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We study the fluctuations responsible for pairing in the d -wave superconducting
state of the two-dimensional Hubbard model at intermediate coupling within a clus-
ter dynamical mean-field theory with a numerically exact quantum impurity solver.
By analyzing how momentum- and frequency-dependent fluctuations generate the
d -wave superconducting state in different representations, we identify antiferromag-
netic fluctuations as the pairing glue of superconductivity in both the underdoped
and the overdoped regime. Nevertheless, in the intermediate coupling regime, the
predominant magnetic fluctuations may differ significantly from those described by
conventional spin fluctuation theory.

Superconductivity | Strongly correlated system | Spin fluctuation theory

The microscopic mechanism of unconventional high-temperature superconductivity has
been one of the most controversially debated topics in condensed matter physics since the
discovery of superconductivity in layered copper-oxides in 1986. While several aspects of
the observed physics, such as the d -wave symmetry of the order parameter and the proxim-
ity to an antiferromagnetic Mott phase, clearly suggest that superconductivity must emerge
from strongly correlated electronic processes, the intrinsic quantum many-body nature
of the problem has hitherto prevented a rigorous identification of the pairing glue. To
explicitly address this point, we present a focused study of the origin of superconductivity
in the two-dimensional single-band Hubbard model. The Hubbard Hamiltonian, which
includes a kinetic term describing the hopping between neighboring sites on a lattice and
a potential energy term encoding a local electrostatic repulsion, is a minimal theoretical
model believed to capture the salient aspects of cuprate superconductivity.

Among the theoretical explanations proposed for the origin of the high-temperature
superconductivity in this context, spin fluctuations have been a prominent scenario since
the beginning (1–4). In particular, within the weak-coupling regime of the Hubbard
model, renormalization group techniques (5–8) find d -wave superconductivity in qualita-
tive agreement with spin fluctuation exchange studies (1, 8), consistent with diagrammatic
Monte Carlo calculations (9). At the same time, other qualitatively different microscopic
pictures of superconductivity exist besides the spin fluctuations, including the resonating
valence bond theory (10), nematic fluctuations (11), loop current order (12), or the
intertwining of orders of different types (13). In fact, to what extent the weak-coupling
spin fluctuation results apply to the much stronger interaction values, which are typical
of cuprate materials, and whether there are other competing or intertwining fluctuations
driving the superconductivity remain unresolved.

To provide a conclusive answer, we perform an analysis of the anomalous self-
energy in the d -wave superconducting state within the method of fluctuation diagnostics
(14). We note that unlike other diagrammatic approaches, which postulate a specific
physical mechanism, analyze its consequences, and then compare to experiments, the
fluctuation diagnostics procedure treats fluctuations of all kinds, including those possibly
driving superconductivity, on equal footing and is applicable in all parameter regimes,
independent of the degree of correlation. However, the fluctuation diagnostics procedure
as derived in ref. 14 was only applicable to the highly symmetric normal state and thus
cannot be used to analyze superconductivity. Hence, we will first generalize this approach
to the case of phases with spontaneously broken symmetries and then apply it to identify
the dominant fluctuations driving the anomalous self-energy in the superconducting
state.

Method

The Hamiltonian of the two-dimensional single band Hubbard model is

H =
∑

kσ

(εk − μ)c†kσckσ + U
∑

i

ni↑ni↓, [1]
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Fig. 1. Anomalous self-energy diagrams. (A) SD equation (Eq. 2). Shaded box denotes vertex F with one fixed outgoing leg. Dotted lines indicate normal or
anomalous Green’s function. (B) Low-order anomalous self-energy diagrams. (C) Explicit representation of index combinations of F . (D) Some of the low-order
diagrams contributing to F .

with i being a lattice site, k being momentum, c(†) being annihilation (creation)
operators, and n being the density. εk =−2t(cos kx + cos ky) is the dispersion
with hopping t, U is the interaction strength, and μ is the chemical potential. We
use the dynamical cluster approximation (DCA) (15) on a cluster with size Nc = 8
with a numerically exact continuous time auxiliary field (16, 17) impurity solver
to enter the superconducting state nonperturbatively (18) and obtain Green’s
functions, self-energies, and vertex functions.

