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Abstract: Iterative reconstructions (IR) might alter radiomic features extraction. We aim to evaluate
the influence of Adaptive Statistical Iterative Reconstruction-V (ASIR-V) on CT radiomic features.
Patients who underwent unenhanced abdominal CT (Revolution Evo, GE Healthcare, USA) were
retrospectively enrolled. Raw data of filtered-back projection (FBP) were reconstructed with 10
levels of ASIR-V (10–100%). CT texture analysis (CTTA) of liver, kidney, spleen and paravertebral
muscle for all datasets was performed. Six radiomic features (mean intensity, standard deviation (SD),
entropy, mean of positive pixel (MPP), skewness, kurtosis) were extracted and compared between
FBP and all ASIR-V levels, with and without altering the spatial scale filter (SSF). CTTA of all organs
revealed significant differences between FBP and all ASIR-V reconstructions for mean intensity, SD,
entropy and MPP (all p < 0.0001), while no significant differences were observed for skewness and
kurtosis between FBP and all ASIR-V reconstructions (all p > 0.05). A per-filter analysis was also
performed comparing FBP with all ASIR-V reconstructions for all six SSF separately (SSF0-SSF6).
Results showed significant differences between FBP and all ASIR-V reconstruction levels for mean
intensity, SD, and MPP (all filters p < 0.0315). Skewness and kurtosis showed no differences for all
comparisons performed (all p > 0.05). The application of incremental ASIR-V levels affects CTTA
across various filters. Skewness and kurtosis are not affected by IR and may be reliable quantitative
parameters for radiomic analysis.

Keywords: iterative reconstruction; filtered back projection; texture analysis; reproducibility

1. Introduction

In the past years the CT field of interest has moved from qualitative to quantitative
imaging, especially in oncology scenarios where heterogeneity within solid tumors is
usually associated with malignant biology [1].

Among CT quantitative methods explored, CT texture analysis (CTTA) is an area
of radiomics that allows an ultrastructural quantitative evaluation by analyzing pixel
or voxel grey levels of the image, reflecting the heterogeneity related to the biologic
microenvironment [2]. CTTA showed a promising role, especially in oncology, including
lesion characterization, response to treatment and prognosis [1,3–7].

Despite texture analysis being a promising tool for quantitative assessment of images,
due to the novelty of the technique applied in medical imaging, CTTA still needs to be
standardized and validated. An important aspect is the CTTA reproducibility related to
the influence of CT acquisition parameters (e.g., level of radiation dose, slice thickness,
reconstruction algorithms) that can affect results and standardization among different
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studies [8–10]. This aspect is gaining interest, as shown by Erdal et al. [11] who demon-
strated that slice thickness influenced reproducibility of radiomic features in lung nodules,
and Prezzi et al. [12] who showed the influence of iterative reconstruction (IR) algorithm
versus traditional filtered back projection (FBP) on radiomics quantification in twenty-eight
datasets of colorectal cancer.

Radiomics studies up to now available in the literature regard mainly analysis on
images reconstructed with FBP.

Nowadays, the IR algorithm has been introduced by all different vendors in CT
scanners because it has the advantages of reducing artefacts and noise scanning at lower
radiation dose [13,14]. These algorithms represent an extraordinary method to reduce
radiation dose and preserving image quality, in particular for oncologic patients and
cardiovascular imaging [15–18]. This technology is evolving rapidly with improved, newer
IR methods becoming available. The current version of iterative reconstruction from
GE Healthcare is named Adaptive Statistical Iterative Reconstruction-V (ASIR-V) (GE
Healthcare, Waukesha, WI, USA), a hybrid technique between the technologies of ASIR
and Veo. ASIR-V uses a less complex system model for forward projection, which results
in faster reconstruction times, a higher spatial resolution and an additional radiation dose
reduction of 35% in the abdomen [19,20]. The ASIR-V technique allows to blend FBP and
statistical iterative reconstruction information with increments of 10%, on a scale of 0% to
100%. As an example, ASIR-V 40 means that the algorithm blends 40% ASIR-V with 60%
FBP. For a higher ASIR contribution, an image noise reduction is obtained [21,22].

