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Abstract. Calpain (a Ca2+-dependent protease) is pres- 
ent in many cell types. Because it is present in the 
cytosol, the potential exists that it may regulate critical 
intracellular events by inducing crucial proteolytic 
cleavages. However, the concentrations of Ca 2§ re- 
quired to activate calpain are higher than those at- 
tained in the cytoplasm of most cells. Thus, the physi- 
ological importance of calpain and the mechanisms 
involved in its activation have remained elusive. In this 
study, we show that calpain rapidly moved to a pe- 
ripheral location upon the addition of an agonist to 
suspensions of platelets, but it remained unactivated. 
We provide three lines of evidence that calpain was 
subsequently activated by a mechanism that required 
the binding of an adhesive ligand to the major platelet 

integrin, glycoprotein (GP) IIb-IIIa: calpain activation 
was prevented by RGDS, a tetrapeptide that inhibits 
the binding of adhesive ligand to GP Ub-l/Ia; it was 
also prevented by monoclonal antibodies that inhibit 
adhesive ligand binding to GP llb-IIIa; and its activa- 
tion was markedly reduced in platelets from patients 
whose platelets have greatly reduced levels of func- 
tional GP llb-IIIa. Thus, in platelets, binding of the 
extracellular domain of GP l/b-IIIa to its adhesive 
ligand can initiate a transmembrane signal that acti- 
vates intraceUular calpain. Because calpain is present 
in focal contacts of adherent cells, the interaction of 
integrins with adhesive ligands in the extracellular ma- 
trix may regulate activation of calpain in other cell 
types as well. 

C 
ALPAIN is a Ca2+-dependent thiol protease that is 
active at neutral pH and is present in most animal 
cells (28). Because it is present in the cytoplasm, it 

has the potential to play a critical regulatory role, inducing 
the proteolytic cleavage of key substrates within the cell. If 
calpain functions in this way, presumably there must be 
mechanisms that rapidly activate the protease, perhaps at 
specific locations within the cell. However, little is known 
about situations in which calpain is activated in cells, the bio- 
logical functions of calpain, or the mechanisms that regulate 
its activity within cells. 

There are two forms of the enzyme, one that requires ~o10 
/~M Ca 2+ for half-maximal activation, and one that requires 
millimolar concentrations. Because Ca 2§ concentrations 
rise only to 400-1,500 nM within the cytoplasm of most cells 
(2, 4, 24, 41), it has been suggested that additional mecha- 
nisms must exist to induce calpain activation within normal 
cells. Calpain has been detected in focal contacts of adherent 
cells, sites where bundles of actin filaments terminate and 
the plasma membrane is in closest contact with the extracel- 
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lular matrix (3, 4). Integrins are concentrated at these sites 
and form a transmembrane linkage between adhesive ligands 
in the extracellular matrix and the intracellular cytoskeleton 
(4). Binding of adhesive ligand to integrins at these sites in- 
duces intraceUular changes, including altered gene expres- 
sion (39) and cytoskeletal reorganization (4). The intracellu- 
lar enzymes that induce these changes are not known. 
Because calpain is found in focal contacts, and because many 
of the known substrates for this protease are components of 
the cytoskeleton (7, 12, 13), we have considered the possibil- 
ity that calpaln may be activated as a consequence of ligand 
binding to integrins. 

One cell type in which calpain activation can be induced 
by the addition of an agonist is the platelet (10). Activation 
of calpain leads to a remodeling of the platelet cytoskeleton 
and to an altered association of the cytoskeleton with plasma 
membrane glycoproteins (11). The major platelet integrin is 
glycoprotein (GP) ~ IIb-IIIa (29). This integrin is inactive in 
unstimulated platelets, but upon the addition of agonist it 
rapidly undergoes a conformational change that enables it to 

1. Abbreviations used in this paper: GE glycoprotein; NIH, National Insti- 
tutes of Health; RGDS, Arg-Gly-Asp-Ser; RGES, Arg-Gly-Glu-Ser. 
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bind the adhesive ligands fibrinogen, fibronectin, and von 
Willebrand factor (34) and to become incorporated into fo- 
cal contacflike structures (43). In the present study, we pro- 
vide evidence that calpain is activated as a consequence of 
GP IIb-IIIa-ligand interactions. This finding suggests a 
mechanism by which intracellular calpain could be activated 
at specific sites within cells, It suggests that proteolytic 
events may be induced by calpain at sites of integrin- 
cytoskeletal interaction; such proteolytic events may play a 
critical role in the normal functioning of cells. 