In the DCA, the momentum structure of the Hubbard model self-energy is
approximated by Nc basis functions which retain the full frequency dependence
(15). To enter the superconducting phase, we allow for order and provide a super-
conducting bias field at the first iteration, removing it in subsequent iterations to
converge to the equilibrium state. Within the eight-site DCA approximation, the
model exhibits a large and stable d-wave superconducting region (18, 19). The
model is known to also exhibit a stripe phase (20–24), to which our calculation
is not sensitive, since its periodicity is larger than the Nc = 8 cluster. Recent
accurate calculations on different system geometries (22) find that the ground
state of the model is charge ordered, rather than superconducting, indicating that
the state found by DCA may be competing with a stripe state nearby in energy.
Based on the closeness of the energetics, it is reasonable to assume that both
states are important (25) and that one or the other will be selected based on minor
variations of system geometries, approximations, and model parameters.

To identify the superconducting glue, we apply the fluctuation diagnostics
scheme (14) to the anomalous self-energy in the superconducting state. This
approach, which so far has been derived (14) and applied (14, 26, 27) only
in the paramagnetic normal state, allows for a rigorous identification of the
dominant scattering mechanisms responsible for the observed self-energy. Fluc-
tuation diagnostics exploits symmetries in the Hamiltonian that lead to different
expressions for the Schwinger-Dyson (SD) equation of the self-energy Σ

Σ(18)− Σ∞ =−U(1234)G(25)F(5678)G(63)G(74), [2]

where we have used the Einstein summation notation and introduced the
shorthand notation i = (Ki, σi, τi) for momentum, spin, and time indices.
The two indices on the self-energy Σ(12) and the Green’s functions G(12)
represent their normal (1 = 2) and anomalous (1 =−2) components, with
−i = (−Ki, −σi, τi).Σ∞ is the static Hartree contribution for the normal self-
energy, and F is the full two-electron scattering amplitude. U(1234) denotes the
antisymmetrized interaction which, in the Hubbard model, is proportional to the
local interaction U. This expression is exact and relates two-particle fluctuations
to single-particle quantities.

Fig. 1A shows a diagrammatic representation of the anomalous self-energy
of Eq. 2 in frequency space, with k = (K, iωn) representing fermionic and q =
(Q, iνn) representing bosonic indices. A choice of k1 = k, σ1 =↑, k2 = k + q,
σ2 =↑, k3 = k′ + q, σ3 =↓, k4 = k′, σ4 =↓, and k8 =−k, σ8 =↓ satisfies
momentum, energy, and spin conservations. Fig. 1B shows two low-order terms.
F, in the case of superconducting order, can have eight possible combinations of
incoming or outgoing legs, as illustrated in Fig. 1C. It then contains all allowed
scattering processes, some of which are illustrated in Fig. 1D.

As F contains all fluctuations of the system, the different expressions of
the SD are equivalent when all internal summations are performed. Important

additional information about the role played by the different scattering channels
can be gained by comparing the expressions of the SD equation after partial
summations over the internal variables k′, but not q, are performed.

From a physical point of view, each expression can be associated to one of
the possible collective modes (e.g., density, magnetic, and singlet/triplet pairing)
of the electronic system. A large contribution to the final sum over q at low
transfer frequency and at a definite momentum signifies a dominant collective
mode, in contrast to contributions more evenly distributed over a wide range of
frequencies and momenta.

We now derive Eq. 2 in more detail. To have access to all the single- and two-
particle quantities in the SD equation, we introduce the Bogoliubov–de Gennes
(BdG) spinors in momentum space (28)

ΦK =
(

cK↑ cK↓ c†−K↑ c†−K↓

)T
. [3]

The single-particle Green’s function in the singlet superconducting state is

GK(τ) =−〈T ΦK(τ)Φ
†
K (0)〉 [4]

=−
〈
T

⎛
⎜⎜⎜⎝

cK↑c†K↑ 0 0 cK↑c-K↓

0 cK↓c†K↓ cK↓c-K↑ 0

0 c†-K↑c†K↓ c†-K↑c-K↑ 0

c†-K↓c†K↑ 0 0 c†-K↓c-K↓

⎞
⎟⎟⎟⎠ (τ , 0)

〉
,

where T is the (imaginary) time-ordering operator. SU(2) symmetry reduces the
number of independent terms in Eq. 4 to four, such that Eq. 4 can be written in a
compact form as

GK(τ) =−
〈
T
(

cK↑(τ)c†K↑(0) cK↑(τ)c−K↓(0)

c†−K↓(τ)c†K↑(0) c†−K↓(τ)c−K↓(0)

)〉

=−
(

GN
K(τ) GA

K(τ)

GA†
K (τ) −GN

−K(−τ)

)
. [5]

The single-particle Green’s function matrix contains both normal (N) and
anomalous (A) entries, with the normal terms defined as Gσσ

K (τ) =

−〈T cKσ(τ)c†Kσ(0)〉, σ =↑, ↓, and the anomalous terms defined as GA
K(τ) =

G↑↓
K (τ) =−〈T cK↑(τ)c−K↓(0)〉, GA†

K (τ)=G↓↑
K (τ)=−〈T c†−K↓(τ)c†K↑(0)〉.

