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Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple
physiological problems including hyperglycemia, kidney diseases, malignant tumors,
beyond its normal concentration range. The glyoxalase system, making MGO
maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and
cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and
glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However,
very little is known about the glyoxalase system in breast cancer and gynecological
cancer. In this review, we introduce the role of the glyoxalase system in breast cancer,
endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the
glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor
therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase
system in breast cancer and gynecological cancer need further exploration.
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1. INTRODUCTION

Tumor cells are characterized by uncontrolled growth and proliferation, with an oncometabolic
hallmark of favored use of glycolysis for lactate production even under oxygen-rich conditions,
referred to as “the Warburg effect” (1–3). This effect is seen as part of metabolic reprogramming in
tumors to provide conditions for their proliferation, migration, survival, and drug resistance (3). In
fact, the imbalance of energy metabolism is an important driving factor of oncogenesis, with a
significant metabolic result being intracellular accumulation of methyglyoxal (MGO). This tends
toward causing toxic effects on cells, inhibiting growth and promotion of apoptosis. Increased
glyoxalase expression and activity compensate for the accumulation of cytotoxic metabolites in
tumor cells. Glyoxalase system, mainly consisting of Glyoxalase 1 (Glo1) and Glyoxalase 2 (Glo2), is
a defensive pathway against dicarbonyl stress produced by MGO (4). The formation of MGO
increases under conditions of high glycolytic flux, encountered by all cancer cells. When this
happens, this detoxification system works and endows tumor cells with adaptive advantage.

Thus, the glyoxalase system is particularly abundant in cancerous cells and this fact has been
confirmed by some studies. However, very little is known about the glyoxalase system in
gynecological cancer and most work has been done on breast cancer considering female cancers.
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Thus, the purpose of this review is to introduce the role of the
glyoxalase system in breast cancer and gynecological cancer
systematically including endometrial cancer, ovarian cancer
and cervical cancer, and highlight the potential to be both as a
marker for diagnosis and a novel target for antitumor therapy.
2. METHYGLYOXAL (MGO)

MGO which contains two carbonyl groups and is active in
nature, together with glyoxal (GO) and 3-deoxyglucosone (3-
DG), are referred to as highly reactive dicarbonyl metabolites
(5). Among them, MGO is an important endogenous
dicarbonyl metabolite that exists in various tissues and organs
in the human body, and will cause multiple physiological
problems, including hyperglycemia, kidney diseases and
malignant tumors, when it exceeds its normal concentration
range (6–9). Dicarbonyl stress, which is abnormal increase in
the amount of dicarbonyl metabolites, leads to the increase of
protein and DNA modification (10). Dicarbonyl stress can be
caused by two mechanisms, including out-of-balance of
dicarbonyl metabolites and increased exposure of exogenous
dicarbonyls (11).

MGO is produced largely by the degradation of
glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone
phosphate (DHAP) during glycolysis non-enzymatically (4,
12). It can also be produced during hydrolysis and
dephosphorylation of DHAP and G3P (13), lipid peroxidation
(14, 15), catabolism of threonine (16), oxidation of acetone
catalyzed by cytochrome P4502E1 (17), and autoxidation of
glucose and degradation of glycated proteins (18, 19). The
likelihood of G3P degrading into MGO is eight times than that
of DHAP. However, in cells in situ, the concentration of DHAP
is about nine times that of G3P (20). Therefore, both forms of
triosephosphates are necessary for the formation of MGO (4).
MGO is attained not only during cell metabolism, but also
through exogenous dietary intake; its primary sources are
coffee and other types of beverages (21, 22). However, ingested
MGO is metabolized and exerts dicarbonyl stress pre-
systemically before absorption (23).