Materials and Methods 

Isolation of Platelets 
Venous blood was drawn from healthy adult donors or from patients with 
Glanzmann's thrombasthenia, and platelets isolated from it by centrifuge- 
tion, as described (10). Platelets were finally resuspended at a concentration 
of 0.3-1 • 109 platelets/ml in a Tyrode's buffer containing 138 mM sodium 
chloride, 2,9 mM potassium chloride, 12 mM sodium bicarbonate, 0.36 
mM sodium phosphate, 5.5 mM glucose, t.8 mM calcium chloride, 0.4 mM 
magnesium chloride, pH 7.4. 

Incubation of Platelets with Agonist 
Platelet suspensions were incubated for 15 rain at 37~ in the absence or 
presence of antibodies or inhibitors, The synthetic peptides consisting of the 
sequence Arg-Gly-Asp-Ser (RGDS) or Arg-Gty-Glu-Ser (RGES) (Telios 
Pharmaceuticals, Inc., San Diego, CA) were added in saline. The anti-GP 
IIb-IIIa antibodies, 10E5 and DgGI, were generous gifts of Dr. Barry Coller 
(State University of New York, Stony Brook, NY) and Dr. David Phillips 
(COR Therapeutics, Inc., South San Francisco, CA), respectively. The anti- 
GP Ib-lX antibody, AK2, was a generous gift of Dr. Michael Berndt (West- 
mead Hospital, Westmead, New South Wales, Australia). Platelets were 
subsequently incubated with 0.I to 1.0 National Institutes of Health (NIH) 
unit of thrombin/ml (kindly provided by Dr. John W. Fenton II of the New 
York Departmem of Health, Albany, NY), 10/~g of collagen/ml (Horme, 
Munich, Germany), or 1.0/~M ionophore A23187 (Sigma Chemical Com- 
pany, St. Louis, MO). Unless otherwise indicated, all incubations were per- 
formed in the presence of stirring. 

Assessment of Platelet Aggregation 
Platelet suspensions (0.3 x 109 platelets/ml) were stirred in the presence 
of an agonist in an aggregometer (Chronolng Corporation, Havertown, PA). 
The agonist-induced aggregation of platelets was assessed by a change in 
transmittance of light through the suspension. 

Localization of Calpain by Immunofluorescence 
Platelet suspensions (1 x 109 platelets/ml) were fixed by the addition of 9 
vol of a solution containing 4% paraformaldehydein a buffer containing 150 
mM sodium chloride, 10 mM Tris-HCl, pH 7.4. Approximately 100/zl of 
the suspension was placed on poly-L-lysine-coated glass slides, The slides 
were incubated at ambient temperature for approximately I h. Excess sus- 
pension was then removed by aspiration and the platelets lysed by the addi- 
tion of a buffer containing 0.5% Triton X-100, 0.1% Carnation milk, 150 
mM ammonium acetate, 150 mM sodium chloride, 10 mM Tris-HC1, pH 
7.4. After 15 rain, samples were washed three times in a buffer containing 
15 mM sodium acetate, 0.1% Carnation milk, 150 mM sodium chloride, 
10 mM Tris-HC1, pH 7.4, to which a 1:50 dilution of sheep serum (Sigma 
Chemical Co.) was added. Samples were then incubated for •16 h at am- 
bient temperature with polyelonal antibodies against calpein. Excess solu- 
tion was removed by aspiration, samples were washed five times with the 
buffer containing 15 mM ammonium acetate (but no sheep serum), in- 
cubated with biotinylated sheep anti-rabbit immunnglobulin G (Amersham 
Corporation, Arlington Heights, IL) for 3 h, washed five times with the 15 
mlvl ammonium acetate-containing buffer, incubated with Texas-red- 
labeled streptavidin (Amersham Corp.) for 30-60 rain, washed five times 
in a buffer containing 150 mM sodium chloride, 50 mM Tris-HCl, pH g4, 
and mounted. The slides were examined with a Zeiss Universal microscope 
(Carl Zeiss, Inc., Thornwood, NY) and photographed. 