Fourier transforming to frequency space and introducing shorthand notations
k = (K, iωn), we can define GN

k = G↑↑
k = G↓↓

k . For d-wave superconductivity on
a lattice with inversion symmetry, the anomalous Green’s function can be chosen
to be real (29), such that GA

±k = GA†
±k . The self-energy can then be computed with

Σ(k) = G−1
0 (k)− G−1(k), [6]

where

Σ(k) =

(
ΣN

k↑ ΣA
k↑

ΣA†
k↑ −ΣN

−k↓

)
, [7]

G−1
0 (k) =

(
iωn − εk + μ 0

0 iωn + εk − μ

)
. [8]
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The two-particle Green’s function takes the form

G(2)(1234) = 〈T o1o2o3o4〉, [9]

where we use i as a shorthand notation for momentum, spin, and imaginary time
indices (Ki, σi, τi). oi is either a creation operator c†i or an annihilation operator ci.

In the paramagnetic state, the number of creation and annihilation operators
in the two-particle Green’s function must be equal to preserve charge conser-
vation. In the superconducting state, the broken U(1) symmetry gives in total
24 = 16 combinations of different creation or annihilation operators, which can
be written in matrix form as

G(2)(1234) =

〈
T

⎛
⎜⎜⎝

c†1 c2c†3 c4 c†1 c2c-3c4 c†1 c2c†3 c†-4 c†1 c2c-3c†-4
c†1 c†-2c†3 c4 c†1 c†-2c-3c4 c†1 c†-2c†3 c†-4 c†1 c†-2c-3c†-4
c-1c2c†3 c4 c-1c2c-3c4 c-1c2c†3 c†-4 c-1c2c-3c†-4
c-1c†-2c†3 c4 c-1c†-2c-3c4 c-1c†-2c†3 c†-4 c-1c†-2c-3c†-4

⎞
⎟⎟⎠
〉

,

[10]

with i = (Ki, σi, τi),−i = (−Ki, −σi, τi).
Each term G(2)(1234) in the two-particle Green’s function matrix can be

decomposed into connected (G(2)
c ) and disconnected parts as

G(2)
c (1234) = G(2)(1234)− 〈T o1o2〉〈T o3o4〉

+ 〈T o1o3〉〈T o2o4〉 − 〈T o1o4〉〈T o2o3〉. [11]

This relation can be written in matrix form

G(2)
c (1234) = G(2)(1234)− χ=

0
(1234)− χ×

0
(1234), [12]

whereχ=

0
(1234) includes terms of the form 〈T o1o2〉〈T o3o4〉, andχ×

0
(1234)

includes terms of the form 〈T o1o3〉〈T o2o4〉 and 〈T o1o4〉〈T o2o3〉. The full
vertex F can be computed from the connected part of the two-particle Green’s
function (30, 31)

G(2)
c (1234) =−G(15)G(26)F(5678)G(73)G(84). [13]

Due to momentum and energy conservation and following the particle-hole
convention (31) of the Fourier transform, the momentum and frequency indices
in the matrix above can be assigned as k1 = k, k2 = k + q, k3 = k′ + q, and
k4 = k′, with shorthand notations k = (K, iωn) for fermionic and q = (Q, iνn)
for bosonic indices. Three spin combinations are possible in an SU(2) symmet-
ric system,σ1 = σ2 = σ3 = σ4, (σ1 = σ2) �= (σ3 = σ4), and (σ1 = σ4) �=
(σ2 = σ3), with σj =↑ or ↓ (31). We can then define

G(2)
σσ′(kk′q) = G(2)

σσσ′σ′(k, k + q, k′ + q, k′), [14a]

G(2)
σσ′(kk′q) = G(2)

σσ′σ′σ(k, k + q, k′ + q, k′), [14b]

where quantities in Eq. 14b can be obtained from those in Eq. 14a via SU(2)
and crossing symmetries (31). Introducing the full vertex matrix F , Eq. 13 can
be written in matrix form as

G(2)
c,σσ′(kk′q) =− 1

β2N2
c

∑
k1k2

χ×
0,σσ

(kk1q)Fσσ′(k1k2q)χ×
0,σ′σ′(k2k′q).

