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Over the past decades, conventional methods and molecular assays have been developed for the detec-
tion of tuberculosis (TB). However, these techniques suffer limitations in the identification of
Mycobacterium tuberculosis (Mtb), such as long turnaround time and low detection sensitivity, etc., not
even mentioning the difficulty in discriminating antibiotics-resistant Mtb strains that cause great chal-
lenges in TB treatment and prevention. Thus, techniques with easy implementation for rapid diagnosis
of Mtb infection are in high demand for routine TB diagnosis. Due to the label-free, low-cost and non-
invasive features, surface enhanced Raman spectroscopy (SERS) has been extensively investigated for
its potential in bacterial pathogen identification. However, at current stage, few studies have recruited
handheld Raman spectrometer to discriminate sputum samples with or withoutMtb, separate pulmonary
Mtb strains from extra-pulmonary Mtb strains, or profile Mtb strains with different antibiotic resistance
characteristics. In this study, we recruited a set of supervised machine learning algorithms to dissect dif-
ferent SERS spectra generated via a handheld Raman spectrometer with a focus on deep learning algo-
rithms, through which sputum samples with or without Mtb strains were successfully differentiated
(5-fold cross-validation accuracy = 94.32%). Meanwhile, Mtb strains isolated from pulmonary and
extra-pulmonary samples were effectively separated (5-fold cross-validation accuracy = 99.86%).
Moreover, Mtb strains with different drug-resistant profiles were also competently distinguished (5-
fold cross-validation accuracy = 99.59%). Taken together, we concluded that, with the assistance of deep
learning algorithms, handheld Raman spectrometer has a high application potential for rapid point-of-
care diagnosis of Mtb infections in future.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Tuberculosis (TB) is an ancient and severe infectious disease
that is caused by the highly contagious airborne bacterial pathogen
Mycobacterium tuberculosis (Mtb), which mainly attacks lungs and
is often terms as pulmonary tuberculosis (PTB) [1]. In addition,
TB can sometimes cause damages to other body parts such as
brain, kidneys and the spine, which is often known as extrapul-
monary tuberculosis (EPTB) and accounts for about 20% of all TB
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cases [1]. Since 1997, World Health Organization (WHO) has been
publishing annual global tuberculosis report to evaluate global TB
situation and assessing developments in prevention, diagnosis, and
therapy of Mtb infections at country, regional and global levels [2].
According to the latest global epidemiology of tuberculosis by Glo-
bal Tuberculosis 2021 Report [3], a total of 10 million people has
been estimated to fall ill with TB while 1.5 million people died
from TB in 2020, which reversed global progress in tuberculosis
control in over a decade and represented the first year-over-year
increase in tuberculosis deaths since 2005 [4]. Currently, it is esti-
mated that around 2 billion people are infected withMtb [5], which
makes TB the leading fatal single infectious disease worldwide [6].
Globally, the severity of TB epidemics differs among countries and
regions while China ranked the second among the top 30 high-
burden TB countries just behind India, which accounted for 9% of
all the TB cases [7] and indicated that China was still far from
achieving the targets set out in the WHO End TB Strategy [8]. Thus,
it is important to strengthen the national health policy and
improve capacities of TB screening, diagnosis and outpatient treat-
ment so as to prevent, control and finally terminate TB infections in
China.

Mtb belongs to the family of Mycobacteriaceae and is one of the
oldest known pathogenic bacteria in human beings that was first
discovered in 1882 by Robert Koch [9]. However, it belongs to nei-
ther Gram-negative nor Gram-positive bacterium due to its waxy
cell envelope, a specialized dual membrane structure mainly
formed by mycolic acids (MAs) covalently linked to the polysac-
charide cell wall and free lipids that leads to the bacterial resilience
and infectivity [10]. After Mtb infection, infected individuals could
be generally classified into two categories: latent tuberculosis
infection (LTBI), also known as the asymptomatic clinical state
with no transmission risk (� 90%), and active TB disease with clin-
ical symptoms such as cough, fever and night sweats (�10%),
though the binary view has recently changed and Mtb infection
is considered as a spectrum of disease states [5,11]. In certain cir-
cumstances,Mtb could establish an infection outside lungs, leading
to the development of extrapulmonary TB (�15% of infected cases)
[12]. As for the treatment of tuberculosis, the core regimen
requires a long-term antituberculosis therapy phase (6–9 months)
through various combinations of four first-line drugs, that is,
rifampicin, isoniazid, pyrazinamide and ethambutol [13]. However,
late diagnosis will normally compromise the treatment effect. In
addition, inappropriate administration of drugs and nonadherence
to drug regimen will also cause the emergence of drug-resistant TB
strains, leading to greatly enhanced risks and significant challenge
to TB control. Thus, rapid diagnosis ofMtb species and accurate dis-
crimination of drug-resistant and drug-sensitiveMtb strains would
greatly facilitate the control and therapy of tuberculosis disease.