MGO is mostly eliminated by the glyoxalase system, with
minority being metabolized by aldoketo reductases (AKRs) and
aldehyde dehydrogenases (ADHs), which convert it into
hydroxyacetone and pyruvate, respectively; thus, forming an
enzymatic defense to prevent MGO glycation (24–28). In
various human tissues, the capacity of the Glo system to
metabolize MGO is 30 times that of AKRs; one exception is
the renal medulla, where the expression of AKRs is particularly
high (29, 30). In general, MGO is produced during glycolysis and
metabolized through the glyoxalase system, at low level in vivo.
However, when glycolysis is abnormal or food containing high
MGO is consumed for a long time, the load of the scavenging
system in the body becomes too heavy. This results in the over-
accumulation of MGO in the body. The serious cytotoxicity and
tissue damage in MGO-related metabolic disorders are likely
caused by the modification of nucleic acids, free amino groups in
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proteins and lipids induced by a large family of MGO-derived
adducts, called advanced glycation end-products (AGEs) (31).
MGO interacts with deoxyguanosine, leading mainly to form the
imidazopurinone adduct, MGdG (26, 32). MGdG, comprising
the majority of MGO nucleotide adducts physiologically, are
mutagenic and possibly related to malignant transformation
(25) . A smal l amount of 2-(1 , R/S-carboxyethyl)-
deoxyguanosine (CEdG) is also formed (33). The irreversible
interaction of MGO with arginine results in the formation of
MG-derived hydroimidazolones (MG-H1, MG-H2, and MG-
H3) (34–36), argpyrimidine (37) and tetrahydropyrimidine
(THP) (38). MGO can also modify lysine residues to form Nϵ-
(1-carboxyethyl) lysine (CEL) and 1,3-di(Nϵ-lysino)-4-methyl-
imidazolium (MOLD), although to a much lesser extent than
arginine (39). MGO can also react with one lysine and one
arginine, leading to the formation of an adduct called MODIC
(40). MGO also induces stable lipid modifications (Figure 1) .

Additionally, AGEs can bind to the receptor for AGEs
(RAGE), mediating signal transduction and stimulating
intracellular reactive oxygen species (ROS) generation.
Activation of RAGE signaling is related to various cellular
changes, including inflammation and oxidative stress, which
play a role in carcinogenesis, and increased cell death by
apoptosis and anoikis (26, 41–44). Decreased expression of
RAGE is associated with the inhibition of tumor development
and metastasis (45).
3. GYOXAL (GO)

In addition to MGO, GO is also an endogenous highly reactive
dicarbonyl metabolites. The formation of GO seems to be
inevitable in organism, since they are closely connected with
several physiological processes, such as lipid peroxidation and
degradation of monosaccharides, saccharide derivatives and
glycated proteins (46, 47). Since GO is a potent glycating
agent, modification of proteins and nucleotides has been
found. GO can react with proteins to form AGE residues
directly, with arginine residues being the most reactive protein
(48). DNA is also susceptible to glycation by GO, with
deoxyguanosine (dG) being the most common modified
nucleotide AGEs. GO was responsible for increased
mutations and decreased DNA replication. Nearly half of
mutations were single-base substitutions with more than
80% occurring at C:G sites. Furthermore, GO was in
relation to non-random or hotspot mutation sites (49).
Similar to MGO, elevation in GO also leads to dicarbonyl
stress, which is associated with various health problems and
the modification by GO is regarded as damage to physiological
systems. However, this can be suppressed by detoxification of
GO, catalysed mainly by the glyoxalase system (47, 50). In
most cases, GSH was utilized to convert GO to S-2-
hydroxyethylglutathione, mediated by GSH-dependent
Glyoxalases, Glo1 and Glo2. In some cases, GO can also be
the substrate of Glyoxalase 3 (Glo3), but without any cofactors
(51, 52).
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4. GLYOXALASE SYSTEM