[15]

In order to extend fluctuation diagnostics to the superconducting state, we
identify all scattering channels in the symmetry broken state and derive the
corresponding equivalent expressions of the SD equation. We emphasize that
the full information about all scattering processes is contained in all channels
and that different channels are related by crossing relations. In the basis of BdG
spinors, the creation of pairs of particles and holes in the spin singlet state is then
described by the 4 × 4 matricesΣ = (iσy)⊗ σ+,Σ̄ = (iσy)⊗ σ− [σi=x,y,z

being the Pauli matrices, σ± = 1
2 (σ

x ± iσy)], while the corresponding terms
for the triplet state are given by T = σx ⊗ σ+ and T̄ = σx ⊗ σ−. The two 4 ×
4 matrices ρ= I2×2⊗ Pp and ρ̄= I2×2⊗ Ph [with Pp(h) = σ+σ−(σ−σ+)

the projector in the particle (hole) subspace] define the density operator of
particles and holes. Analogously, S = σz⊗ Pp and S̄ = σz⊗ Ph yield the spin
operator, from which magnetic fluctuations originate. With these definitions, the
two-particle Green’s function in different physical channels can be defined as

GOa Ob
KK′Q (τ1, τ2, τ3, τ4) = 〈T Ô(a)

K,K+Q(τ1, τ2)Ô(b)
K′+Q,K′(τ3, τ4)〉, [16]

where the two time-dependent operators on the right-hand side are defined as
Ô(a)

K,K+Q(τ1, τ2) = Φ†
K (τ1) · Oa · ΦK+Q(τ2), with Oa corresponding to one of

the eight 4× 4 matrices Σ, Σ̄; T , T̄ ; ρ, ρ̄; S, S̄. All terms defined by Eq. 16
can be computed from the linear combination of terms in G(2)

c,↑↑(kk′q) and

G(2)
c,↑↓(kk′q).

The physical channels of the full vertex function can be defined with the
same linear combinations as the two-particle Green’s function. The underlying
symmetries of the system block-diagonalize the 8 × 8 matrix GOa Ob , such
that each block identifies one scattering channel (32). In the paramagnetic
state, where both the (global) U(1) symmetry and the SU(2) symmetry hold,
only terms that conserve spin and particle number will be nonzero (31),
giving rise to four scattering channels: {ρ, ρ̄} define the density, {S, S̄}
the magnetic, {Σ, Σ̄} the singlet-pairing, and {T , T̄} the triplet-pairing
channels.

In the superconducting state, the spontaneously broken U(1) symmetry al-
lows for processes violating particle number conservation and mix the scattering
channels found in the paramagnetic state. However, the SU(2) symmetry still
holds and allows us to identify two scattering channels: the density/spin-singlet
channel {ρ, ρ̄, Σ, Σ̄} and the magnetic/spin-triplet channel {S, S̄, T , T̄}. In
particular, in the superconducting phase, Eq. 2 can be rewritten in two equivalent
ways as

ΣA
k =ΣA,S

k =ΣA,ρ
k . [17]

ΣA,S
k =

1
2

U
(βNc)2

∑
k′q

[
GN

k+qF̄TS(kk′q)GN
k′+qGN

k′ + GN
k+qF̄TT(kk′q)GN

k′+qGA
k′

]

+
1
2

U
(βNc)2

∑
k′q

[
GN

k+qF̄T T̄(kk′q)GA
k′+qGN

k′ − GN
k+qF̄TS̄(kk′q)GA

k′+qGA
k′

]

− 1
2

U
(βNc)2

∑
k′q

[
GA

k+qFS̄S(kk′q)GN
k′+qGN

k′ + GA
k+qFS̄T(kk′q)GN

k′+qGA
k′

]

− 1
2

U
(βNc)2

∑
k′q

[
GA

k+qFS̄̄T(kk′q)GA
k′+qGN

k′ − GA
k+qFS̄S̄(kk′q)GA

k′+qGA
k′

]
,

[18]

ΣA,ρ
k =

1
2

U
(βNc)2

∑
k′q

[
GN

k+qFΣ̄ρ(kk′q)GN
k′+qGN

k′ + GN
k+qFΣ̄Σ(kk′q)GN

k′+qGA
k′

]

− 1
2

U
(βNc)2

∑
k′q

[
GN

k+qFΣ̄Σ̄(kk′q)GA
k′+qGN

k′ − GN
k+qFΣ̄ρ̄(kk′q)GA

k′+qGA
k′

]

− 1
2

U
(βNc)2

∑
k′q

[
GA

k+qFρ̄ρ(kk′q)GN
k′+qGN

k′ + GA
k+qFρ̄Σ(kk′q)GN

k′+qGA
k′

]

+
1
2

U
(βNc)2

∑
k′q

[
GA

k+qFρ̄Σ̄(kk′q)GA
k′+qGN

k′ − GA
k+qFρ̄ρ̄(kk′q)GA

k′+qGA
k′

]
.