So far, multiple techniques have been developed for the fast and
accurate identification of Mtb infections, which involve molecular
methods, immunological assays, and direct culture and observa-
tions and so forth [12]. Common diagnostic tests include bacterial
culture, smear microscopy, serological test and chest X-ray screen-
ing [14]. However, these methods suffer either insufficient testing
inaccuracy or long turnaround testing time, not even mentioning
the inconvenient applications in remote and rural areas [12]. For
example, diagnosis relying on the culture of Mycobacteria requires
high-level and expensive technological facilities and the process
might take up to 2 months, causing significant delay of active
tuberculosis diagnosis [15]. As for smear microscopy, although it
is a rapid and cheap method for detecting Mtb, the method is less
sensitive due to the requirement of more than 5,000 bacilli per mL
of sputum for positive results [16]. In addition, smear microscopy
is not specific for Mtb infection, is insufficient to distinguish
between viable and dead cells, and incapable of detecting drug
resistance [15]. Serological tests of Mtb infection are mainly based
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on the detection of antibodies and have been commercially avail-
able for many years; however, due to its inaccuracy for both pul-
monary and extra-pulmonary TB diagnosis [17],World Health
Organization (WHO) strongly recommended against the use of
commercial serological tests for the diagnosis of TB disease [18].
As for radiology in the diagnosis of Mtb infection, radiograph con-
tributes to risk stratification in terms of latent infection, previous
inactive disease and active disease [19], which also falls into
WHO recommendations as an adjuvant test in smear-negative
tuberculosis (TB) diagnosis [20]. However, its efficacy is relatively
low and interpretation of the results suffer the effects of human
errors, which could be improved through computational algo-
rithms and the use of artificial intelligence (AI) [12].

Therefore, novel methods and technological advancements are
eagerly in need to achieve more rapid, less expensive, and more
accurate results in order to defeat the highly contagious disease.
Recent developments of Mtb diagnosis include digital droplet PCR
(ddPCR), CRISPR, next-generation sequencing (NGS), microRNA
detection, eNose, Raman spectroscopy (RS), AI processing, and
graphene-based biosensors and so forth, among which RS, espe-
cially surface enhanced Raman spectroscopy (SERS), is a highly
potential point-of-care technique (PoCT) that utilizes the effect of
Raman scattering to detect and discriminate the unique molecular
fingerprints of various bacteria [12]. Due to the complexity of SERS
spectral data, classical statistical analysis is insufficient in the anal-
ysis of Raman spectra, while machine learning algorithms, includ-
ing certain deep learning algorithms, are more appropriate for
rapidly and accurately processing these data [21]. However, few
studies compared the effectiveness of different machine learning
algorithms in Mtb identification and discrimination via SERS
technique.

In this study, we used a handheld Raman spectrometer (Anton
Paar Shanghai Trading Co., ltd., China) to detect all the Mtb strains
and clinical sputum samples and generate SERS spectra, which
were then analyzed by six supervised machine learning algorithms,
that is, CNN (Convolutional Neural Network), GRU (Gate Recurrent
Units), LSTM (Long Short-Term Memory), MLP (Multilayer Percep-
tron), Random Forest (RF), and Support-Vector Machine (SVM). In
particular, SERS spectra for culture-negative sputum samples
(n = 4) and culture-positive sputum samples (n = 4) were first gen-
erated and then analyzed computationally, according to which the
deep learning algorithm convolutional neural network (CNN) per-
formed the best than other supervised machine learning methods
(fivefold cross-validation accuracy 94.32%). Then, SERS spectra for
pulmonary Mtb strains (n = 47) and extra-pulmonary Mtb strains
(n = 11) were obtained, analysis of which via machine learning
algorithms showed that CNN also had the highest fivefold cross-
validation accuracy (99.86%). After that, Mtb strains with different
profiles of drug resistance were explored via SERS technique. All
the machine learning algorithms had good performed on discrim-
inating Mtb strains with different drug-resistance profiles, among
which CNN topped all other algorithms with fivefold cross-
validation accuracy at 99.86%. Taken together, we concluded that
SERS combined with deep learning algorithms could contribute
to the rapid and accurate identification of Mtb strains in a variety
of situations, confirming the promising future of SERS technique
in Mtb diagnosis with the assistance of deep learning algorithms
in clinical settings.
2. Methods and materials

