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Abstract
Mendelian randomization is a powerful tool for inferring the presence, or oth-
erwise, of causal effects from observational data. However, the nature of genetic
variants is such that pleiotropy remains a barrier to valid causal effect estimation.
There are many options in the literature for pleiotropy robust methods when
studying the effects of a single risk factor on an outcome. However, there are
few pleiotropy robust methods in the multivariable setting, that is, when there
are multiple risk factors of interest. In this article we introduce three methods
which build on common approaches in the univariable setting: MVMR-Robust;
MVMR-Median; and MVMR-Lasso. We discuss the properties of each of these
methods and examine their performance in comparison to existing approaches
in a simulation study. MVMR-Robust is shown to outperform existing outlier
robust approaches when there are low levels of pleiotropy. MVMR-Lasso pro-
vides the best estimation in terms of mean squared error for moderate to high
levels of pleiotropy, and can provide valid inference in a three sample setting.
MVMR-Median performs well in terms of estimation across all scenarios con-
sidered, and provides valid inference up to a moderate level of pleiotropy. We
demonstrate the methods in an applied example looking at the effects of intelli-
gence, education and household income on the risk of Alzheimer’s disease.
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1 INTRODUCTION

Mendelian randomization is a technique for estimating the causal effect of a risk factor on an outcome using observational
data.1 It uses genetic variants as instrumental variables and can provide valid causal effect estimation in the presence of
unmeasured confounding. Three assumptions are required in order that a genetic variant is a valid instrument: it must
be associated with the risk factor of interest; it must not be associated with any confounder of the risk factor-outcome
relationship; and it must be independent of the outcome conditional on the risk factor and confounders.2

Genetic variants are good candidates for instrumental variables: they are naturally independent of many environmen-
tal factors which are common sources of confounding, and mitigate the potential for reverse causation. Furthermore,
methods for Mendelian randomization have been developed which allow for combining many instruments in a single
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analysis, and which can also be used when only summary statistics of the associations between the genetic variants and
traits are available.3 These features allow practitioners to harness publicly available summary data from genome wide
association studies (GWAS). Two-sample approaches, where the genetic variant-risk factor and genetic variant-outcome
associations are estimated in different samples, open up vast combinations of risk factor-outcome relationships to be
studied.4 The major limitation in Mendelian randomization analyses is therefore the potential presence of pleiotropy,
which is when genetic variants associate with traits other than the risk factor of interest. If any such trait provides an
alternative causal pathway to the outcome not via the risk factor, then the corresponding genetic variants are invalid
instruments and causal effect estimates may be biased.

Multivariable Mendelian randomization fits multiple risk factors in a single model.5 One motivation for its use is to
account for pleiotropy in a univariable analysis via a set of measured covariates. It can be an important sensitivity analy-
sis if there are known biological pathways linking the genetic variants and the outcome. If any such biological pathways
bypass the risk factor, the genetic variants will not be independent of the outcome conditional on the risk factor and out-
come, and the instrumental variables assumptions are violated. Another motivation is if there are a number of correlated
traits with shared genetic predictors which are all hypothesized to have potential causal effects on the outcome. A multi-
variable model can distinguish between the direct effects of the risk factors on the outcome and the total effects inclusive
of mediators.6 A genetic variant is a valid instrument for multivariable Mendelian randomization if: it is associated with
at least one risk factor; it is independent of any confounder of each risk factor-outcome relationship; and it is independent
of the outcome conditional on all risk factors and confounders. Causal pathways from a genetic variant to the outcome
that do not pass via one or more of the risk factors are referred to as unmeasured pleiotropy (in contrast to measured
pleiotropy, where such pathways are entirely accounted for via the set of risk factors). For the purposes of this article, we
use the word pleiotropy to mean unmeasured pleiotropy.

There are a number methods in the literature for univariable Mendelian randomization (ie, when there is a single risk
factor) which are robust to pleiotropy.7 Each method provides valid estimation of the causal effect under different sets of
assumptions. Although these assumptions are, generally, untestable, an applied analysis will typically employ a range of
methods. Consistency of results across various methods which rely on different assumptions gives strength of evidence to
the findings.8 There are, however, few methods for pleiotropy robust multivariable Mendelian randomization.9,10 Valid
estimation of causal effects, therefore, typically relies on the assumption that all causal pathways between the genetic
variants and the outcome are accounted for via the measured risk factors.

In this article we propose a number of novel approaches to multivariable Mendelian randomization which provide
robustness to different forms of pleiotropy. The methods are developed for use with summary level data, and so access to
individual level data is not required. We examine the performance of the methods under various pleiotropic settings in a
simulation study. We then demonstrate the methods in an applied analysis looking at the effects of intelligence, years of
education and household income on the risk of Alzheimer’s disease.

2 MODELING ASSUMPTIONS

2.1 Data generating model

We assume the following model, which is similar to a multivariable version of the models set out by Bowden et al11 and
Kang et al12 in the single risk factor case. For individual i, let Yi be the outcome, Xi1, … ,XiK be K risk factors, Gi1, … ,Gip
be p genetic variants and Ui represent confounders of the risk factor-outcome relationships. The data generating
model is:

Xik = 𝛽X0k +
p∑

j=1
𝛽XjkGij + 𝛾XkUi + vXik, k = 1, … ,K (1)

Yi = 𝜃0 +
K∑

k=1
𝜃kXik +

p∑
j=1

𝛼jGij + 𝛾Y Ui + vYi, (2)

where vXik and vYi are independent error terms with mean zero. Note that the vXik are not necessarily independent of each
other, and so the risk factors may be correlated via the correlation between these error terms as well as their common
association with Ui. We assume that the genetic variants are independent of each other and independent of Ui. We further
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F I G U R E 1 Directed acyclic graph showing the relationship between the jth genetic variant (Gj), the risk factors (X1, … ,XK ),
confounders (U) and the outcome (Y )

assume that p > K, that each genetic variant is associated with at least one risk factor, and that the p × K matrix with
(j, k)th element 𝛽Xjk is of full column rank. This latter assumption ensures that the genetic variant associations with the
risk factors are not multicollinear and means that each risk factor is associated with at least one genetic variant. The
parameters of interest which we aim to estimate are the 𝜃k’s, which represent the causal effects of the kth risk factor on
the outcome.