The glyoxalase system is one of the well-defined associations
between glycation and carcinogenesis and progression. It was
first introduced by Dakin, Dudley in 1913 (32). This system,
existing in the cytoplasm of all human cells, mainly consists of
two cooperating enzymes, namely, Glo1 and Glo2. The main
duty of the system is to metabolize MGO and other reactive
acyclic a-oxoaldehyde metabolites, to maintain them at a low
level, thus preventing cell and tissue dysfunction. MGO and
glutathione (GSH) produce hemithioacetal through a non-
enzymatic reaction. Then hemithioacetal is converted into S-
D-lactoylglutathione, under the catalysis of Glo1. Glo2 catalyzes
the hydrolysis of S-D-lactoylglutathione to D-lactate, thereby
reforming GSH, to achieve detoxification of MGO (53). In this
series of reactions, Glo1, as a rate-limiting enzyme, is of vital
importance in the detoxification of MGO (Figure 2). There also
exists the GSH-independent system involving Glo3 to protect
cells from MGO toxicity, besides the GSH-dependent system
consisting of Glo1 and Glo2. Glo3 was first identified in the
Hsp31 protein from Escherichia coli, which can directly convert
MGO into D-lactate in the absence of GSH (54). In recent
literature, the DJ-1 proteins from Arabidopsis thaliana and
metazoans have also been confirmed to have Glo3 activity like
the Hsp31 protein, but they belong to two different subfamilies of
the DJ-1 superfamily proteins. In animals, DJ-1 proteins appear
to show Glo3 activity and the dysfunction of DJ-1 proteins can
make cells sensitive to oxidative stress and cause mitochondrial
disorders (54, 55). To date, however, Glo3 remains unidentified
in human system. Furthermore, the regulatory mechanisms of
Glo3 merit continued study. It is noteworthy that DJ-1 proteins
are now considered a deglycase, rather than an alternative
glyoxalase (56).
Frontiers in Oncology | www.frontiersin.org 3
4.1 Glo1
Glo1 is a zinc-dependent metalloenzyme encircled by two
identical subunits. It has a molecular mass of 43-48 kDa and is
comprised of noncovalent bonds (57, 58). It exists in almost all
prokaryotic and eukaryotic organisms, including animals, plants,
yeast, bacteria, and protozoa. Furthermore, its widespread
distribution reflects its important physiological functions in
biological life. Moreover, it has been found that Glo1 has high
homology among different species through comparison of amino
acid sequences. This implies an evolutionarily conserved
function for Glo1. Human Glo1 is located on chromosome 6 at
locus 6p21.2, with five introns and six exons. It is often
overexpressed in tumor tissues (59–61).

The mechanism by which Glo1 expression is regulated is
complex. It is controlled by various regulatory elements and that
can be altered by the changes in gene expression and post-
translational enzymatic modifications (62, 63). Transcriptional
regulators of Glo1 include activator protein-2a (AP-2a), early
gene 2 factor isoform 4 (E2F4), nuclear transcription factor-kB
(NF-kB), activator protein-1 (AP-1), antioxidant response
(ARE), metal response (MRE), and insulin response (IRE)
elements. Post-translational modifications are achieved through
phosphorylation, nitrosylation, and glutathionylation. Among
these, Glo1 expression is positively regulated by AP-2a, E2F4,
NF-kB and nuclear factor erythroid 2-related factor 2 (Nrf2) by
enhancing the Glo1 promoter. For instance, expression is
controlled by Nrf2 during stress by binding with AREs (64,
65). In tumor cells, the enhanced expression of Nrf2 leads to
increased activity of the enzyme, thereby preventing dicarbonyl
stress. Therefore, Nrf2 is often over-activated in hepatocellular
carcinoma and thus contributes to increased mortality (66). It
has been demonstrated that Nrf2 activators, including
sulforaphane and resveratrol, act as Glo1 inducers (67).
FIGURE 1 | The formation and metabolism of MGO.
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Nuclear translocation of Nrf2, which is of vital importance in the
activation of Glo1, can be disrupted by the combination of
MGOs to Kelch-like ECH-associated protein 1 (Keap1). Based
on this principle, MGO inhibitors can help detoxification in cells
via the Nrf2/Keap1 pathway by elevating GSH levels and
accelerating MGO metabolism (68). In contrast, the expression
of Glo1 is also negatively mediated by hypoxia-inducible factor-
1a(HIF1a), the receptor for advanced glycation end products
(RAGE). Its levels are also impacted by conflict between the
NF-kB system activated in inflammation and Nrf2 (69, 70).

Copy number variation (CNV) of the Glo1 gene in the human
genome will also allow for increased expression of Glo1 with low-
level duplication in the healthy population (71). The Glo1 DNA
segment copy number increase was larger among illness affected
groups than that in the healthy population with low-level
duplication (72). In a study of 225 different types of human
tumors, increased Glo1 copy number was discovered in 8% of
tumors, with the highest prevalence of Glo1 amplification in
breast cancer (22%), followed by sarcomas (17%) and non-small
cell lung cancer (11%) (73). The correlation between Glo1 copy
number increase assessed by qPCR and poor survival in gastric
cancers has been ameliorated (74).