[19]

Eqs. 18 and 19 are the decompositions that enable application of the fluctu-
ation diagnostics scheme to the superconducting state.

Results

Fig. 2 gives the phase diagram of the two-dimensional Hubbard
model on the hole-doped side within the DCA approximation
at intermediate interaction strength (18) showing the pseudogap,
superconducting, and metallic regimes. The pseudogap regime is
characterized by a suppression of the single-particle spectral func-
tion, and the superconducting phase corresponds to the region
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Fig. 2. Phase diagram sketch, with pseudogap (PG; orange), metal (M; red),
and superconducting (SC; blue) regimes. Black diamonds denote UD and
OD data points analyzed in detail. (Inset) Pie chart of |ReΣA

(π,0),Qν(iω0)| in
the density (ρ) and magnetic (S) channels. Counterclockwise from the top,
pieces represent contributions for momentum Q = (π, π), Q = (0, 0) and
summation over the remaining momenta in an eight-site cluster. In each slice,
separation indicates bosonic frequency νn with n = 0, ±1, . . . ± 7.

where the anomalous Green’s function is nonzero. We present
the results for two representative parameter sets without next-
nearest neighbor hopping on an eight-site cluster with U = 6t ,
βt = 45, i.e., x = 0.031 (Tc ∈ (t/30, t/35], corresponding to
underdoped (UD) for this value of U ) and x = 0.075 (Tc ∈
(t/30, t/35], corresponding to overdoped (OD) for this value of
U ); see ref. 18 for a phase diagram. In DCA, both cases considered
lie deep in the superconducting phase where the anomalous
Green’s function GA

k is nonzero for K = (0,π) and (π, 0),
with relation GA

(0,π) =−GA
(π,0). Cluster momentum points are

shown in Fig. 3, Inset. Fig. 2, Inset, shows the momentum (Q)
and frequency (νn ) distribution of |ReΣA

(π,0),Qν(iω0)|, which is
computed by summing over fermionic indices k ′ but not over q
in Eqs. 18 and 19. The pie chart insets show that for both UD
and OD, there is a dominant contribution from Q = (π,π) and
νn = 0 in the magnetic/triplet channel S . In the density/singlet
channel ρ, contributions from different momenta and frequencies
are evidently distributed much more evenly.

We first focus on the momentum distribution of
ReΣA

(π,0),Q(iωn) within the two physical channels in Fig. 3,
computed by summing over all indices in Eqs. 18 and 19
except for the transferred momentum Q . Fig. 3, Upper Left,
Inset, shows the momentum points in an eight-site cluster and
the Fermi surface in the noninteracting system for dopings
of 0.2 (corresponding to hole doping), 0, −0.2, and −0.4
(corresponding to electron doping). Fig. 3, Left, shows the
contribution of different Q in the density channel. The weak
Q dependence indicates the absence of a dominant mode in this
channel. Results for the magnetic/triplet channel are shown in
Fig. 3, Right. The transfer momentum Q = (π,π) associated with
antiferromagnetic (AFM) fluctuations is clearly the dominant
mode in both the UD and the OD regime. We note that a
subleading, although still sizable, negative contribution to the

anomalous self-energy is originated by a ferromagnetic mode
with Q = (0, 0). The black lines with crosses are computed by
summing over all different momenta in the cluster, resulting in
ΣA,S and ΣA,ρ of Eq. 17.

Important insight can be gained by a complementary analy-
sis in frequency space: Fig. 4 shows the frequency dependence
of ReΣA

(π,0),νn
(iω0), corresponding to the result at the lowest

fermionic Matsubara frequency iω0 = π/β after summation over
all indices except for bosonic frequency νn in Eqs. 18 and 19.
The low-frequency peak in the magnetic channel identifies the
corresponding fluctuation as a well-defined and long-lived mode.
In the density representation, the same fluctuations are short range
and short lived. This indicates that the density representation is
not suitable for a simple interpretation of the superconducting
mechanism.