Assessment of Ca 2+ Fluxes 
Platelets were loaded with Fura 2 (18). Platelet suspensions (1 • 109 plate- 
lets/ml) were stirred with L0 NIH U of thrombirdml in a Perkin-Elraer 650- 
40 fluorescence spectrophotometer (Perkin-Elmer Corporation, San Jose, 
CA). The excitation wavelength was 340 nm, and the emission wavelength 
was 490 nm. Thrombin-induced Ca 2+ fluxes were assessed by the altered 
emission at 490 ran. 

Analytical Procedures 
Platelet suspensions (0.3-1 • 109 platelets/ml) were solubitized in the pres- 
ence of a reducing agent and analyzed on one-dimensional SDS- 
polyacrylamide gels by the method of Laemmli (23) using 3% acrylamide 
in the stacking gel and a 5-20% exponential gradient of acrylamide in the 
resolving gel. Proteins were stained with Coomassie brilliant blue. Western 
blotting was performed by the method of Towbin et al. (37). Antibodies to 
actin binding protein and calpain were raised and characterized as reported 
previously (12, 22). The concentration of platelets in suspensions of washed 
platelets was determined with a Coulter counter (Coulter Corporation, 
Hialeah, FL). 

Results 

Localization of Calpain in Platelets 
The distribution of calpain was examined in unstimulated 
and activated platelets. As reported previously (36), calpain 
had a very diffuse distribution in the unstimulated cell (Fig. 
1 A). However, upon the addition of the agonist thrombin, 
caipain moved to the periphery of the cell (Fig. 1). Similar 
results were obtained whether the distribution of calpain was 
assessed by immunofluorescence (Fig. 1 B) or electron mi- 
croscopy (Fig. 1 C). Calpain redistributed in suspensions 
that were not agitated (e.g., Fig. 1), but calpain is activated 
only in suspensions that have been agitated (10, 38). Fur- 
ther, the redistribution occurred extremely rapidly Coy 10 s, 
the earliest time point studied). However, calpain activation 
was not detected until 30 or 60 s after the addition of throm- 
bin to a stiffed platelet suspension. Thus, although the 
thrombin-induced redistribution of calpain to the periphery 
of platelets may be necessary for calpain activation, it is not 
sufficient. 

Inhibition of Agonist-induced Calpain Activation by 
GP IIb-IIla Antagonist 
To determine whether the integrin GP Ilb-ma is involved in 
the subsequent activation ofcalpain, platelets were incubated 
with agents known to inhibit the agonist-induced binding of 
adhesive ligands to this integrin and subsequently stirred in 
the presence of the agonists collagen or thrombin. One such 
agent, the tetrapeptide RGDS, inhibited the subsequent 
thrombin-induced binding of adhesive ligand to GP Ilb-llla 
in a dose-dependent manner (Fig. 2 A). Inhibition of ligand 
binding was accompanied by inhibition of calpain activation, 
as detected by hydrolysis of actin-binding protein (Fig. 2 B) 
or autolysis of calpain (data not shown). Similar inhibitory 
effects were observed whether platelets were stimulated with 
thrombin or collagen (data not shown). RGES, a peptide that 
does not inhibit binding of adhesive ligand (Fig. 2 A), did 
not inhibit calpain activation (Fig. 2 B). 