4.2 Glo2
Human Glo2 is another enzyme in the glyoxalase system. It
is encoded by the hydroxyacylglutathione gene (HAGH1).
Genetic polymorphisms of Glo2 are rare, with HAGH2 being
Frontiers in Oncology | www.frontiersin.org 4
the only the second phenotype expressed (75). It is a binuclear
metalloenzyme with a Zn(II) site as the catalytically active site
metal ion. By contrast, the Fe(II) site has no influence on the
catalytic activity (70). However, the molecular structures of Glo2
share the same overall fold as Zn(II)-dependent metallo-b-
lactamases (76). There are two isoforms of Glo2 depending on
their localization in cellular compartments. This includes the
mitochondrial form with a molecular mass of 33.8 kDa and a
cytosolic form with a molecular mass of 29.2 kDa (77). Despite
their differences, the two isoforms have identical isoelectric
points of 8.3 (78).

Emerging evidence pointed out the novel independent role of
this ancient enzyme from that of Glo1 in a possibly
nonenzymatic manner in some malignant cells. In Cinzia
et al.’s study, Glo2 was involved in the proapoptotic effects of
Oleuropein in non-small-cell lung cancer A549 cells (79).
Oleuropein led to an increase in mitochondrial Glo2 protein
expression levels without enhancing the enzyme’s activity.
Conversely, Oleuropein did not affect expression or function of
cytosolic Glo2. Through upregulation of mitochondrial Glo2,
Oleuropein is able to induce apoptosis in A549 cells which is
mediated by the superoxide anion and Akt signaling pathway. In
addition, the proapoptotic effect of mGlo2 is related to the
interaction with the Bax protein. Even though there is no
distinction between the mitochondrial or cytosolic isoforms,
this emerging independent role turns out to be opposite in
prostate cancer cells, where an antiapoptotic nonenzymatic
FIGURE 2 | The detoxification of MGO.
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role of Glo2 was identified (80). In prostate cancer cells, this
ancient enzyme is able to stimulate cell proliferation and elude
apoptosis in a mechanism dependent on androgen receptor and
involving the p53-p21 axis (81).
5. BREAST CANCER

Breast cancer is the most common cancer in women worldwide
with an estimated 2.09 million cases and 0.6 million deaths
annually (82). It is a heterologous disease and categorized
corresponding to the so-called intrinsic breast cancer subtypes
employing the expression of estrogen receptor (ER),
progesterone (PR) and human epidermal growth factor
receptor 2 (HER2), together with the frequency of ki-67 (83,
84). Moreover, treatment strategy is designed based on the
expression of receptors and ki-67 (5). The use of anti-
endocrine therapy to downregulate ER signaling is the primary
systemic therapy for ER-positive or PR-positive cases by receptor
mediators such as tamoxifen. Patients with HER2-positve benefit
from monoclonal antibodies directed against this EGF-receptor,
such as trastuzumab and pertuzumab. For triple negative cases,
there is no targeted therapy in routine clinical use, thus, most
patients are treated with chemotherapy (6). However, this
immunohistochemistry-based clinical classification is only a
substitute for gene expression analysis and cannot identify all
internal molecular characteristics (84).

To our knowledge, the first study giving a comprehensive
picture of the role of Glo1 in breast cancer dates back to the 2001,
when A Rulli et al. measured Glo1 specific activity in breast
carcinoma and normal mammary gland tissue (85). Samples
were drawn in the period from 1999 to 2000 of 20 women and
Glo1 was significantly upregulated in human breast cancer cells
and tissues, as shown by both spectrophotometrical assay and
electrophoretic pattern compared with normal counterparts. A
consistent enhanced of Glo1 expression was observed either at
mRNA or protein level in human breast cancer tissues
parallel with pair-matched normal tissue, providing evidence
for a potential role of this enzyme in breast cancer (86–89). In
addition, Glo1 promoted cell proliferation, invasion and
migration and suppressed cell apoptosis. Hence, Glo1
overexpression correlated with aggressive clinicopathological
features including lymph node metastasis, lymphovascular
invasion, tumor grade and TNM stage and was an independent
prognostic factor for clinical outcome of breast cancer patients.
Specifically, patients with Glo1 overexpression had a shorter
overall survival and recurrence-free survival than those with low
Glo1 expression (88, 90). Moreover, knockdown of Glo1
suppressed invasion and migration and promoted apoptosis of
breast cancer cells in vitro (88). These results suggest that Glo1 is
significantly associated with tumorigenesis, metastasis, and poor
prognosis, providing new impetus to the exploring the
expression of Glo1. Additionally, gene expression data
demonstrated that Glo-1 mRNA was regulated through a
mechanism involving inflammation (NF-kB) and oxidative
stress (NFE2L2) in malignant breast cells (91). In Guo et al.
Frontiers in Oncology | www.frontiersin.org
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study, Glo1 restraint treatment can hinder occurrence and
development of breast cancer cells, adjusted by actuation
of the MAPK signaling pathway and downregulation of
Bcl-2 and MMP-9 (92). However, the intrinsic molecular
biology and mechanisms of breast carcinogenesis remain to be
further elucidated.