As abovementioned, some studies have demonstrated the influence of IR (i.e., ASIR)
on radiomics, but, up to now, no studies have investigated the influence of different
incremental levels of ASIR-V on CT radiomic features compared to FBP.

Therefore, the purpose of this study is to evaluate the influence between FBP and
different adaptive statistical iterative reconstruction levels (ASIR-V), applied with incre-
mental weightings, on CT radiomic texture features to assess its clinical and technical
reproducibility.

2. Materials and Methods
2.1. Study Population

This retrospective study was conducted according to Declaration of Helsinki guide-
lines, and written informed consent was obtained from all study participants. From January
2020 to September 2020, unenhanced abdomen CTs of patients that underwent oncological
staging were selected.

For the specific purpose of the study, only unenhanced abdomen CTs performed
for oncologic staging with the following inclusion criterion were selected: abdominal CT
performed with the same multidetector scanner and protocol. Patients with motion or
beam hardening artefacts on abdomen CT were excluded.

The study population enrollment flow-chart is summarized in Figure 1.

2.2. CT Protocol

All CT exams were performed with a 128-slice CT scanner (GE Revolution EVO
CT Scanner, GE Medical Systems, Milwaukee, WI, USA). CT scans were acquired in the
cranio-caudal direction with patients placed in a supine position in full end-inspiration
with hands above the head. Patients were scanned from the xiphoid process to the pelvic
floor. Considering the oncologic population enrolled, multiphase CT examinations were
performed (unenhanced, arterial phase, portal phase and delayed phase), but only the
unenhanced phase was used for the purpose of the analysis. Internal institution standard
acquisition protocol was applied with scan parameters as follows: tube voltage 100 kV,
tube current modulation 200–480 mAs, spiral pitch factor 0.98, collimation width 0.625 and
gantry rotation time 0.6 s.
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Figure 1. Population enrollment flow-chart. A total of 70 patient were included from an initial 

population of 75 patients enrolled; three were excluded in relation to motion artefacts, and two 

were excluded due to beam hardening artifacts. 

2.3. Data Reconstruction 

Raw data were reconstructed by choosing two algorithms: FBP and ten different 

ASIR-V levels (from 10% to 100% with incremental factor of 10), with a slice thickness of 

1.25 mm and by using an image matrix of 512 × 512 pixels with the standard kernel. In 

total, this resulted in 11 image datasets per patient (Figure 2). 

 

Figure 2. CT image reconstructions at filtered back projection (FPB) and at different Adaptive Sta-

tistical Iterative Reconstruction-V (ASIR-V) levels. 

Figure 1. Population enrollment flow-chart. A total of 70 patient were included from an initial
population of 75 patients enrolled; three were excluded in relation to motion artefacts, and two were
excluded due to beam hardening artifacts.

2.3. Data Reconstruction

Raw data were reconstructed by choosing two algorithms: FBP and ten different
ASIR-V levels (from 10% to 100% with incremental factor of 10), with a slice thickness of
1.25 mm and by using an image matrix of 512 × 512 pixels with the standard kernel. In
total, this resulted in 11 image datasets per patient (Figure 2).
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FBP was the first reconstructive procedure used in CT because of its speed and
ease of execution [23]. FBP exploits a mathematical method to reconstruct data using
algorithms that solve continuous functions. In this process the intensity values measured
by detectors are transformed into mathematical functions (projection data) that are solved
and propagated by reconstruction algorithms in a process called “back projection”. Then,
projection data are filtered to eliminate the blur effect during the CT reconstruction. FBP
has the disadvantage that increasing the sharpness of the image also increases image noise
and artefacts [13,24].

After all datasets were completed with both FBP and ASIR-V reconstructions, Digi-
tal Imaging and COmmunications in Medicine (DICOM) image data were anonymized
and transferred into a picture archiving and communication system (PACS) workstation
(Centricity Universal Viewer v.6.0, GE Medical Systems, Milwaukee, WI, USA).