Agonlst-induced binding of adhesive ligand to GP IIb-RIa 
is also inhibited by preincubating platelets with 10E5, a 
monoclonal antibody against the GP I~-IIIa complex (5). 
Inhibition of ligand binding was accompanied by inhibition 
of calpain activation (Fig. 3). Other monoclonal antibodies 
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Figure 1. Distribution of cal- 
pain in platelets. A and B im- 
mundiuorescence images show- 
ing the distribution of calpain 
in unstimulated platelets (A) 
and in platelets that had been 
incubated (in the absence of 
stirring) with 1.0 NIH U of 
thrombin/ml for 60 s (B). Cis 
an electron micrograph show- 
ing the distribution of calpain 
in platelets that had been stirred 
with 1.0 N-IH U ofthrombin/ml 
for 15 min. The platelets shown 
in this panel were found to- 
ward the periphery of the dense 
platelet aggregate that formed. 
Calpain was detected with 
polyclonal antibodies raised 
in rabbits against purified bo- 
vine skeletal muscle calpain. 
(A and B) Bar, 5 ~m; (C) 
bar, 0.5 #m. 

Figure 2. Inhibition of throm- 
bin-induced calpain activation 
by RGDS. Suspensions of 
washed platelets were prein- 
cubated for 15 min at 37~ in 
the presence of the indicated 
concentrations of RGDS or 
RGES. Platelets were then 
stirred in an aggregometer 
with 0.1 NLH U of thrombin/ 
ml for 10 min. Aggregation 
was recorded as an increase in 
light transmittance (A). Incu- 
bations were terminated by 
the addition of an SDS-con- 
raining buffer. Samples were 
electrophoresed through SDS- 
polyacrylamide gels. Hydrol- 
ysis of actin-binding protein 
(ABP) was detected on immu- 

noblots after the transfer of proteins from the gels to nitrocellulose paper (B). 200, 100, and 91 K indicate the Mr = 200,000, 100,000, 
and 91,000 calpain-induced degradation products of actin-binding protein (12). 
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Figure 3. Inhibition of thrombin-induced calpain activation by anti- 
GP Ilb-IIIa. Suspensions of washed platelets were preincubated for 
15 rain at 37~ in the presence or absence of monoclonal antibodies 
(1 t~g/ml). 10E5 is an antibody against the GP Ilb-llIa complex; 
AK2 is an antibody against another platelet membrane glycopro- 
rein, GP Ib-IX. Platelets were then stirred in the aggregometer with 
0.1 NIH U of thrombin/ml. After 10 rain, the incubations were ter- 
minated by the addition of an SDS-containing buffer. Samples were 
electrophoresed through SDS-polyacrylamide gels. Hydrolysis of 
actin-binding protein (ABP) was detected on immunoblots after the 
transfer of proteins from the gel to nitrocellulose paper. 200, 100, 
and 91 K indicate the M~ = 200,000, 100,000, and 91,000 calpain- 
induced degradation products of actin-binding protein (12). 

was extremely little activation of calpain in these platelets in 
response to the physiological agonists thrombin or collagen, 
as assessed by autolysis of calpain (Fig. 4) or hydrolysis of 
actin-binding protein (Fig. 6). Platelets from three different 
patients all gave similar results. As reported previously (40), 
activation of calpain occurred normally when the platelets 
from thrombasthenic patients were stirred in the presence of 
the Ca 2+ ionophore A23187 (Fig. 4). Thus, calpain is pres- 
ent in the platelets from patients with Glanzmann's throm- 
basthenia and can be activated to normal levels if the intra- 
cellular Ca 2+ concentrations are elevated sufficiently (e.g., 
by use of a Ca 2+ ionophore). However, the physiological 
mechanism by which calpaln is normally activated is non- 
functional in these platelets. 

