 5, 2022 24/25


https://doi.org/10.1080/17517575.2018.1442934
https://doi.org/10.1007/s10115-018-1248-0
https://doi.org/10.1007/s10115-018-1248-0
https://doi.org/10.1109/JSYST.2019.2931879
https://doi.org/10.1109/ACCESS.2019.2926751
https://doi.org/10.1109/ACCESS.2019.2926751
https://doi.org/10.1109/MVT.2019.2953857
https://doi.org/10.1109/MVT.2019.2953857
https://doi.org/10.1109/TII.2019.2916689
https://doi.org/10.1016/j.mfglet.2019.02.001
https://doi.org/10.1038/s41575-019-0102-5
https://doi.org/10.1038/s41575-019-0102-5
http://www.ncbi.nlm.nih.gov/pubmed/30659247
https://doi.org/10.1016/j.knosys.2018.09.026
https://doi.org/10.1016/j.future.2019.11.019
https://doi.org/10.1016/j.conb.2019.02.006
https://doi.org/10.1016/j.conb.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30999271
https://doi.org/10.1145/2629340
https://doi.org/10.1371/journal.pone.0266295

PLOS ONE

Fast continuous streaming sort in big streaming data environment under fixed-size single storage

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42,

Mohammed AS, S ahin Emrah Amrahov, C, elebi FV. Bidirectional conditional insertion sort algorithm;
an efficient progress on the classical insertion sort. Future Generation Computer Systems. 2017;
71:102—112. https://doi.org/10.1016/j.future.2017.01.034

Goel S, Kumar R. Brownian motus and clustered binary insertion sort methods: an efficient progress
over traditional methods. Future Generation Computer Systems. 2018; 86:266—280. https://doi.org/10.
1016/j.future.2018.04.038

Omar YK, Osama H, Badr A. Double hashing sort algorithm. Computing in Science & Engineering.
2017; 19(02):63-69. https://doi.org/10.1109/MCSE.2017.26

Zutshi A, Goswami D. Systematic review and exploration of new avenues for sorting algorithm. Interna-
tional Journal of Information Management Data Insights. 2021; 1(2):100042. https://doi.org/10.1016/j.
jjimei.2021.100042

Gugale Y. Super sort sorting algorithm. In: 2018 3rd International Conference for Convergence in Tech-
nology (I12CT). IEEE; 2018. p. 1-5.

Lee YS, Quero LC, Kim S, Kim J, Maeng SR. ActiveSort: efficient external sorting using active SSDs in
the MapReduce framework. Future Generation Computer Systems. 2016; 65:76-89. https://doi.org/10.
1016/j.future.2016.03.003

Laga A, Boukhobza J, Singhoff F, Koskas M. Montres: merge on-the-run external sorting algorithm for
large data volumes on ssd based storage systems. IEEE Transactions on Computers. 2017; 66
(10):1689—-1702. https://doi.org/10.1109/TC.2017.2706678

Liang Y, Chen T, Chang Y, Chen S, Wei H, Shih W. B*-sort: enabling write-once sorting for non-volatile
memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2020; 39
(12):4549-4562. https://doi.org/10.1109/TCAD.2020.2979819

Arge L, Thorup M. Ram-efficient external memory sorting. In: International Symposium on Algorithms
and Computation. Springer; 2013. p. 491-501.

Kanza Y, Yaari H. External sorting on flash storage: reducing cell wearing and increasing efficiency by
avoiding intermediate writes. The VLDB Journal. 2016; 25(4):495-518. https://doi.org/10.1007/s00778-
016-0426-5

Elder M, Goh YK. Permutations sorted by a finite and an infinite stack in series. In: International Confer-
ence on Language and Automata Theory and Applications. Springer; 2018. p. 220-231.

Begenau J, Farboodi M, Veldkamp L. Big data in finance and the growth of large firms. Journal of Mone-
tary Economics. 2018; 97:71-87. https://doi.org/10.1016/j.jmoneco0.2018.05.013

Tiwari S, Wee HM, Daryanto Y. Big data analytics in supply chain management between 2010 and
2016: insights to industries. Computers & Industrial Engineering. 2018; 115:319-330. https://doi.org/10.
1016/j.cie.2017.11.017

Chaikhan S, Phimoltares S, Lursinsap C. Correct and stable sorting for overflow streaming data with a
limited storage size and a uniprocessor. Peerd Computer Science. 2021; 7:€355. https://doi.org/10.
7717/peerj-cs.355 PMID: 33817005

Polyzotis N, Roy S, Whang SE, Zinkevich M. Data lifecycle challenges in production machine learning:
a survey. ACM SIGMOD Record. 2018; 47(2):17-28. https://doi.org/10.1145/3299887.3299891

Sinaeepourfard A, Garcia J, Masip-Bruin X, Marin-Tordera E, Yin X, Wang C. A data lifeCycle model for
smart cities. In: 2016 International Conference on Information and Communication Technology Conver-
gence (ICTC). IEEE; 2016. p. 400—405.

Ginart A, Guan MY, Valiant G, Zou J. Making ai forget you: data deletion in machine learning. arXiv pre-
print arXiv:190705012. 2019.

Krempl G, Zliobaite |, Brzezinski D, Hillermeier E, Last M, Lemaire V, et al. Open challenges for data
stream mining research. ACM SIGKDD explorations newsletter. 2014; 16(1):1-10. https://doi.org/10.
1145/2674026.2674028

Lauinger T, Chaabane A, Buyukkayhan AS, Onarlioglu K, Robertson W. Game of registrars: an empiri-
cal analysis of post-expiration domain name takeovers. In: 26th USENIX Security Symposium (USENIX
Security 17); 2017. p. 865-880.

Delhi weather data;. https://www.kaggle.com/mahirkukreja/delhi-weather-data.

Artificial lunar landscape dataset;. https://www.kaggle.com/romainpessia/artificial-lunar-rocky-
landscape-dataset.

Continue playing game;. https://www.kaggle.com/gichenghu/continue-playing-game

PLOS ONE | https://doi.org/10.1371/journal.pone.0266295  April 5, 2022 25/25


https://doi.org/10.1016/j.future.2017.01.034
https://doi.org/10.1016/j.future.2018.04.038
https://doi.org/10.1016/j.future.2018.04.038
https://doi.org/10.1109/MCSE.2017.26
https://doi.org/10.1016/j.jjimei.2021.100042
https://doi.org/10.1016/j.jjimei.2021.100042
https://doi.org/10.1016/j.future.2016.03.003
https://doi.org/10.1016/j.future.2016.03.003
https://doi.org/10.1109/TC.2017.2706678
https://doi.org/10.1109/TCAD.2020.2979819
https://doi.org/10.1007/s00778-016-0426-5
https://doi.org/10.1007/s00778-016-0426-5
https://doi.org/10.1016/j.jmoneco.2018.05.013
https://doi.org/10.1016/j.cie.2017.11.017
https://doi.org/10.1016/j.cie.2017.11.017
https://doi.org/10.7717/peerj-cs.355
https://doi.org/10.7717/peerj-cs.355
http://www.ncbi.nlm.nih.gov/pubmed/33817005
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1145/2674026.2674028
https://doi.org/10.1145/2674026.2674028
https://www.kaggle.com/mahirkukreja/delhi-weather-data
https://www.kaggle.com/romainpessia/artificial-lunar-rocky-landscape-dataset
https://www.kaggle.com/romainpessia/artificial-lunar-rocky-landscape-dataset
https://www.kaggle.com/qichenghu/continue-playing-game
https://doi.org/10.1371/journal.pone.0266295