2.4. Radiomic Analysis

DICOM images extracted from PACS were transferred to a dedicated texture analysis
software (TexRAD, Feedback Medical Ltd., Cambridge, UK). Two radiologists (FP and DC,
with 5 and 10 years of experience in abdominal imaging, respectively), in consensus reading,
chose a single slice of the unenhanced CT where liver, kidneys, spleen and paravertebral
muscles were clearly represented and drew a fixed circular region of interest (ROI) (area 1
cm2) on each structure assessed (liver, right kidney, spleen and left paravertebral muscle)
with fixed abdomen window (width: 400 HU; level: 40 HU). Every ROI included only
parenchymal structures, excluding from the analysis other structures (e.g., vessels, focal
lesions). ROIs were cloned for all different reconstruction datasets (FBP and ASIR-V from
10% to 100%), and then CTTAs were extracted from all datasets.

CTTA extracted from abdominal CT is a first-order radiomic feature based on a
statistical method that quantifies the heterogeneity of a ROI, analyzing the intensity of
pixel frequency and then extracting the following histogram parameters: mean intensity,
standard deviation, entropy, kurtosis, skewness, and mean value of positive pixels (MPP).
For CTTA, spatial filters, denoted by spatial scaling factors (SSFs) of 0 to 6, were applied.
SSF 0 indicates no filtration; SSFs 2, 4 and 6 indicate 2, 4 and 6 mm radii, which represent
fine, medium and coarse filters, respectively. These filters analyze the ROI at a different
scale with object radii of different sizes. All the parameters extracted were assessed with
and without altering the SSF with a Laplacian of Gaussian spatial band-pass filter to
highlight features at different anatomic spatial scales at fine, medium and coarse texture.
Figure 3 shows the filtration-histogram-based CTTA of FBP reconstruction and ASIR-V
100.

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 11 
 

 

FBP was the first reconstructive procedure used in CT because of its speed and ease 

of execution [23]. FBP exploits a mathematical method to reconstruct data using algo-

rithms that solve continuous functions. In this process the intensity values measured by 

detectors are transformed into mathematical functions (projection data) that are solved 

and propagated by reconstruction algorithms in a process called “back projection”. Then, 

projection data are filtered to eliminate the blur effect during the CT reconstruction. FBP 

has the disadvantage that increasing the sharpness of the image also increases image noise 

and artefacts [13,24]. 

After all datasets were completed with both FBP and ASIR-V reconstructions, Digital 

Imaging and COmmunications in Medicine (DICOM) image data were anonymized and 

transferred into a picture archiving and communication system (PACS) workstation (Cen-

tricity Universal Viewer v.6.0, GE Medical Systems, Milwaukee, WI, USA). 

2.4. Radiomic Analysis 

DICOM images extracted from PACS were transferred to a dedicated texture analysis 

software (TexRAD, Feedback Medical Ltd., Cambridge, UK). Two radiologists (FP and 

DC, with 5 and 10 years of experience in abdominal imaging, respectively), in consensus 

reading, chose a single slice of the unenhanced CT where liver, kidneys, spleen and para-

vertebral muscles were clearly represented and drew a fixed circular region of interest 

(ROI) (area 1 cm2) on each structure assessed (liver, right kidney, spleen and left paraver-

tebral muscle) with fixed abdomen window (width: 400 HU; level: 40 HU). Every ROI 

included only parenchymal structures, excluding from the analysis other structures (e.g., 

vessels, focal lesions). ROIs were cloned for all different reconstruction datasets (FBP and 

ASIR-V from 10% to 100%), and then CTTAs were extracted from all datasets. 