2.2 Instrument validity and pleiotropy

The relationships between a single genetic variant, the risk factors, confounders and outcome in model (1)-(2) are rep-
resented by the directed acyclic graph in Figure 1. For the jth genetic variant, pleiotropy is caused by the 𝛼j term. Since
the model allows for no direct association between the genetic variant and Ui, Gj is a valid instrument if at least one of
𝛽Xj1, … , 𝛽XjK are non-zero and 𝛼j = 0. Note that although the model suggests 𝛼j represents direct effects of the genetic
variant on the outcome, it may also represent an association via an unmeasured trait, including via a confounder of the
risk factor-outcome relationship.12

If 𝛼j = 0 for all j, then there is no pleiotropy and all genetic variants are valid instruments. When not all 𝛼j’s are zero, we
consider two patterns of pleiotropy. The first is referred to as balanced pleiotropy, which is where the 𝛼j’s are distributed
with mean zero. The second is referred to as directional pleiotropy, which is where the 𝛼j’s are distributed with mean not
equal to zero. It may also be that most of the 𝛼j are equal to zero but a relatively small number of them are non-zero and
possibly large in magnitude. We will refer to these non-zero 𝛼j’s as outliers.

2.3 Model identification

If all genetic variants are valid instruments (ie, 𝛼j = 0 for all j), the assumptions given in Section 2.1 ensure that the causal
effects are identifiable. If some genetic variants are valid and some are invalid, then, following Kang et al,12 the parameters
𝛼1, … , 𝛼p, 𝜃1, … , 𝜃K are identifiable if there is a unique solution to

𝛽Yj = 𝛼j + 𝜃1𝛽Xj1 + … + 𝜃K𝛽XjK , (3)

j = 1, … , p, given 𝛽Yj = E
(∑

i G̃ijỸ i
)
∕E

(∑
i G̃2

ij

)
and 𝛽Xjk = E

(∑
i G̃ijX̃ ik

)
∕E

(∑
i G̃2

ij

)
, k = 1, … ,K, where G̃ij, Ỹ i,

and X̃ ik are the mean corrected values of Gij, Yi, and Xik, respectively. Let K = 1 and consider all subsets of {1, … , p}
which have the property that 𝛽Yj = q𝛽Xj1, for some constant q, for all j in the subset. Kang et al12 showed that the model
parameters are identified if and only if there is no such subset which contains invalid instruments which is as large as, or
larger than, the subset which contains all the valid instruments. This is often referred to as the plurality valid assumption.
Thus, a sufficient condition for identifiability is that more than half the instruments are valid.
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It follows that in the multivariable case, assuming all genetic variant-risk factor association vectors are lin-
early independent, we require there to be no subset of {1, … , p} which satisfies 𝛽Yj = q1𝛽Xj1 + … + qK𝛽XjK , for
constants q1, … , qK , for all j in the subset, which is greater than the size of the subset of all valid instruments
minus K. A sufficient condition for identification is thus that more than (p + K − 1) ∕2 genetic variants are valid
instruments.

2.4 Summary level data

We denote by 𝛽Xjk and 𝛽Yj the estimates obtained by regressing the kth risk factor and outcome, respectively, on the jth
genetic variant. We have that

𝛽Xjk = 𝛽Xjk + 𝜀Xjk

𝛽Yj = 𝛼j +
K∑

k=1
𝛽Xjk𝜃k + 𝜀Yj,

where var
(
𝜀Xjk

)
= 𝜎2

Xjk and var
(
𝜀Yj

)
= 𝜎2

Yj. In two sample Mendelian randomization the genetic variant-risk factor and
genetic variant-outcome associations are estimated in separate samples and so 𝜀Xjk and 𝜀Yj are independent for all j. If 𝛽Xjk
and 𝛽Xjl are obtained from separate samples, then 𝜀Xjk and 𝜀Xjl are independent. Otherwise, the correlation between 𝜀Xjk
and 𝜀Xjl depends on the correlation between the kth and lth risk factors. Finally, although in practice they are estimated
from data, it is commonly assumed that 𝜎2

Xjk and 𝜎2
Yj are known without error for all j, k.

Although the model assumes that the risk factors and outcome are continuous, categorical traits are possible, and in
fact common in practice. In this case, the relevant genetic variant-trait associations are estimated by logistic regression
(or ordinal logistic regression, for ordinal variables with more than two categories) and represent the change in log odds
ratio of the trait per extra effect allele in the genetic variant.

Note that summary level estimates used for Mendelian randomization are typically unadjusted for other variants (ie,
they are computed separately for each variant). In large samples, the differences between the unadjusted estimates and
adjusted estimates (ie, those computed using all variants in the same model) will be negligible.

2.5 Genetic variant orientation

Each genetic variant can be coded in two ways, depending on which allele is chosen as the effect allele. The choice
of effect allele is arbitrary, but will change the sign of the genetic variant-trait associations. Some Mendelian ran-
domization methods may give different results depending on the orientation of the genetic variants. For example,
in the single risk factor case, the inverse-variance weighted method3 is not affected by genetic variant orientation,
but methods which model pleiotropic effects, such as the MR-Egger method13 and the lasso-based approach of
Rees et al,14 are.

In univariable Mendelian randomization, it is conventional to orientate the genetic variants such that an additional
copy of the effect allele has a positive association with the risk factor. In the multiple risk factor case, however, this may
be done in multiple ways, since forcing positive associations with respect to one risk factor may change the sign of the
associations with respect to the others. Rees et al9 suggest orientating the genetic variants such that each one has a positive
association with the primary risk factor of interest. If there is no single primary risk factor of interest, or as an additional
sensitivity analysis, the impact of the orientation may be assessed by repeating the analysis multiple times, re-orientating
the genetic variants with respect to each risk factor.