Effect of GP lib-Ilia Antagonists on Ca 2+ Influx 
into Platelets 

The results presented so far suggest that calpain moves to the 
periphery of platelets upon platelet activation but that the 
subsequent activation of calpain requires binding of adhesive 
ligand to the GP IIb-IIIa complex. The GP llb-IIIa complex 
has been implicated in Ca 2+ influx into platelets (14, 32, 
35). Thus, it is conceivable that this ligand-GP IIb-IIIa inter- 
action is required to elevate submembranous Ca 2§ concen- 
trations sufficiently to induce calpaln activation in thrombin- 
activated ceils. However, others have reported that RGDS, 
which inhibits binding of adhesive ligands to GP llb-IIIa, 
does not inhibit agonist-induced increases in cytoplasmic 
Ca 2§ concentrations, as measured with the Ca 2§ indicator 
Fura 2 (31, 42). Further, D9G1, a monoclonal antibody that 
inhibited binding of adhesive ligand to GP lib-IRa and in- 

that inhibit binding of adhesive ligand to GP I/b-Ilia (e.g., 
D9G1) also inhibited calpain activation (data not shown). We 
also examined the effect of AK2, a monoclonal antibody 
against another platelet membrane glycoprotein (GP Ib-IX). 
AK2, which did not inhibit agonist-induced platelet aggrega- 
tion, did not inhibit agonist-induced activation of calpain 
(Fig. 3). 

Activation of  Calpain in Platelets from Patients with 
Glanzmann's Thrombasthenia 

Platelets from subjects with Glanzmann's thrombasthenia are 
deficient in functional GP I/b-iRa complex (15). These plate- 
lets change shape and secrete their granule contents nor- 
maUy in response to physiological agonists but show dimin- 
ished fibrinogen binding and aggregation. Western blotting 
showed that calpain was present in platelets from patients 
with Glanzmann's thrombasthenia (Fig. 4). Immunofluores- 
cence images showed that calpain moved to the periphery 
upon activation of these platelets (Fig. 5). However, there 

Figure 4. Western blot showing calpain in thrombasthenic platelets. 
Suspensions of normal (lane 1 ) or of platelets from thrombasthenic 
patients (lanes 2-4) were incubated alone (lanes 1 and 2), stirred 
with 1.0/~M ionophore A23187 for 15 min (lane 3), or stirred with 
1.0 NIH U of thrombin/ml for 15 min (lane 4). Incubations were 
terminated by the addition of an SDS-containing buffer. Samples 
were electrophoresed through SDS-polyacrylamide gels. Calpain 
and its autolytic form (78 K) were detected on immunoblots by 
using a monoclonal antibody against the Mr = 80,000 subunit of 
bovine skeletal muscle #-calpain. 
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Figure 6. Western blots showing that there is little activation of cal- 
pain in platelets from thrombasthenic patients. Suspensions of 
washed platelets were (lane 1) incubated alone, (lane 2) stirred with 
10 t~g of collagen/ml, (lane 3) stirred with 1.0 NIH U of throm- 
bin/ml, or (lane 4) stirred with a combination of 10 #g of colla- 
gen/ml and 1.0 NIH U of thrombin/mi. After 10 min, the incuba- 
tions were terminated by the addition of an SDS-containing buffer. 
Samples were electrophoresed through SDS-polyacrylamide gels. 
Hydrolysis of actin-binding protein (ABP) was detected on immu- 
noblots after the transfer of proteins from the gels to nitroeeUulose 
paper. 200, 100, and 91 K indicate the Mr = 200,000, 100,000, 
and 91,000 degradation products of actin-binding protein. Left 
shows samples obtained from a control donor, whereas the right 
shows samples from a patient with Glanzmann's thrombasthenia. 

No addition D9G1 

Figure 5. Immunofluorescence images showing the distribution of 
calpain in unstimulated thrombasthenic platelets (A) and in throm- 
basthenic platelets that have been incubated with 1.0 NIH U of 
thrombin/ml for 2 min. (B). Calpain was detected with polyclonal 
antibodies raised in rabbits against purified bovine skeletal muscle 
calpain. Bar, 5 #m. 

hibited calpain activation (data not shown), induced no in- 
hibitory effects on Ca 2+ influx (Fig. 7). 