Therefore, Glo1 is involved in the regulation of tumorigenesis,
proliferation, migration and survival in breast cancer (93). These
data has supported the role of Glo1 as a potential target for
anticancer drug development, which were indeed confirmed by
some studies. Clinically, a major obstacle in the process of
treating tumor lies in drug resistance. It has been reported in
previous literature that chemotherapeutic resistance, including
doxorubicin, was associated with upregulation of Glo1 (94).
Recent studies on the mechanism of drug resistance of breast
cancer have found that Glo1 inhibitors can reserve drug
resistance of tumor cells. Davies et al. showed that the
thiazolidinedione troglitazone downregulated Glo1 expression,
leading to a regained sensitivity to doxorubicin. Furthermore, it
is also reported that Glo1 abundance could predict the outcome
of radiotherapy and overexpression of Glo1 was associated with a
shorter relapse free survival after receiving radiotherapy (91). It
is reported that more than 50% of all drugs used in tumor
treatment contain either natural origin active principles or
semisynthetic derivatives, thus, there is an urgent need to find
new drugs from bioactive compounds (95). In a recent study, the
influence of resveratrol, curcumin and piperine on Glo1 activity
and expression was assessed in MCF-7 cell. The dose-dependent
inhibitory effects of resveratrol, curcumin and piperine on Glo1
activity were observed after 24 hours of treatment. However, the
expression of Glo1 could be reduced only by curcumin, due to
the possible fact that resveratrol and piperine affect the activity of
Glo1 in a posttranslational manner (96). Similar conclusions
were also obtained to confirm the effect of curcumin on Glo1
(97, 98).

Moreover, distant metastasis would be present in 15% of
patients with breast cancer, and contribute to approximately 90%
of cancer-associated mortality (99). Thus, determining potential
key regulators in the process of cancer metastasis seems to be
increasingly important. According to a recent report, in patients
with stage III−IV breast cancer, Glo1 and PKCl may be
cooperatively involved in cancer progression and patients with
high Glo1 and PKCl expression had worse prognosis (87). In
addition, the Glo1 inhibitor, TLSC702, and the PKCl inhibitor,
aurothiomalate, may serve as novel pharmacological approaches
to manage late−stage breast cancer through suppressing both cell
viability and tumor−sphere formation in MDA−MB−157 and
MDA−MB−468 human basal−like breast cancer cells. However,
there is absence of in vivo studies using TLSC702 or
aurothiomalate, further investigation of the inhibitors is
needed in future.

It is worth noting that in the study of Marie-Julie Nokin et al.,
a tumor-suppressing role of Glo1 in breast cancer cells was
identified for the first time (100, 101). Silencing of Glo1, bearing
a higher level of MGO, promoted tumor growth and metastasis
in vivo and Glo1-depleted breast cancer cells induced a
July 2022 | Volume 12 | Article 857746
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significant increase in pulmonary tumor burden. A similar role
of Glo1 has also been validated in hepatocellular carcinoma and
downregulation of Glo1 enhanced tumor growth (102). The
mechanism was further revealed that metastasis was associated
with the activation of MEK/ERK/SMAD1 cascade in breast
cancer cells (101). Moreover, this study investigates therapeutic
potential of MG scavengers, including carnosine and
aminoguanidine, as promising target in the management of
metastatic breast cancer.