2.6 The InSIDE assumption

An assumption that is often required for pleiotropy robust Mendelian randomization is the InSIDE assumption (instru-
ment strength independent of direct effects).13 At a ‘population’ level, the InSIDE assumption is that the 𝛼j’s are
independent of each of 𝛽Xj1, … , 𝛽XjK . In a finite sample, we require that the correlation between the sample estimates of
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the 𝛼j’s and each of the 𝛽Xj1, … , 𝛽XjK , for the given set of data, is equal to zero. This latter condition will rarely be true
in practice, since there will typically be residual correlation due to random variation. If the former is true, however, then
this correlation will tend to 0 as the number of instruments increases.

3 METHODS

We proceed to recall existing methods for multivariable Mendelian randomization in Section 3.1 before introducing new
approaches in Section 3.2.

3.1 Existing methods for multivariable Mendelian randomization

The multivariable inverse-variance weighted (MVMR-IVW) method5,15 fits the multiple linear regression model

𝛽Yj =
K∑

k=1
𝛽Xjk𝜃k + 𝜀j, (4)

j = 1, … , p, where 𝜀j is normally distributed with mean zero and variance 𝜎2
Yj. The estimator is obtained using

weighted least squares estimation and is thus given by

arg min
𝜃1,… ,𝜃K

p∑
j=1

1
𝜎2

Yj

(
𝛽Yj −

∑K
k=1 𝛽Xjk𝜃k

)2
. (5)

If all genetic variants are valid instruments, 𝜃̂IVW is a consistent estimator of 𝜃. If not all genetic variants are valid
instruments, the estimator remains consistent if pleiotropy is balanced and InSIDE is met. Thus, it is sensitive to outliers
and directional pleiotropy.

If some of the genetic variants are invalid and pleiotropy is directional, the causal effect can still be consistently esti-
mated using the MVMR-Egger method.9 This method fits an intercept term in (4) to account for pleiotropy. That is, we
obtain the estimator from

arg min
𝜃0,𝜃1,… ,𝜃K

p∑
j=1

1
𝜎2

Yj

(
𝛽Yj − 𝜃0 −

∑K
k=1 𝛽Xjk𝜃k

)2
.

The MVMR-Egger estimator is robust to directional pleiotropy, even when all instruments are invalid. However, it relies
on the InSIDE assumption for consistent estimation. Furthermore, it results in lower precision. A final drawback is that
it may produce different results depending on the orientation of the genetic variants.

The MR-PRESSO method16 has been proposed to handle the case where pleiotropy is balanced but there are out-
liers. Broadly speaking, the method performs a test based on a heterogeneity measure to identify outliers, which are then
removed from the analysis. Although Verbanck et al16 describe the method for the single risk factor case, the authors
have also produced a multivariable version, which is a straightforward extension. Specifically, the method computes
inverse-variance weighted estimates by leaving out one genetic variant at a time. Letting 𝜃̂1,−j, … , 𝜃̂K,−j be the estimates
obtained after leaving out the jth genetic variant, it then computes the following quantity, termed the global observed
residual sum of squares:

RSSobs =
p∑

j=1

1
𝜎2

Yj

(
𝛽Yj −

∑K
k=1 𝛽Xjk𝜃̂k,−j

)2
.

This is compared with an expected residual sum of squares, which is computed multiple (M) times:

RSSm
exp =

p∑
j=1

1
𝜎2

Yj

(
𝛽
(m)
Yj −

∑K
k=1 𝛽

(m)
Xjk 𝜃̂k,−j

)2
,
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where 𝛽
(m)
Xjk , j = 1, … , p, k = 1, … ,K, are drawn from the normal distribution with mean 𝛽Xjk and variance 𝜎2

Xjk, 𝛽(m)
Yj ,

j = 1, … , p, are drawn the normal distribution with mean
∑K

k=1𝛽Xjk𝜃̂k,−j and variance 𝜎2
Yj, and m = 1, … ,M. Finally, for

each j, an empirical P-value is computed as

1
M

M∑
m=1

1>RSSobs

(
RSSm

exp
)
,

where 1A (x) is the indicator function. If the jth empirical P-value, multiplied by the number of variants (in order to apply
a Bonferroni correction), is greater than the chosen significance level (eg, 0.05), then the respective genetic variant is
identified as an outlier. If there are no outliers identified, the estimate obtained is the same as MVMR-IVW. If true outliers
are identified and removed, it is expected to reduce the bias and be more efficient than MVMR-IVW. However, the method
is not expected to perform well when a large number of genetic variants are pleiotropic, particularly if the pleiotropy is
directional.

The methods discussed in this section assume that the genetic variants are strongly associated with each risk fac-
tor, conditional on the other risk factors. If this is not the case, estimation may be susceptible to weak instrument bias.
Sanderson et al10 proposed a conditional F statistic to assess instrument strength, as well as an approach to estimation
which provides robustness to weak instruments by adjusting the weights in (5) to incorporate the covariance matrices
of the genetic variant-risk factor associations. Furthermore, they proposed including a heterogeneity parameter in the
weights to account for balanced pleiotropy. The approach is equivalent to minimizing a Q statistic, and so we refer to it
subsequently as MVMR-Q(het).

3.2 Proposed pleiotropy robust methods

3.2.1 Robust regression

A natural extension to MVMR-IVW is to use robust regression methods, for example MM-estimation. These methods
provide robustness to observations which “contaminate” the data, such as outliers and influential observations (ie, those
for which a small change in observed value results in a large change in parameter estimate). A method for perform-
ing robust regression in univariable Mendelian randomization is described in Rees et al,14 which uses MM-estimation
along with Tukey’s bisquare objective function. It is straightforward to extend this approach to the multivariable model:
MM-estimation as described by Koller and Stahel17 is done in a multivariable setting, and it can be implemented using
existing software.