Discussion 

Although calpain is present in many cell types, the mecha- 
nisms involved in regulating the tSanctional activity of  this 
protease have remained elusive. It has been suggested that a 
prerequisite for calpain activation may be its association with 
the cell membrane (26). Although evidence has been 
provided that association of calpain with several different 
phospholipids lowers the concentration of  Ca 2§ required to 
activate the protease, the conclusion that this would be 
sufficient to account for activation of calpain within cells has 
been questioned (6, 17, and Zalawska, T., R. B. Thompson,  
and D. E. Goll, submitted for publication). The present 
study shows that calpain did move to the periphery of the cell 
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Figure 7. Effects of anti-GP Ilb-ma antibody on thrombin-induced 
Ca 2§ fluxes. Suspensions of platelets were loaded with Fura 2, 
then incubated for 10 rain with no addition or with 30/~g/ml D9G1, 
a moneclonal antibody against GP IIb-HIa. Suspensions were sub- 
sequently sitrred with 1.0 NIH U of thrombin/ml and the increased 
intracellular Ca 2+ was recorded as an increase in fluorescence. 
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in activated platelets, suggesting that in this cell type it may 
associate with the plasma membrane. However, an event 
other than simple association with the plasma membrane was 
required for calpaln activation. Thus, the protease redis- 
tributed to the periphery of platelets that had not aggregated, 
yet calpain activation occurs only in aggregating cells (10, 
38). Further, the protease redistributed similarly in platelets 
from thrombasthenic patients, yet activation of the protease 
did not occur. 

Thus, a signal other than simple translocation of calpain 
to the periphery of activated cells appears to be required for 
activation of calpain. In the present study, we provide several 
lines of evidence that this signal is initiated by binding of 
adhesive ligand to the GP lib-iRa complex on the platelet 
surface. First, activation of calpain was prevented by RGDS, 
a tetrapeptide that inhibits the binding of adhesive ligand to 
GP lib-IRa; second, activation of calpain was prevented by 
monoclonal antibodies that inhibit adhesive ligand binding 
to  GP lib-IRa; third, activation of calpain was greatly re- 
duced in platelets from patients with Glanzmann's throm- 
basthenia, a disorder in which platelets have greatly reduced 
levels of functional GP lib-IRa complex. We conclude that 
in platelets, binding of the extracellular domain of this inte- 
grin to its adhesive ligand can initiate a transmembrane sig- 
nal that activates intracellular caipain. 

The nature of the transmembrane signal is not known. The 
GP lib-IRa complex has been implicated in Ca 2+ influx into 
platelets (14, 32, 35). Thus, it is possible that ligand-integrin 
interactions are required to elevate intracelhilar Ca 2+ con- 
centrations sufficiently to induce calpaln activation. In the 
present study, however, the monoclonal antibody D9G1, 
which inhibits binding of adhesive ligand to GP lib-IRa, had 
no detectable effect on the thrombin-induced increase in cyto- 
plasmic Ca 2+ concentrations, yet it inhibited the thrombin- 
induced activation of calpain. It is possible that local Ca 2+ 
concentrations adjacent to ligand-occupied integrin become 
sufficiently high to activate calpain at these sites and that GP 
l/b-IRa antagonists inhibit these local increases and thereby 
prevent calpain activation. Fura 2, which measures the total 
cytoplasmic Ca 2+ concentration may not be sensitive enough 
to detect such changes. Thus, it is possible that inhibitory 
effects of GP l/b-IRa antagonists on Ca 2+ fluxes went unde- 
tected in the present study. Alternative mechanisms that may 
induce activation of calpain are tyrosine phosphorylation re- 
actions (8, 16), cytoskeletal reorganizations (21, 30), or 
Na§ + exchange (1). The reason for suggesting each of 
these as a potential mechanism is that they are all induced 
in activated platelets as a consequence of adhesive ligand 
binding to the GP l/b-IRa complex. As with calpain activa- 
tion, these agonist-induced changes only occur in suspen- 
sions of platelets that are stirred. Future experiments will be 
needed to elucidate the mechanism by which each of these 
intracellular events is initiated and to determine whether any 
of these events is on the pathway between the initial binding 
of adhesive ligand and the subsequent activation of caipain. 