In fact, these seemingly contradictory data might be explained
by the effect exerted by MGO on cancer cells that is defined by
low-dose stimulation and high-dose inhibition of tumor
metastasis (103). Thus, it is necessary to determine the MGO
concentrations when Glo1 inhibitor applied.
6. ENDOMETRIAL CANCER

Endometrial cancer is the most common gynecological
malignancy in the United States, and its related mortality is on
the rise (104). Surgical staging system including laparoscopic
total hysterectomy, bilateral salpingo-oophorectomy, and
sentinel lymph-node mapping, has been adopted. Most cases
are diagnosed in the early stage of the disease, presenting with
vaginal bleeding. Hence, the prognosis is good, with the overall
five year survival rate being 90.88% for patients staged as IA
using the FIGO 1988 surgical classification (105). However,
challenges still remain, including increasing radical disparities
in mortality (106).

6.5% of the patients suffered from endometrial cancer are
younger than 45 years of age (107). Women of childbearing age
prefer to preserve their fertility for future opportunities to give
birth, rather than receive the standard surgical treatment of total
hysterectomy with bilateral salpingo-oophorectomy, sentinel
lymph node mapping and pelvic/para-aortic lymphadenectomy
when necessary. Fertility preservation is suitable for young
women with stage I, grade I adenocarcinoma. Thus, alternative
treatments involving synthetic progestins, including
medroxyprogesterone acetate (MPA), are the mainstays of such
management. Unfortunately, about 30% of said alternatively
treated cases, fail to respond to progestins initially. Although
the response rate is approximately 70%, 57% of patients
relapse and develop drug resistance (108). In brief, progestin
resistance restricts the validity of progestin treatment. Zhang
et al. reported that the expression of Glo1 in progestin-resistant
Ishikawa cells was increased 2.4-fold higher than that in parental
cells. This suggests that Glo1 is related to progestin resistance in
endometrial cancer. Further, metformin, an insulin sensitizer,
can downregulate Glo1 expression to enhance the response to
MPA treatment by blocking PI3K-mTOR activation (109). In
another study, metformin sensitizes progestin in endometrial
cancer through downregulation of Ten-eleven translocation 1
(TET1), a dioxygenase responsible for transferring 5-
methylcytosine into 5-hydroxymethylation and CpG islands
enriched in the promoter region of Glo1 are possible target of
TET1. Therefore, metformin enhances progestin sensitivity
Frontiers in Oncology | www.frontiersin.org 6
underlying the potential mechanism of TET1/5hmC/
GLOI signaling pathway (110). Therefore, the combination
of metformin and MPA is likely an effective strategy
for conservative treatments of endometrial cancer and
accumulating evidence suggests that Glo1 is a potential target
gene of metformin.

Traditionally, chemotherapy has been extensively used an
adjuvant treatment for endometrial cancer. However, in this
case, the initial reaction of malignant endometrial tumor cells to
chemotherapy turns refractory over time, resulting in high rates of
chemoresistance (111). There is an urgent need to address this
issue. Considering that obesity and diabetes are risk factors for the
incidence of endometrial cancer, it may be partly caused by
metabolic disorders (112). Metformin, a well-tolerated biguanide
drug, has been implicated in the treatment of various
tumors, including endometrial cancer. According to research,
compared with cisplatin and paclitaxel alone, as the first-line
chemotherapeutics for endometrial cancer therapy, the
administration of metformin strongly inhibits the proliferative
activity of tumor cells (113). Further investigation of the possible
molecular mechanism by which metformin enhances,
chemotherapeutic drug-mediated cytotoxicity, revealed that
increasing the dose of metformin reduces the expression of Glo1
protein. This indicates that metformin can enhance sensitivity to
chemotherapeutic drugs in endometrial cancer by downregulating
Glo1 expression. In fact, since overexpression is present in various
cancers, aberrant expression of Glo1 is involved in drug resistance
(85, 114). Thus, the expression pattern of Glo1 may play an
important role in cancer proliferation.