This method of robust regression provides robustness to outliers by effectively capping residuals of a certain mag-
nitude. The approach is thus expected to be robust to pleiotropy when there are a relatively small number of invalid
instruments. In this case it should be unbiased and more efficient than MVMR-IVW. However, it may not perform well
if there are a relatively large number of invalid instruments.

3.2.2 Median based estimation

An alternative approach to robust regression is to use least absolute deviations regression. That is, we estimate 𝜃 by

arg min
𝜃1,… ,𝜃K

p∑
j=1

1
𝜎2

Yj

||||||
𝛽Yj −

K∑
k=1

𝛽Xjk𝜃k

||||||
. (6)

Least absolute deviations regression is a special case of quantile regression which estimates the 50th percentile. Thus,
(6) is easily computed using techniques developed for quantile regression.18 Since 𝛽Yj and 𝛽Xjk are continuous, (6) has a
unique solution with probability one.

Similar to robust regression, least absolute deviations regression is less affected by outliers than least squares regres-
sion. It is not robust to influential observations, as robust regression is. However, it may be expected to perform better
when the distribution of the 𝛽Yj’s are not symmetric. That is, it also provides robustness to directional pleiotropy. When



GRANT and BURGESS 5819

K = 1, the estimator obtained using least absolute deviations regression is equivalent to the weighted median estimator
for univariable Mendelian randomization proposed by Bowden et al19 with weights given by |𝛽Xj1|∕𝜎2

Yj (note that, strictly
speaking, it is equivalent to the weighted empirical distribution method described in the supplementary material to that
paper). The least absolute deviations regression approach can thus be thought of as a natural extension of median-based
methods to the multivariable setting. We therefore refer to the method as MVMR-Median.

A disadvantage of least absolute deviations regression is that we lose the asymptotic theory of least squares estimation
which leads to easy to compute and accurate standard errors for use, for example, in inference. Confidence intervals are
typically produced using a rank inversion technique, or via resampling methods (see, eg, Tarr20). Here we take advantage
of the fact that we know the distribution of the genetic variant-trait associations, and implement a parametric bootstrap
procedure, as follows. For each genetic variant, a genetic variant-outcome association is drawn from the normal distribu-
tion with mean 𝛽Yj and variance 𝜎2

Yj, and genetic variant-risk factor associations are drawn from the multivariate normal

distribution with mean
(
𝛽Xj1, … , 𝛽XjK

)′ and covariance matrix diag
(
𝜎2

Xj1, … , 𝜎2
XjK

)
. The estimated standard error is the

standard deviation of the estimates computed from multiple replications of this sampling. This approach does not take
into account correlation between the risk factors, however the simulation results presented in Section 4 and the sup-
plementary material show it still performs well in the correlated risk factor case. Finally, we note that an application of
multivariable Mendelian randomization using quantile regression, and a rank inversion technique for producing con-
fidence intervals, has been previously performed by Gill et al21 in a study which examined the effects of education on
coronary heart disease.

3.2.3 Regularization methods

Under the assumption that some of the 𝛼j’s are zero and some are not, regularization methods for univariable Mendelian
randomization have been proposed which include an intercept term for each genetic variant in the least squares
equations (5) and then apply lasso-type penalization to these terms. The penalization tends to shrink the intercept terms
corresponding to the valid instruments toward zero. It thus accounts for the pleiotropy caused by invalid instruments,
without the loss of power and need for the InSIDE assumption of Egger regression. The approach was first proposed by
Kang et al12 in the individual level setting, and followed up by Windmeijer et al.22 Rees et al14 developed a regularization
approach using summary level data.

In the multivariable setting we propose using

arg min
𝜃01,… ,𝜃0p,𝜃1,… ,𝜃K

p∑
j=1

1
𝜎2

Yj

(
𝛽Yj − 𝜃0j −

∑K
k=1 𝛽Xjk𝜃k

)2
+ 𝜆

p∑
j=1

||𝜃0j|| , (7)

for some tuning parameter 𝜆 > 0. This is not a standard lasso problem, since not all regression parameters are being
penalized. However, the parameter estimates can be easily computed using the algorithm given in Section S1 of the sup-
plementary material, which uses only standard regression and lasso procedures. The tuning parameter controls the level
of sparsity. The larger the value, the fewer genetic variants will be identified as invalid, and the estimate will approach
the MVMR-IVW estimate. A data driven approach to choosing the tuning parameter is to use the heterogeneity stopping
rule described by Rees et al.14

The lasso penalty will shrink some 𝜃0j’s exactly to zero, thus identifying the corresponding genetic variants as being
valid instruments. A post-lasso estimator takes the genetic variants identified as valid and fits a standard MVMR-IVW
model using only these variants. Post-lasso estimators have been advocated by, for example, Efron et al23 and Belloni
et al,24 in order to avoid bias caused by the shrinkage of parameter estimates. The lasso algorithm is thus effectively used
as a model selection technique.

A limitation of regularization techniques generally is the inability to compute accurate standard errors. We can com-
pute standard errors for the post-lasso estimator using a random effects model15 in the post-selection regression. However,
this ignores the uncertainty associated with the model selection event. As a result, the standard errors are likely to be
too small, and the type I error rate inflated. We examine the effect of this in the simulation study presented in Section 4.
A way around this is to use a three sample approach: here, a set of genetic variant-trait associations is used for perform-
ing the MVMR-Lasso procedure which are taken from a sample (or samples) which are independent of those from which
the genetic variant-trait associations used for the post-lasso estimator are taken. In this way, the model selection and
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estimation procedures are independent and the correct type I error rate will be retained.25,26 Although this restricts the
potential scope for analyses, since multiple independent samples of genetic variant associations with the traits of interest
are required, there are still a number of risk factor-outcome combinations which can be studied given the wide variety
of GWAS results which are publicly available. Another promising development in the univariable setting is the use of a
selective inference approach, which aims to derive a conditional distribution of the estimator given the model selection
event.27

One final point to note is that the solution to (7) may be different depending on the orientation of the genetic variants.
Following the convention used when performing MVMR-Egger, we propose orientating the genetic variants such that the
genetic variant associations with the primary risk factor of interest are all positive.