CTTA extracted from abdominal CT is a first-order radiomic feature based on a sta-

tistical method that quantifies the heterogeneity of a ROI, analyzing the intensity of pixel 

frequency and then extracting the following histogram parameters: mean intensity, stand-

ard deviation, entropy, kurtosis, skewness, and mean value of positive pixels (MPP). For 

CTTA, spatial filters, denoted by spatial scaling factors (SSFs) of 0 to 6, were applied. SSF 

0 indicates no filtration; SSFs 2, 4 and 6 indicate 2, 4 and 6 mm radii, which represent fine, 

medium and coarse filters, respectively. These filters analyze the ROI at a different scale 

with object radii of different sizes. All the parameters extracted were assessed with and 

without altering the SSF with a Laplacian of Gaussian spatial band-pass filter to highlight 

features at different anatomic spatial scales at fine, medium and coarse texture. Figure 3 

shows the filtration-histogram-based CTTA of FBP reconstruction and ASIR-V 100. 

 

Figure 3. CT texture analysis (CTTA) process. (a) Regions of interest (ROIs) placement. (b–d) Fil-

tration-histogram statistic-based method corresponding to fine, medium and coarse texture scale 

of ROIs (area 1 cm2), respectively. 

Figure 3. CT texture analysis (CTTA) process. (a) Regions of interest (ROIs) placement. (b–d)
Filtration-histogram statistic-based method corresponding to fine, medium and coarse texture scale
of ROIs (area 1 cm2), respectively.
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2.5. Statistical Analysis

Categorical variables are given as numbers and percentages and continuous variables
as mean and standard deviation. The Kolmogorov–Smirnov test was performed to establish
normality.

Paired t-test and Wilcoxon matched paired test were performed to assess the ability of
CTTA to differentiate between FBP and all ASIR-V levels. In particular, the paired t-test
was used for parametric samples and Wilcoxon test for non-parametric samples. Extracted
texture features were then compared among FBP and all different ASIR-V levels, both with
and without altering the spatial scale filter (SSF).

Statistical analysis was carried out using MedCalc (MedCalc Software, version15,
Ostend, Belgium), and a p value < 0.05 was considered significant.

3. Results
3.1. Study Population

From an initial population of 75 patients enrolled, a total of 70 patients (31 males with
a mean age of 65 years ± 14.48, and 39 females with a mean age of 67 years ± 15.4; age
range, 39–92 years) were included, as depicted in Figure 1.

3.2. Data Reconstruction and CT Texture Analysis (CTTA) Analysis

A total of 770 datasets were obtained: in particular, a dataset of 70 reconstructions
from FBP and 70 for each ASIR-V level (10% to 100%, with increments of 10%).

A first analysis was conducted comparing FBP reconstruction with each ASIR-V level
reconstruction. Results showed significant differences for each structure examined (liver,
kidney, spleen and paravertebral muscle) between FBP and all ASIR-V levels for mean
intensity, entropy, SD and MPP (all p < 0.0001). In particular, the widest difference observed
was for MPP extracted from muscle with a mean value of 33.52 ± 16.26 at FBP reconstruction
and a value of 31.60 ± 17.85 extracted at ASIR-V 60% reconstruction. On the other hand,
skewness and kurtosis showed no significant differences between FBP and all ASIR-V levels
(all p > 0.05). Full results are summarized in Table 1 and Supplementary Table S1.

Table 1. Results of CT texture analysis (CTTA) of the liver (A), kidney (B), spleen (C) and muscle (D) on unfiltered images;
each feature (standard deviation (SD), mean, entropy, mean of positive pixels (MPP), skewness and kurtosis) is compared
between filtered back projection (FBP) and all Adaptive Statistical Iterative Reconstruction-V (ASIR-V) reconstructions.
Significant p in bold.

p Value

Texture
Features

FBP vs.
ASIR 10

FBP vs.
ASIR 20

FBP vs.
ASIR 30

FBP vs.
ASIR 40

FBP vs.
ASIR 50

FBP vs.
ASIR 60

FBP vs.
ASIR 70

FBP vs.
ASIR 80

FBP vs.
ASIR 90

FBP vs.
ASIR 100

LIVER

Mean 0.3086 0.0915 0.0202 0.017 0.1784 0.7772 0.1624 0.6789 0.1359 0.3816
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.7458 0.9818 0.2423 0.4267 0.3224 0.5603 0.7819 0.7662 0.8089 0.8997
Kurtosis 0.9544 0.3022 0.7583 0.4602 0.8883 0.8905 0.3393 0.6398 0.5437 0.2402