Previous research has shown that the expression of Glo1 is
upregulated in a variety of human malignancies, including
melanoma, gastric cancer, pancreatic cancer, breast cancer,
renal cancer, prostate cancer (5, 74, 80, 88, 115, 116). This
result is similar to that of Sakamoto, who determined that
Glo1 enzyme activity was elevated in all 38 human cancer cell
lines compared to normal tissue samples (117). High expression
of Glo1 is permissive for the survival of tumors with a relatively
high flux of MGO formation. Furthermore, elevated Glo1
expression is associated with multidrug resistance in cancer
chemotherapy (59). Davies et al. treated doxorubicin-resistant
K562 leukemia cells with troglitazone, an insulin sensitizer, and
drug resistance was reversed by downregulating the expression of
Glo1 (114). The key to inhibiting Glo1 expression to reverse drug
resistance lies in promoting cell apoptosis, and there are several
potential mechanisms, as described below, although the exact
mechanisms are not clear yet. Inhibiting Glo1 expression can
result in MGO accumulation to cytotoxic levels that then cause
cell death by apoptosis. Therefore, this mechanism is likely
caused by increased intracellular MGO, as induced by
antitumor agents. On the one hand, MGO has been proven to
simulate the release of cytochrome C from mitochondria and
subsequently induce apoptosis by modifying the mitochondrial
permeability transition pore (118). In addition, nucleic acids and
free amino groups in anti-apoptotic proteins can be modified by
MGO, thus potentially leading to apoptosis. For example, MGO
may enhance the anti-apoptotic activity of Hsp27 by inhibiting
July 2022 | Volume 12 | Article 857746
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the activation of caspase-3 and caspase-9 mediated by
cytochrome c to protect cancer tumors from cell deaths (119–
121). In this way, compared to cells with low endogenous MGO-
modified Hsp27, lung cancer cells with high expression of MGO-
modified Hsp27 are resistant to cisplatin-induced apoptosis
(119). Similarly, MGO-modified Hsp27 has been found in
melanoma, lung, and gastrointestinal tumors (119, 120).
Accordingly, Glo1 inhibitors can induce the activation of p38
and JNK stress-activated kinases; which activates downstream
caspases in Glo1-overexpressing tumor cells to induce apoptosis
(117, 122). Godbout et al. found that the cisplatin-induced
apoptosis of myeloma cells was promoted by MGO through
activation of protein kinase Cs (118). Although these results
suggest that MGO plays an important role in inhibiting the
expression of Glo1, the exact mechanism requires further
exploration. According to the literature in the field of
endometrial cancer, we found that metformin was an effective
inhibitor of Glo1 that had antitumor activity, although the
intrinsic mechanism needs to be explored further.
7. OVARIAN CANCER

Although the incidence of ovarian cancer is not as high as that of
other cancers, such as endometrial cancer, it is the most lethal of
the female reproductive tract malignancies in the United States
(123). Owing to a lack of suitable screening methods, diagnosis is
possible only at an advanced stage for most patients; however, at
this stage, the tumor has usually spread to the peritoneal cavity
and upper abdominal organs, leading to poor prognosis (124).
The standard treatment for ovarian cancer focuses on
cytoreductive surgery followed by postoperative adjuvant
chemotherapy (125). At present, the five-year survival rate is
approximately 47% even in countries with advanced medical
technology such as the United States and Canada, mainly due to
late diagnosis, recurrence, and chemoresistance (126).

Currently, the gold standard for diagnosis relies on
pathological biopsy, and early screening methods are limited.
Some existing biomarkers such as carbohydrate antigen 125,
human epididymis protein 4, may be helpful in screening, but the
wide application is hampered by their poor sensitivity or
specificity. Thus, it is very necessary to identify novel
biomarkers for early detection of ovarian cancer. Considering
the fact that blockade of the RAGE-ligand pathway represents a
novel target for some cancer therapy (127–130), the researchers
have further investigated the role of RAGE in ovarian cancer
development. Data showed that RAGE expression was
upregulated in ovarian cancer tissue compared with matched
normal tissue (131). Moreover, a significant relation between
high RAGE expression levels and poor clinicopathological
features, such as tumor size, depth of stromal invasion,
lymphovascular invasion and stage of tumor was observed,
suggesting an important role of RAGE in ovarian cancer
progression. In the present study, the area under the curve
value was 0.86 for RAGE, implying a relatively high sensitivity
and specificity for the RAGE mRNA level to differentiate
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between malignant and non-malignant tissues. Thus, the
overexpression of RAGE may be a potential biomarker for
diagnosis of ovarian cancer. Consistent with our results,
Poljicanin et al. also came to a similar conclusion (132).