4 SIMULATIONS

We conducted a simulation study to compare the performance of the methods described in the previous section under
scenarios with different amounts and types of pleiotropy. We simulated from model (1)-(2) with the intercepts set to
zero, p = 100 genetic variants, K = 4 risk factors, n = 20 000, 𝛾Xj = 1∕K, 𝛾Y = 1, 𝛽Xjk ∼ Uniform (0, 0.1), Gij ∼ Binomial
(2, 0.3),

Ui =
p∑

j=1
𝛿jGij + wi

and vXi1, … , vXiK , vYi,wi ∼ N (0, 1), independently. These parameter values give R2 statistics (ie, the proportion of the
variance in each risk factor explained by the genetic variants) of approximately 12%. Two sets of values for the
causal effects were considered: in the first, 𝜃1 = 0.2, 𝜃2 = 0.1, 𝜃3 = 0.3, 𝜃4 = 0.4; in the second, 𝜃1 = 0, 𝜃2 = −0.1, 𝜃3 = 0.1,
𝜃4 = 0.2. Four scenarios were considered with different patterns of pleiotropy. For each scenario either 10%, 30%, 50% or
70% of genetic variants were invalid.

1. Balanced pleiotropy and InSIDE assumption met: All 𝛿j’s were set to zero and the 𝛼j’s corresponding to invalid
instruments were generated from the N

(
0, 0.22) distribution.

2. Directional pleiotropy and InSIDE assumption met: All 𝛿j’s were set to zero and the 𝛼j’s corresponding to invalid
instruments were generated from the N

(
0.1, 0.22) distribution.

3. Directional pleiotropy and InSIDE assumption violated: The 𝛼j’s corresponding to the invalid instruments were gen-
erated from the N

(
0, 0.22) distribution and the 𝛿j’s corresponding to the invalid instruments were generated from the

Uniform (0, 0.1) distribution.
4. Balanced pleiotropy and InSIDE assumption violated: The 𝛼j’s corresponding to the invalid instruments were gener-

ated from the N
(
0, 0.22) distribution and the 𝛿j’s corresponding to the invalid instruments were generated from the

Uniform (−0.05, 0.05) distribution.

In scenarios 3 and 4, the InSIDE assumption is violated because of the direct association of the genetic variants with
the confounder. This creates a pleiotropic effect of the genetic variants on the outcome which is not independent of
the effect of the genetic variants on the risk factors due to the association of the confounder with the risk factors.11 It
should also be noted that the overall pleiotropic effect in Scenario 3 is directional because the 𝛿j parameters have non-zero
mean.

For each scenario, level of pleiotropy, and set of 𝜃k values, the simulations were replicated 1000 times. For each repli-
cation, the genetic variant-trait association estimates and their standard errors were computed from the individual level
data using simple linear regression with an intercept. The causal effects were then estimated using the methods described
in Section 3. The parameter of interest which we report on was the causal effect of the first risk factor on the outcome
(ie, for the first set of 𝜃k values, there is a true causal effect, and for the second set of values there is no causal effect). The
mean, standard deviation of estimates, mean standard error and power/type I error rate, at the 0.05 significance level,
are shown in Tables 1 and 2. The log of the mean squared errors across all scenarios are shown in Figure 2. Note that the
mean conditional F statistic for the first risk factor was between 6.3 and 6.6 across the various scenarios. Also note that
here the MVMR-Lasso method refers to the two sample post-lasso estimator (ie, with the estimate computed from the
same samples that the instruments were selected in).
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F I G U R E 2 Logarithm of the mean squared errors for each scenario (S1, S2, S3, and S4) and proportion of invalid genetic variants (10%,
30%, 50% or 70%), where (a) 𝜃1 = 0.2 and (b) 𝜃1 = 0 [Colour figure can be viewed at wileyonlinelibrary.com]

All methods performed well in terms of bias when there was balanced pleiotropy. The MVMR-IVW and MVMR-Egger
methods were biased when pleiotropy was directional, increasing as the proportion of pleiotropy increased. These meth-
ods were also less precise than all other methods, with the largest standard deviations of estimates, and were very low
powered. In theory, MVMR-Egger should be robust to directional pleiotropy when InSIDE is met. However, there was
a fair amount of bias from this method in Scenario 2 when these conditions are satisfied. Given that the conditional
F statistics were fairly low, a possible explanation is that the bias is due to weak instruments, which this method is particu-
larly susceptible to. Some evidence supporting this explanation was provided in a supplementary simulation study, where
the instrument strength was increased and the bias from MVMR-Egger was reduced to close to zero. This supplementary
simulation study is discussed in more detail later in this section.

MVMR-Robust outperformed MVMR-PRESSO in all scenarios up to 50% pleiotropy with lower bias, more precision
and correct type I error rates. Notably, MVMR-Robust had type I error rates at or below the significance level across all
scenarios, even with 70% pleiotropy. MVMR-PRESSO had low bias at the lower level of pleiotropy, but did not perform
well with moderate or high amounts. MVMR-Lasso was generally the most precise estimate: it had similar mean squared
error to MVMR-Robust at 10% pleiotropy, but retained its performance in this regard at the higher levels of pleiotropy
also. Similarly, it had comparable power to MVMR-Robust at 10% pleiotropy, but did much better as the proportion of
pleiotropy increased. As expected, MVMR-Lasso had inflated type I error rates. MVMR-Median had comparable bias to
MVMR-Lasso across all levels of pleiotropy. It was less precise and lower powered than MVMR-Lasso, but had type I error
rates closer to the significance level. In terms of mean squared error, MVMR-Median was bettered uniformly across all
scenarios only by MVMR-Lasso. As a further analysis, in Figure S1 in the supplementary material, we compare the mean
squared errors with those from the estimates of the causal effect of the fourth risk factor, that is, where the true causal
effect is 𝜃4 = 0.4. The average proportion of variation in the outcome explained by the fourth risk factor is approximately
19%, compared with approximately 11% for the first risk factor. However, with the exception of MVMR-Egger, the results
are almost identical across all scenarios. Finally, we considered the performance of the methods in estimating the full 𝜃
vector by comparing the mean squared error defined as the mean, across all replications, of

∑4
k=1

(
𝜃̂j − 𝜃j

)2, where 𝜃̂j is
the estimate of 𝜃j. As shown in Figure S2, the relative performance of the methods is in line with those in Figure 2.