Discussion and Conclusion

By extending the fluctuation diagnostics approach to the super-
conducting phase, we have been able to unambiguously identify
spin fluctuations (1–4) as the dominant contribution to the
d -wave pairing in the Hubbard model at interaction strengths
believed to be relevant for the cuprates, i.e., beyond the weak-
coupling regime (1, 6, 8, 9). At the same time, consistent with
the existing work in the normal state (14, 33, 34), we do not find
any indication supporting the alternative scenarios mentioned in
the Introduction, such as nematic fluctuations (11), loop current
order (12), or intertwining of different orders (13). In order for
these scenarios to become relevant in larger systems or in other
areas of parameter space, superconductivity from spin fluctua-
tions would have to disappear while new mechanisms would

Fig. 3. ReΣA
(π,0),Q(iωn) for several transfer momenta Q in the density (ρ) and

magnetic (S) channels. OD and UD correspond to the diamonds in Fig. 2. Black
line with crosses indicates total anomalous self-energy after summation over
all Q. (Inset) Noninteracting Fermi surface and location of momentum points
corresponding to colors in main panels. ωn = (2n + 1)πT indicates fermionic
Matsubara frequency. Top Left: UD, ρ. Top Right: UD, S. Bottom Left: OD, ρ.
Bottom Right: OD, S.
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Fig. 4. ReΣA
(π,0),ν(iω0) in density (ρ) and magnetic (S) channels. OD and UD

correspond to the two data points of Fig. 2. (Inset) ReΣA,ν(iω0) in density chan-
nel with rescaled y axis. νn = 2nπT indicates bosonic Matsubara frequency.
Top: UD. Bottom: OD.

have to emerge simultaneously, which we believe to be exceedingly
unlikely. In the case of intertwined orders, multiple fluctuations
such as density or magnetic ones would contribute synergistically
to the pairing, rather than compete, in contradiction with our
results. We emphasize that the fluctuation diagnostic is capable
of detecting the occurrence of this situation, when it is realized,
e.g., in the attractive Hubbard model (14).

Our identification of the superconducting glue agrees with
the findings of several experiments. Ref. 35 finds good quanti-
tative agreement between the spectral function computed from
conventional spin fluctuation theory with magnetic susceptibility
measured by inelastic neutron scattering and the spectral func-
tion measured from angle-resolved photoemission spectroscopy
in the superconducting phase of YBa2Cu3O6.6. Inelastic pho-
ton scattering experiments (36) on Hg1201 and Hg1212 infer
that the superconducting temperature Tc can be determined by
the strength of the magnetic interactions (paramagnon signals),

supporting the theory of magnetically mediated high-temperature
superconductivity. Other experiments suggest a relation between
superconductivity and charge density wave (37) or that the pseu-
dogap and superconductivity may have different origins (38).
Thus, the numerical findings of our study suggest the possibil-
ity that the latter class of experiments may be probing aspects
of cuprates physics beyond those encoded in the single-orbital
Hubbard model on an eight-site DCA cluster.

Independently of the agreement with this multifaceted experi-
mental evidence, our identification of the superconducting glue
in terms of spin fluctuations touches a delicate and important
aspect of the theoretical description of high-T superconductivity.
In particular, conventional spin fluctuation theory (39–44) ap-
pears only able to capture a fraction of the pairing contribution
(44) or overestimate the results (42), depending on the analysis
procedure used. The origin of this discrepancy can be ascribed to
the random phase approximation-like spin fluctuation expressions
used in conventional approaches which, outside of the weak-
coupling regime, do not capture all spin fluctuation–mediated
processes (45).

The microscopic picture of superconductivity emerging from
our analysis agrees well with recent studies of the description of the
nonsuperconducting pseudogap regime: while spin fluctuations
were identified as the predominant mechanism of the pseudogap
(14, 33, 34), differences with respect to the predictions of con-
ventional spin fluctuation theory were found and traced (46) to
the imaginary part of the dynamical scattering amplitude between
electrons and spin fluctuations, which is absent in conventional
approaches (46).

In conclusion, our fluctuation diagnostics of the supercon-
ducting order in the Hubbard model precisely identify antifer-
romagnetic spin fluctuations as the glue of the d -wave pairing.
This conclusion applies to the intermediate-to-large values of the
electronic interaction relevant to cuprate physics. For this reason,
the spin fluctuation–driven pairing found in our calculations is
expected to differ from conventional spin fluctuation theories.
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available upon request.
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