KIDNEY

Mean <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.0004 0.0007 0.0014 0.0084 0.0076 0.0191 0.0189 0.0255 0.0455 0.0039
Kurtosis 0.1911 0.4786 0.8986 0.5717 0.8302 0.782 0.5265 0.6984 0.5194 0.8733

SPLEEN

Mean 0.0173 0.5802 0.3894 0.4175 0.0143 0.0886 0.4117 0.7228 0.4932 0.6254
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.2994 0.5019 0.8763 0.3017 0.1619 0.4204 0.878 0.3262 0.9454 0.7544
Kurtosis 0.0274 0.0806 0.0666 0.3008 0.3777 0.2696 0.2733 0.3978 0.2961 0.8402

MUSCLE

Mean <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.844 0.7554 0.5952 0.8766 0.8646 0.265 0.4455 0.6281 0.4013 0.3018
Kurtosis 0.8118 0.9162 0.2451 0.5748 0.4268 0.5421 0.605 0.7219 0.9001 0.8274
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Then, a second analysis was performed comparing FBP with all ASIR-V reconstruc-
tions for each SSF separately (SSF0, SSF2, SSF3, SSF4, SSF5, SSF6). The analysis confirmed
the previous trend: significant differences between FBP and all ASIR-V reconstruction
levels for mean intensity, SD, and MPP (all p < 0.0315), with the widest difference, ob-
served for SD with SSF2 extracted from liver with a mean value of 36.10±8.26 at FBP
reconstruction and mean value of 17.81 ± 4.75 extracted from ASIR-V 100% reconstruction.
Entropy showed the same trend of significant differences, except for five comparisons that
were non-significant at SSF5 and SSF6 extracted from low ASIR-V levels (10%, 20% and
30%). Regarding skewness and kurtosis, no significant differences were observed for all
comparisons between FBP and all different ASIR-V datasets for each SSF (all p > 0.05). Full
results for filtered (SSF0, SSF2, SSF3, SSF4, SSF5, SSF6) analysis of liver are summarized in
Table 2. The heat map summarizes results for all filters for all organs segmented (Figure 4).
Supplementary Tables S2–S5 summarize raw data of radiomic analysis. Supplementary
Figure S1 shows a sample representative raw data distribution of SD, entropy, skewness
and kurtosis of liver on SSF2.

Table 2. CTTA (CT texture analysis) of the liver on SSF0, SSF2, SSF3, SSF4, SSF5 and SSF6 filtered images; each feature
(standard deviation (SD), mean, entropy, mean of positive pixels (MPP), skewness and kurtosis) is compared between
filtered back projection (FBP) and all Adaptive Statistical Iterative Reconstruction-V (ASIR-V) reconstructions. Significant p
in bold.

p Value

SSF Texture
Features

FBP vs.
ASIR 10

FBP vs.
ASIR 20

FBP vs.
ASIR 30

FBP vs.
ASIR 40

FBP vs.
ASIR 50

FBP vs.
ASIR 60

FBP vs.
ASIR 70

FBP vs.
ASIR 80

FBP vs.
ASIR 90

FBP vs.
ASIR 100

SSF0

Mean 0.1073 0.3446 0.2228 0.2379 0.3423 0.6349 0.6235 0.9215 0.5029 0.6278
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP 0.0315 0.0069 0.0009 0.0012 0.0043 0.0075 0.0098 0.0270 0.0077 0.0230

Skewness 0.1495 0.2402 0.4741 0.3372 0.4219 0.6082 0.8381 0.8545 0.8677 0.6025
Kurtosis 0.4749 0.4437 0.1814 0.2282 0.5967 0.4581 0.1644 0.1711 0.1790 0.0724