The simulations were repeated for the cases where there were fewer instruments (p = 20, with the distribution of
the 𝛽Xjk parameters adjusted to retain similar R2 values), where the risk factors were correlated by setting cor (vXik, vXil) =
0.5 for all k ≠ l, and where the genetic variant-trait associations were all estimated from the same sample (one sample
Mendelian randomization). For brevity, supplementary analyses were performed over Scenarios 1-3 and for the 10%-50%
pleiotropy cases. The results are shown in Tables S1-S6 and Figures S3-S5. In each case, the results followed a similar

http://wileyonlinelibrary.com
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pattern as before in terms of comparative performance of the different methods. In the fewer instruments case, there was
slightly higher mean squared error across the board, which would be expected with fewer instruments, but the differences
were not great. It is also notable that the bias from the MVMR-Egger method in Scenario 2 was close to zero, in contrast
to the primary simulation results shown in Tables 1 and 2. As noted earlier, this supports the assertion that the bias
from MVMR-Egger in this scenario in the primary simulations was at least partly due to weak instruments, since the
conditional F statistics were much higher (between 22.9 and 23.8) in the fewer instruments case. A further note is that
the results from MVMR-Median in the correlated risk factor case are in line with those in the uncorrelated risk factor
case. This suggests that the parametric bootstrap procedure (which effectively ignores risk factor correlation) is robust to
the case where the risk factors are correlated.

Three further supplementary analyses were performed to examine various aspects of the proposed methods. The
first compared the parametric bootstrap procedure for computing confidence intervals for MVMR-Median to two alter-
native approaches: a nonparametric bootstrap procedure, where the genetic variants were sampled, with replacement,
1000 times to estimate an empirical distribution function of the estimate; and a rank inversion technique as described
by Koenker.28 Table S7 shows the coverage and confidence interval width for each method across each scenario. The
parametric bootstrap gave narrower confidence intervals, on average, than the other methods in all cases. In almost all
cases, the parametric bootstrap procedure also had better coverage, with the only exceptions being that the nonparametric
bootstrap had slightly higher coverage in some of the scenarios with 50% pleiotropy.

Another supplementary analysis considered the case where there was mediation of the effect of the first risk factor
on the outcome by another risk factor (see Figure S6). In these scenarios, the multivariable methods estimate the direct
effect of the first risk factor on the outcome, rather than the total effect which includes the mediated effect via the second
risk factor. The results of these simulations are shown in Tables S8 and S9, and demonstrate that the proposed methods
extend to the case where there are causal pathways among the risk factors.

The final supplementary analysis evaluated how well MVMR-Lasso correctly selected the instruments as valid or
invalid. This is discussed in detail in Section S2.1. Although the ability to select invalid instruments is an interesting aspect
of this method, we stress that instrument selection is not the primary aim of this approach, since the lasso procedure
is trained to minimize heterogeneity. However, the results of this analysis show that the method is generally reliable in
identifying whether instruments are valid or not. In particular, in the primary simulation scenarios, any genetic variant
identified as invalid was almost always truly invalid, and truly valid instruments were almost always identified as valid.

5 APPLIED EXAMPLE: THE CAUSAL EFFECT OF INTELLIGENCE,
EDUCATION AND HOUSEHOLD INCOME ON ALZHEIMER’S DISEASE

In this section we consider an applied example looking at the causal effects of intelligence, years of education and house-
hold income on Alzheimer’s disease. The effects of intelligence and years of education on health outcomes have been
studied by Davies et al29 and Anderson et al.30 A multivariable approach is important in this case since intelligence and
years of education are highly correlated. Anderson et al30 used both univariable and multivariable Mendelian random-
ization with intelligence and years of education as risk factors and Alzheimer’s disease as outcome. Their results from
applying the univariable inverse-variance weighted method (MR-IVW) with each risk factor separately suggest that both
intelligence and years of education have a protective effect on Alzheimer’s disease. However, when both risk factors
are included in a multivariable model, using MVMR-IVW, the effect of years of education, independent of intelligence,
shifts toward the null. The implication is that years of education only has a causal effect on the odds ratio of Alzheimer’s
disease via its effect on intelligence. Here, we reconsider this example and include household income as an extra risk
factor.

Genetic variant associations with intelligence and years of education are taken from the GWAS of Hill et al31 and
Okbay et al,32 respectively. By clumping the combined list of genetic variants which associate with each risk factor at
the genome wide significance level, Davies et al29 arrived at a list of 219 independent genetic variants to be used as
instruments in multivariable Mendelian randomization analyses. We obtained the associations between these genetic
variants and household income from the UK Biobank (sourced from http://www.nealelab.is/uk-biobank/). Note that
household income is an ordinal categorical variable, and so the genetic variant associations represent the increase in log
odds of being in a higher income category per extra effect allele. Genetic variant associations with Alzheimer’s disease
were obtained from the GWAS of Lambert et al.33 In total, 213 of the genetic variants used by Davies et al29 were available
in both of the household income and Alzheimer’s disease datasets, and we used these as instruments in our analysis.

http://www.nealelab.is/uk-biobank/
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F I G U R E 3 Residuals vs fitted values obtained from applying the MVMR-IVW method to the applied example studying the causal
effects of intelligence, years of education and household income on Alzheimer’s disease. The vertical error bars indicate ±𝜎Yj for each genetic
variant. The orange box shaped points indicate the genetic variants identified as pleiotropic by the MVMR-Lasso method [Colour figure can
be viewed at wileyonlinelibrary.com]

Note that the genetic variant associations with both intelligence and years of education were all in the same direction,
and so they were orientated in our analysis to be all positive with respect to these traits.