In addition, most ovarian cancers originate from a single layer
of surface epithelial cells (OSE), accounting for only a small
proportion of the total ovarian mass (133). Apparently, normal
OSE cells from women with a family history of ovarian cancer
and breast cancer are different from women without phenotypic
and/or genotypic family history. Smith Beckerman examined the
proteomes of both SV-40-transformed FH-OSE cell lines and
control OSE lines. Expression of several proteins appeared to be
elevated in the FH-OSE cells, including Glo1, suggesting that
high expression of Glo1 is related to the occurrence and
progression of ovarian cancer (134). Although ovarian tumors
at an early stage are highly curable (135), more than 70% of cases
are not diagnosed until the tumor has progressed to advanced
stages (136), reflecting the potential high morbidity and
mortality caused by presentation with advanced-stage disease.
Monica Brown Jones revealed a high degree of overexpression of
Glo1 in invasive ovarian cancers compared with the low
malignant potential ovarian tumors. Her work combined the
technique of laser capture microdissection of epithelial tumor
cells in human tissue specimens with two-dimensional gel
electrophoresis (137). Results suggest that Glo1 may be a
potential marker for early detection and therapeutic targets
unique to the invasive phenotype.

The exact mechanisms of Glo1 in the ovarian cancer remain
unknown and Glo1 may be used as a therapeutic target in the
future. Thus, more investigations are encouraged to provide
more reliable data.
8. CERVICAL CANCER

The cause of cervical cancer is clear, being mostly associated with
the sexually transmitted persistent human papilloma virus
infection. The key to intervention lies in primary and
secondary prevention (138). Standard treatment after diagnosis
consists of surgical resection and concurrent chemoradiation
according to the stage of the tumor and clinicopathologic risk
factors. Although the number of cervical cancer cases has
decreased in developed countries in the past decade, its
incidence has continued to rise rapidly in developing countries
(139). According to the latest cancer statistics, cervical cancer is
ranked fourth in terms of morbidity and is one of the main
causes of death for women with malignant tumors, with
approximately 604,000 new confirmed cases as well as 342,000
death cases worldwide in 2020 (140). Thus, cervical cancer still
represents a major public health problem globally and there is an
urgent need for improved therapeutic options to reduce
the burden.

In recent years, more and more researchers have paid
attention to phyto chemicals present in various plants, with
properties being time tested usage and low toxicity. Hence, Raj
Kumar et al. assessed pharmacological action of the inhibitor of
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Nrf-2, Galangin, an active component of galangal, present in
many traditional medicines. Previous reports have confirmed
that Galangin contributes to health ranging from antioxidant
effect to synergestics anticancer effects with other medicine (141,
142). In the present study, Galangin can modulate Nrf-2 levels to
induce cell death and inhibit metastatic potential in human
cervical cancer cell line (HeLa) cells in vitro. This occurs by
downregulating the expression of Glo1 in concentration
dependent manner and increasing the damage caused by MGO
and oxidative stress (143). In fact, the cytotoxicity of Galangin
has been proven in other cancer cell lines, such as human colon
cancer cells, melanoma cells, and renal carcinoma cells (144–
146). However, little research has been conducted on the role of
glyoxalases in cervical cancer. More research is needed along
these lines to inform future applications.
9. CONCLUDING REMARKS

Glyoxalases are often overexpressed in various tumor tissues
and they play an important role in tumor proliferation,
migration, survival, and drug resistance. In this review, we
introduce the role of the glyoxalase system in breast cancer and
gynecological cancer, including endometrial cancer, ovarian
cancer and cervical cancer. The main function of the
glyoxalase system is to metabolize MGO and other reactive
acyclic a-oxoaldehyde metabolites, to maintain them at a low
level to prevent cell and tissue dysfunction. In most cases, Glo1
overexpression correlated with aggressive clinicopathological
features and poor prognosis. However, a tumor-suppressing
Frontiers in Oncology | www.frontiersin.org 8
role of Glo1 has also been identified in breast cancer cells. Due
to the possible effect exerted by MGO on cancer cells that is
defined by low-dose stimulation and high-dose inhibition of
tumor metastasis, it is necessary to determine the MGO
concentrations when Glo1 inhibitor applied. These data
demonstrated the potential of the glyoxalase system to be as a
target for diagnosis and suggested that agents designed to
regulate Glo1 may provide a promising method to cancer
prevention and therapy. However, the intrinsic molecular
biology and mechanisms of the glyoxalase system in breast
cancer and gynecological cancer remain to be further
elucidated. Therefore, further research is needed in this area.
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