2.1. Collection of clinical and bacterial samples

Both Mtb-negative and Mtb-positive sputum samples were col-
lected from the Affiliated Infectious Diseases Hospital of Xuzhou
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Medical University and confirmed through smear microscopy (also
known as acid-fast bacilli testing, AFB test). All the Mtb strains
were isolated from the processed specimen of TB patients: pul-
monary (sputum and bronchoalveolar lavage fluid) and extra-
pulmonary (urine, pus, hydroperitoneum) samples, which were
then inoculated into modified Lowenstein-Jensen (L-J) medium
(BaSO Biotech Co., Zhuhai, China) for Mtb culture at the medical
laboratory of the Affiliated Infectious Diseases Hospital of Xuzhou
Medical University. Meanwhile, Mtb strains was confirmed
through the performance of p-Nitrobenzoic acid (PNB)/Thiophen-
2-Carboxylic acid Hydrazide (TCH) assay. All the cultures were
incubated at 37 �C for 4 weeks. Antibiotic resistance and suscepti-
bility of all Mtb strains were determined by RocheTM Proportion
Method and PCR-Reverse Dot Hybridization for Resistance Gene
Mutation Detection. A total of 136 Mtb strains were included in
this study. In particular, for all the pulmonary Mtb strains, 47
strains were rifampicin (RFP, R)- and isoniazid (INH, H)-
susceptible (R-, H-), 9 strains RFP-resistant and INH-susceptible
(R+, H-), 20 strains RFP-susceptible and INH-resistant (R-, H + ),
and 47 strain RFP- and INH-resistant (R+, H + ). For details, please
see Supplementary Table S1. As for extrapulmonary TB analysis,
11 Mtb strains (RFP+, INH + ) were included in this study. For
details, please see Supplementary Table S2. Finally, for the direct
analysis of clinical samples, 4 smear-positive and 4 smear-negative
sputum samples were collected and investigated in this study. For
details, please see Supplementary Table S3. The sputum was pre-
treated with the equal volume of 4% (w/v) sodium hydroxide
(NaOH) for homogenization via 20-min vortexing, which was then
adjusted to pH = 7 with phosphate-buffered saline (PBS) and cen-
trifuged at 3000 � g for 20 min. Discard the supernatant and mix
the precipitate with 0.5 mL PBS for later use. As for Mtb colonies,
all of themwere isolated from clinical samples via culture and then
were stored at �80 �C for later use. All the microbiological exper-
iments involving Mtb strains were conducted in a licensed P3 Bio-
safety Laboratory by a certified clinical microbiologist (Xue-Di
Zhang, co-first author of this study). Information of all patients
concerning the sputum samples and Mtb strains was de-
identified throughout the study to avoid any ethical issues.

2.2. Synthesis of silver nanoparticle (AgNPs)

AgNPs synthesis followed the routine procedures that were pre-
viously reported by Tang et al. with modifications [22]. Briefly,
33.72 mg of Silver Nitrate AgNO3 (Sinopharm, Beijing, China) was
dissolved into 200 mL ultra-pure water (deionized distilled water,
ddH2O) with heating via a benchtop magnetic stirrer (ZNCL-BS230,
Shi-Ji-Hua-Ke Pty. ltd., Beijing, China) until boiling. After that, stop
heating, add 8 mL of sodium citrate (1% wt) to the solution with
stirring speed at 650 RPM until the mixture was cooled down to
room temperature. Final volume of the solution was adjusted to
200 mL via ddH2O. 1 mL of the solution was transferred to a
1.5 mL Eppendorf tube, which was then centrifuged at 7,000
RPM for 7 min (Centrifuge 5430 R, Eppendorf, USA). After centrifu-
gation, discard the supernatant and resuspend the pellet with
100 lL of ddH2O, which was considered as AgNPs substrate and
was stored in the dark at room temperature for later use.

2.3. Measurement of SERS spectra

A loop of a single Mtb strain that was stored at 4 �C for short-
term [3–6] on solid agar medium was inoculated onto RocheTM

L-J medium and cultured in an aerobic incubator at 37 ± 1 �C for
4 weeks. Colonies in the medium were scraped and transferred
into an Eppendorf (EP) tube containing 0.5 mL of sterile saline
water and glass beads, which were then vortexed to disrupt Mtb
clumps and generate homogenate cell suspension. 15 lL of previ-
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ously prepared AgNPs was mixed with 15 lL of the homogenate
Mtb solution through pipetting, which were then dropped onto
the single crystal silicon wafer (P-type, Lijing Silicon Material Co.,
ltd., Zhejiang, China) to form a round spot, and dried naturally in
biological safety cabinets (BSC). For the sputum sample, 15 lL of
the homogenate sputum sample was mixed with 15 lL of AgNPs
through pipetting, which were also dropped onto silicon wafer
and dried naturally for detection purpose. All the Raman spectral
data were acquired through an advanced Handheld Raman Spec-
trometer CORA100 (Anton Paar Shanghai Trading Co., ltd., China)
in BSC within a certified P3 Laboratory at the Affiliated Infectious
Diseases Hospital of Xuzhou Medical University. Parameters for
Raman spectrometer were set as follows: 1) excitation wave-
length: 785 nm; 2) laser power: medium; 3) spectral wavenumber
resolution: max. 10 cm�1; 4) detection spectral range: 400–
2300 cm�1; 5) detector type: linear charge-coupled device (CCD)
array. The scan time for each spectrum was 0.47 s. All the output
data were in plain text format. Before spectral acquisition,
wavenumber calibrations were conducted using the Raman shift
at 520 cm�1 as the reference peak on the silicon wafer, while the
detector dark current was subtracted at the same integration time.
Raw SERS spectra data for all the sputum samples and Mtb strains
were available upon request.