Figure 3 shows a plot of the residuals vs fitted values after fitting the MVMR-IVW model to the data. The vertical error
bars indicate ±𝜎Yj for each genetic variant. The plot provides a way of visualizing heterogeneity in the multivariable set-
ting, similar to the scatterplots of 𝛽Xj against 𝛽Yj commonly used in the univariable case. Although there is little evidence
of directional pleiotropy, there may be some outliers. Figure 4 shows scatterplots of each pair of genetic variant-risk fac-
tor associations. There appears to be reasonably strong correlation between the genetic variant associations with years of
education and household income, and low to moderate correlation between the other two pairs of associations. A large
degree of multicollinearity can cause numerical instability in the estimates, and perfect multicollinearity suggests that
the full rank condition given in Section 2.1 may be violated. We can assess the degree of multicollinearity using the
condition number of the matrix of genetic association estimates with the risk factors, where a higher value of the con-
dition number indicates increased multicollinearity (see Section S3 for further details). The condition number of 6.8 is
below the typically recommended threshold of 30 where numerical instability due to multicollinearity is considered a
concern.34

We assessed instrument strength in the univariable setting using the mean F statistic across the genetic variants, and
in the multivariable setting using the conditional F statistic (see Table 3). When taking each risk factor separately, the
mean F statistics are all over 10, suggesting that the genetic variants are strong instruments. This is expected since the
instruments were selected according to genome-wide significance and since the risk factors are moderately to strongly
correlated. However, the conditional F statistics are much lower which suggests that the instruments are individually
weak conditional on the others. In light of this, along with the multivariable approaches used in the simulation study
reported in Section 4, we also applied the MVMR-Q(het) method in order to provide a sensitivity analysis which is robust
to weak instruments.

Figure 5A-C and Table 3 show the results of applying MR-IVW to estimate the causal effect of each risk factor sep-
arately on the odds ratio of Alzheimer’s disease, as well as each of the multivariable methods with all three risk factors
included. The univariable analyses suggest that intelligence and years of education both have a protective effect on
Alzheimer’s disease, in line with the results of Anderson et al.30 The estimated log causal odds ratio of Alzheimer’s dis-
ease per one standard deviation increase in intelligence is −4.20 (95% CI −0.57 to −0.27), and per one standard deviation
increase in years of education is −0.59 (95% CI −0.83 to −0.36). The estimated log causal odds ratio of Alzheimer’s dis-
ease per unit increase in log odds ratio for a higher household income bracket is −0.60 (95% CI −0.89 to −0.31). Using
the MVMR-IVW model, the estimates of the log causal odds ratio from both years of education and household income
attenuated to the null, with 95% confidence intervals overlapping zero. The multivariable model however still suggests a
protective effect from intelligence, with an estimated odds ratio of −0.47 (95% CI −0.86 to −0.07).

http://wileyonlinelibrary.com
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F I G U R E 4 Scatterplots of each pair of genetic variant associations with intelligence, years of education and household income
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F I G U R E 5 Log causal odds ratio for Alzheimer’s disease point estimate and 95% confidence interval per one standard deviation
increase in: A, Intelligence; B, Years of education and; C, Per unit increase in log odds ratio for a higher household income bracket

The pleiotropy robust multivariable methods gave results which were broadly consistent with the MVMR-IVW results
(see Table 3). The MVMR-Egger and MVMR-Q(het) methods suggested a null causal effect of intelligence on Alzheimer’s
disease, however their point estimates are still in the same direction and all other methods were in line with MVMR-IVW.
Note that the MR-PRESSO outlier test did not detect any outliers, but the MVMR-Lasso method identified 15 genetic vari-
ants as pleiotropic, which were removed before computing the post-lasso estimator. These genetic variants are indicated in
Figure 3. Interestingly, the post-lasso estimate for the causal effect of years of education on Alzheimer’s disease was posi-
tive, whereas all other estimates of this effect were negative. However, the confidence interval still included the null. Note
also that the estimate from MVMR-Q(het) for the causal effect of years of education was somewhat different to the other
pleiotropy robust methods, however the confidence interval was very wide and overlapped with all other point estimates.

The consistency of the findings give strength to the assertion that intelligence has a causally protective effect on
Alzheimer’s disease, conditional on years of education and household income. However, there is no evidence of a direct
effect of years of education or household income on Alzheimer’s disease. There are two potential explanations for why
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T A B L E 3 Point estimate, standard error (SE) and confidence interval (CI Lower, CI Upper) of the log odds ratio of
Alzheimer’s disease due to a unit increase in intelligence, years of education and household income, from univariable
Mendelian randomization (MR-IVW) and each multivariable method

Risk factor F statistic Method Estimate SE CI lower CI upper

Intelligence 31.398 MR-IVW −0.420 0.078 −0.573 −0.267

2.364 MVMR-IVW −0.469 0.202 −0.864 −0.074

MVMR-Egger −0.073 0.332 −0.723 0.578

MVMR-PRESSO −0.469 0.202 −0.866 −0.072

MVMR-Robust −0.544 0.195 −0.927 −0.161

MVMR-Median −0.573 0.241 −1.045 −0.100

MVMR-Lasso −0.587 0.178 −0.936 −0.238

MVMR-Q(het) −0.095 −0.559 0.496

Years of education 21.012 MR-IVW −0.591 0.120 −0.827 −0.355

1.570 MVMR-IVW −0.244 0.344 −0.919 0.430

MVMR-Egger −0.035 0.371 −0.761 0.691

MVMR-PRESSO −0.244 0.344 −0.923 0.434

MVMR-Robust −0.017 0.310 −0.624 0.590

MVMR-Median −0.134 0.384 −0.887 0.620

MVMR-Lasso 0.179 0.301 −0.411 0.769

MVMR-Q(het) −0.439 −1.498 0.401

Household income 10.479 MR-IVW −0.603 0.148 −0.894 −0.313

1.565 MVMR-IVW 0.416 0.340 −0.250 1.082

MVMR-Egger 0.400 0.339 −0.265 1.064

MVMR-PRESSO 0.416 0.340 −0.254 1.086

MVMR-Robust 0.263 0.341 −0.404 0.931

MVMR-Median 0.368 0.381 −0.378 1.114

MVMR-Lasso 0.097 0.298 −0.488 0.681

MVMR-Q(het) 0.107 −0.730 0.965

Note: F statistics are unconditional (reported next to MR-IVW) and conditional (reported next to MVMR-IVW).