It is not known why adhesive ligand-induced, integrin- 
mediated signal transduction requires that platelet suspen- 
sions are stirred. When platelets are stirred, adhesive ligand 
bound to GP l/b-IRa on one platelet binds to activated GP 
Hb-IRa on an adjacent platelet. Thus, in a stirred suspen- 
sion, GP fib-IRa effectively binds to immobilized ligand 
rather than to ligand in suspension (as occurs in an unstirred 
suspension). Interestingly, many of the changes that are in- 

duced as a consequence of adhesive ligand binding to GP ITo- 
IRa in a stirred platelet suspension are the same as those in- 
duced in cultured cells, as integrins bind to immobilized 
adhesive ligands and focal contacts form. For example, as in 
cultured cells, the binding of adhesive ligand to GP lib-iRa 
in a stirred platelet suspension causes the integrin to associ- 
ate with cytoplasmic actin filaments (30). In addition, there 
are many similarities between the focal contacts of cultured 
cells and the GP llb-IIIa-cytoskeletal structure that forms in 
response to stirring. Thus, for example, proteins present in 
the GP Ilb-iRa-cytoskeleton complex include talin, vincu- 
lin, pp60 .... , and protein Idnase C (43, Fox, J. E. B., L. 
Lipfert, E. A. Clark, C. C. Reynolds, C. D. Austin, and J. S. 
Brugge, manuscript in preparation), proteins known to be 
concentrated in focal contacts of adherent cells in culture 
(4). Also, as in cultured cells, incubation of platelets with 
cytochalasins disrupts actin filaments and inhibits the ability 
of the integrin to bind adhesive ligand (Fox, J. E. B., D. A. 
Sanan, and S. J. Shattil, manuscript in preparation), suggest- 
ing a role for the cytoskeleton in regulating the adhesive 
properties of the platelet integrin. 

In cultured cells, there is also increasing evidence that 
ligand-integrin interactions at focal contacts result in intra- 
cellular changes such as reorganization of the cytoskeleton 
and altered gene expression (4, 39). Presumably this trans- 
membrane signaling is essential in regulating the shape, mo- 
tility, and function of adherent cells, but, as in platelets, it 
remains to be determined how adhesive ligand-integrin in- 
teractions induce these intracellular changes. Interestingly, 
activation of tyrosine phosphorylation reactions (20) and of 
the Na+-H + antiporter (33), events that occur while focal 
contacflike structures form in aggregating platelets (1, 8, 16), 
have recently been shown to occur when focal contacts form 
in cells in culture. In the present study, we show that calpain 
is another enzyme activated as a consequence of binding of 
adhesive ligand to an integrin in platelets. Because calpain 
is concentrated in focal contacts of adherent cells in culture 
(3), it appears possible that it may be activated as a conse- 
quence of ligand-integrin interaction in these cells as well. 
The major proteins shown to be cleaved by calpain in acti- 
vated platelets are the cytoskeletal proteins actin-binding 
protein (filamin) (12), talin (12), and spectrin (13). Other 
substrates may be protein kinase C (19, 27) and membrane 
receptors (25). Activation of calpain has been shown to be 
responsible for cytoskeletal rearrangements in aggregating 
platelets (9), and many of the proteins known to be substrates 
for calpain in platelets are also concentrated in focal contacts 
of other adherent cells (4). Thus, whether in platelets or 
other adherent cells, it is conceivable that the calpain- 
induced cleavage of proteins such as these may induce the in- 
tracellular changes that occur as a consequence of the bind- 
ing of integrins to adhesive ligands. 
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