SSF2

Mean 0.3152 0.1430 0.1007 0.159 0.2756 0.3685 0.3174 0.4117 0.2582 0.3152
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.377 0.5052 0.4475 0.322 0.1715 0.2035 0.2735 0.2538 0.2116 0.1208
Kurtosis 0.7801 0.5771 0.7402 0.8523 0.8991 0.8574 0.733 0.7566 0.7142 0.5273

SSF3

Mean 0.3433 0.126 0.0668 0.0662 0.1475 0.3848 0.1408 0.3116 0.1803 0.2582
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.6375 0.6069 0.9964 0.3372 0.2858 0.2441 0.2715 0.4207 0.2717 0.4429
Kurtosis 0.8737 0.7554 0.4551 0.2856 0.9875 0.6472 0.8629 0.5503 0.4836 0.888

SSF4

Mean 0.7373 0.6044 0.3162 0.3936 0.6122 0.8156 0.4591 0.687 0.3251 0.5119
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.8109 0.6822 0.6839 0.8761 0.6464 0.6357 0.4522 0.3845 0.4406 0.223
Kurtosis 0.81 0.8385 0.7265 0.531 0.9949 0.9386 0.6713 0.992 0.9502 0.5297

SSF5

Mean 0.7471 0.8662 0.9327 0.7856 0.9583 0.4163 0.9723 0.693 0.9299 0.8848
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy 0.1436 0.0517 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP 0.0033 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.5869 0.4436 0.591 0.8702 0.9113 0.7306 0.9732 0.7433 0.7151 0.6131
Kurtosis 0.7911 0.4026 0.9569 0.2716 0.7697 0.5892 0.8379 0.6917 0.5408 0.4489

SSF6

Mean 0.6203 0.9877 0.9117 0.6203 0.8652 0.5796 0.765 0.9495 0.7564 0.8552
SD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Entropy 0.7935 0.7242 0.0889 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
MPP 0.0097 0.0045 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Skewness 0.6368 0.9408 0.7817 0.4941 0,5471 0.3881 0.8335 0.9179 0.7651 0.8109
Kurtosis 0.4555 0.7421 0.4264 0.6368 0.6527 0.7013 0.7392 0.8953 0.3394 0.8918
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4. Discussion

Our retrospective study demonstrated how some CTTA features of the liver, spleen
and kidney parenchyma and of the paravertebral muscles were affected by different
ASIR-V levels compared to FBP. In particular, mean intensity, SD, entropy and MPP were
significantly affected by incremental ASIR-V levels, while no influence was reported for
skewness and kurtosis.

Considering the increasing number of CT examinations in several clinical scenar-
ios [25], different vendors are paying more and more attention to the development of
dose-reduction algorithms, trying to maintain at the same time an optimal image qual-
ity [26]. For this reason, the development and use of iterative reconstruction algorithms are
significantly increasing [27–29]. Some studies pointed out how these different algorithms
can influence the different radiomic features of CT images. An example is proposed by
Meyer et al., who investigated how the confounding effect of differences in patient pop-
ulations, acquisition parameters and reconstruction techniques among institutions can
affect radiomic features and their reproducibility. In particular, they enrolled 78 patients
known to have or suspected of having liver metastases from colon cancer (151 liver lesions
were found), analyzing the number of reproducible radiomic features by modifying each
technical parameter separately, keeping constant all the others. The percentage of radiomic
features considered reproducible for any variation of different CT technical parameters (i.e.,
dose level, reconstructed section thickness, reconstruction kernel and algorithm) was 11.3%.
The authors used for their study a different iterative reconstruction technique (SAFIRE),
but their results have similarities with ours in terms of influence of different technical
reconstruction parameters on radiomic features. In particular, they found that radiomic
features in the intensity category (i.e., entropy, kurtosis, mean absolute deviation) are one
of the most susceptible to changes in CT parameters, and these results are in line with our
study (except for kurtosis), but discrepancies might be related to different IR applied [30].