years of education and household income would appear to have an effect in the univariable analysis but not in the multi-
variable analysis. One is that these risk factors affect Alzheimer’s disease but only via their association with intelligence.
That is, that intelligence is a mediator of the effect of these risk factors on Alzheimer’s disease. The other explanation is
that the genetic variants that affect education and household income have pleiotropic effects, potentially via intelligence.
It is also possible that both are true (ie, that there is both pleiotropic effects and mediation via intelligence).

6 DISCUSSION

In this article we have presented methods for performing multivariable Mendelian randomization which are robust
to pleiotropy. Existing methods either allow for invalidity at the cost of low precision and the InSIDE assumption
(MVMR-Egger), or were developed for the case where pleiotropy is balanced and there are a relatively small number of out-
liers (MVMR-PRESSO). We have considered methods which can handle higher proportions of invalidity and directional
pleiotropy.

When there is evidence of relatively few invalid instruments, MVMR-Robust was shown to outperform
MVMR-PRESSO in all scenarios with pleiotropy up to 50%. MVMR-Lasso, another method which aims to identify and
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downweight outliers, performed best overall in terms of mean squared error, even when half of the genetic variants were
invalid instruments and pleiotropy was directional. Although type I error rates were inflated, this can be mitigated when
a three sample approach is possible. MVMR-Median was shown to perform almost as well as MVMR-Lasso in terms of
mean squared error, and retained correct type I error rates at higher levels of pleiotropy. Although all methods showed
considerable bias in the settings with high levels of directional pleiotropy (ie, where 50% or 70% of instruments were
invalid), our newly proposed methods still outperformed existing methods across the various metrics considered in these
extreme scenarios. Furthermore, MVMR-Robust retains correct type I error rates even with very high levels of pleiotropy.
As demonstrated in the applied example, a plot of the residuals versus fitted values from the MVMR-IVW method can be
used to visualize potential outliers and pleiotropy, and to help determine the most appropriate choice of robust method.

Although our initial model assumes no causal pathways between the risk factors, the methods are applicable if there
are such pathways, as demonstrated by the supplementary simulation analyses. The only difference in this case is in the
interpretation of the causal parameters. In the presence of mediation, the estimates represent the direct effects of the
risk factors on the outcome, excluding any indirect effects via the mediators. There is existing literature which examines
mediation analysis in the Mendelian randomization setting.35-37

A potential extension to MVMR-Lasso is to consider different penalty terms for each genetic variant. Although differ-
ent penalty weighting schemes did not significantly affect our simulation results, this is an interesting area to consider
for future research, for example if the association estimates have considerably different levels of precision. A potential
extension could be along the lines of the adaptive lasso approach of Windmeijer et al.22

The work has some limitations in the modeling assumptions made, in particular of the linearity and homogene-
ity (ie, no effect modification) of the effects of the risk factors on the outcome. Furthermore, although we can handle
non-continuous traits via the use of logistic regression to produce summary statistics, this may cause bias in the causal
effect estimates due to the non-collapsibility of the odds ratio. Nonetheless, violations of these assumptions tend to
attenuate causal effect estimates toward the null.11,38

Another limitation is the assumption of no measurement error of the genetic variant-risk factor associations, equiva-
lent to assuming 𝜎Xjk = 0 for all j, k. This is a common assumption in Mendelian randomization analyses, and is justified
by the very large sample sizes that these associations are typically estimated in, in contrast to the genetic variant-outcome
associations which may be estimated using a relatively small number of cases vs controls. Provided the genetic variants
strongly predict each risk factor, conditional on all the other risk factors, this assumption will have little influence on the
analysis. Otherwise, the results may be subject to weak instrument bias. In practice, weak instrument bias is mitigated by
selecting a set of genetic variants which associate with the risk factors according to some threshold related to, for example,
F statistics or P-values. Furthermore, the approach of Sanderson et al10 provides a sensitivity analysis in case there is still
a suspicion of weak instruments, as demonstrated in our applied example. Although in univariable Mendelian random-
ization measurement error will bias causal effect estimates toward the null,39 this will not necessarily be the case in the
multivariable setting. Assessing the impact of measurement error in the multiple risk factor case, and how to account for
this, is an active area of research.

In summary, the methods we have presented provide new ways for performing Mendelian randomization with
multiple risk factors which are robust to different forms of pleiotropy. Each has advantages when applied to specific sce-
narios. Together with MVMR-Egger, these methods provide a suite of sensitivity analyses for multivariable Mendelian
randomization.

7 SOFTWARE

R code for performing the methods described in this article, and for reproducing the simulation results, can be
found at https://github.com/aj-grant/robust-mvmr. Existing Mendelian randomization methods were implemented
using the following R packages: MendelianRandomization40 (MR-IVW, MVMR-IVW, MVMR-Egger), MRPRESSO16

(MVMR-PRESSO) and MVMR6 (MVMR-Q(het)). Existing packages which were used in the implementation of the newly
proposed methods include: robustbase41 (MVMR-Robust), quantreg42 (MVMR-Median) and glmnet43 (MVMR-Lasso).
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