Sung et al. [8] investigated the influence of three different reconstruction methods (FBP,
hybrid IR (iDOSE) and model-based IR (IMR)) on CT first-order texture features of liver
parenchyma in both normal and in chronic liver disease on scans acquired with contrast
medium. CTTA was performed with the same software applied for our study. Their results
showed that IR techniques affect various CT texture features (SD, entropy, skewness and
kurtosis) of the healthy liver parenchyma in the same individuals across different filters.
Discrepancies between the study of Sung and colleagues and our study underline how ra-
diomics is still a technique that requires in-depth standardization processes. Similar results
were found by Prezzi et al. [12], showing that incremental levels of ASIR significantly affect
CT radiomics quantification in primary colorectal cancer compared to FBP. Their analysis
was conducted using the CT acquisition corresponding to peak tumor enhancement, in
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order to maximize the tumor contrast-to-noise ratio on images reconstructed with 20%
ASIR level increments, from 0 to 100%. Single-slice and multislice analyses were performed
on first-order, second-order and high-order features. On single-slice analysis all first-order,
second-order and fractal features varied significantly and according to a linear relationship
with increasing ASIR values, with the exception of Grey-level co-occurrence matrix (GLCM)
sum entropy. As in our results, although the study was carried out on tissue lesions, with a
different reconstruction technique (ASIR vs ASIR-V) and on images obtained with contrast
medium, it is possible to assume that the technique underlying the ASIR mechanism may
have an influence on the first-order texture features regardless of the use of the contrast
medium and whether the analysis is performed on a lesion or on healthy parenchyma.
Moreover, Midya et al. in their study tried to assess the reproducibility of 248 radiomic
features derived from computed tomography (CT) images performed on a uniform water
phantom (UWP) and a human scan by varying some tools; they directed their attention to
the adaptive statistical iterative reconstruction (ASIR) at different levels (0% to 100% with
increments of 10%), considering the increasing attention paid to the dose-reduction issue.
Their final data suggest that image acquisition parameters relating to image noise (i.e.,
tube current, noise index and reconstruction (ASIR)) strongly influence radiomic feature
reproducibility precisely because features are based on the spatial distribution of pixel
intensities. In particular, their study found that the number of reproducible features lin-
early decreased with increasing ASIR when compared with FBP (ASIR 0%) [31]. Although
their iterative reconstruction technique was ASIR while ours was ASIR-V, and despite
they performed their study on a phantom, our results were very similar. In particular,
they extracted the same radiomic features that we analyzed in our study (including mean,
standard deviation, skewness, kurtosis and entropy), and they established that increasing
levels of ASIR affect radiomics features. These results were similar to our study, except
for skewness and kurtosis, which in our study showed not to be significantly influenced
by different ASIR-V levels compared with FBP. This is meaningful because we obtained
similar results both in phantom and in human patients.

Despite the interesting results, our study has some limitations. First, it is a monocentric
study with a small cohort (70 patients). Second, only the first-order texture features were
extracted and analyzed. Third, our study was performed on images obtained from a
single CT machine vendor and only on unenhanced images without considering the
possible influence of the contrast medium. Finally, analysis was performed only on healthy
structures without considering lesions or diffuse organ diseases.

5. Conclusions

In conclusion, the application of incremental ASIR-V levels versus traditional FBP
affects CTTA across various filters. Skewness and kurtosis are not affected by iterative
reconstructions and may be reliable quantitative parameters for radiomic analysis. Hence,
for the validation of potential CT imaging biomarkers, image acquisition and reconstruction
parameters must be harmonized to have reliable results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11061000/s1, Figure S1: sample representative raw data distribution of standard
deviation (SD), entropy, skewness and kurtosis of liver on Spatial Scaling Factor 2. Table S1: results
of CT texture analysis of the liver, kidney, spleen and muscle on unfiltered images expressed as mean
and standard deviation. Table S2: raw data of CT texture analysis of the liver. Table S3: raw data of
CT texture analysis of the kidney. Table S4: raw data of CT texture analysis of the muscle. Table S5:
raw data of CT texture analysis of the spleen.
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