2.4. Average SERS spectra and characteristic peaks

During SERS spectral analysis, average SERS spectrum for each
study group was generated by calculating the average Raman inten-
sity at each Raman shift in the range of 402 to 2298 cm�1. All the
averaged Raman spectra were pre-processed using LabSpec 6 (HOR-
IBA Scientific, Japan), including smoothing, denoising, baseline cor-
rection and normalization. Characteristic peaks of each average
SERS spectrum were then identified. Specific processes were per-
formed as follows: 1) Smoothing function was first used to smooth
and denoise the spectrum with settings of Degree = 4, Size = 5, and
Height = 50; 2) Baseline Correctionwas conducted through the follow-
ing parameters: Type = Polynom, Degree = 6, Attach = No, while Base-
line Fitting was done via Auto function; 3) GaussLoren function was
used to find characteristic peaks, and the parameters were set to
Level = 13% and Size = 19 while other parameters were set to default;
4) Normalization function was used in default settings to normalize
all the SERS spectra in order to compare the average SERS spectral
curves for different sample groups; 5) Search function was finally
used to identify characteristic peaks. Characteristic peaks for each
average SERS spectrum were labelled in vertical black arrows at cor-
responding Raman shifts. The software Origin (OriginLab, USA) was
used to generate the 20% standard error band for each average SERS
spectrum. The width of the standard error band reflected the repro-
ducibility of each SERS spectrum.

2.5. Computational analysis of SERS spectra

2.5.1. SERS spectral preprocess
The signal intensity of Raman spectra is generally weak, which

is intrinsically affected by many factors such as Raman light source
(power, wavelength, spot size), spectrometer (resolution, integra-
tion time), sample placement (laser beam focus spot), and sample
vessel material, etc., resulting in spectral noises that were mixed
with Raman signals, affecting the analytical effects. In order to
improve the accuracy of computational analysis via machine learn-
ing algorithms, all the SERS spectra were pre-processed through
normalization and smoothing.

2.5.1.1. Normalization. Due to the high dimensionality of Raman
spectral data, in order to avoid the influences of biased values of
Raman intensities among SERS spectra, all data were first prepro-
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cessed by data normalization. In particular, normalization is a proce-
dure of removing unit limitations from data and converting data into
non-scalar values so that data with different units or magnitudes can
be compared and weighted [23]. In addition, normalization can also
accelerate model fitting process, improve computational efficiency,
and enhance model learning accuracy [24]. In this study, all the data
were normalized in each dimension through uniformly mapping the
data to [0, 1] interval by using formula 1 below:

x ¼ x�Min
Max�Min

ð1Þ
2.5.1.2. Spectral smoothing and denoising. In order to understand
the impact of noises on Raman spectra caused by dark current
and other systematic factors, we compared the performance of
machine learning algorithms on SERS spectral data before and after
smoothing and denoising SERS spectra via filtering algorithms in
terms of the improvement of signal-to-noise ratio (SNR). A total
of five filtering algorithms were included, which were Gaussian Fil-
ter (GF), Median Filter (MF), Wavelet Transform (WT), Median
Average (MA), and Savitzky-Golay (SG). The effects of different fil-
tering algorithms in reducing Raman spectral noise interference
were compared, and the best filtering algorithm for SERS spectra
was selected for further analysis. The results were evaluated using
two indicators: SNR and Root Mean Square Error (RMSE). In partic-
ular, as a main technical indicator, SNR was normally used to mea-
sure the reliability of signal quality. The SNR formula used in this
study was shown below:

SNR ¼ 10 � Log10
PS

PN

� �
ð2Þ

PS represented the raw Raman spectral signal peak, and PN rep-
resented the Raman spectral signal peak after denoising. In order to
further quantify the degree of differences between the raw spectral
data and the data after denoising, RMSE was also introduced:

RMSE ¼
ffiffiffiffiffi
PS

p
ð3Þ

The specific parameters of the five smoothing and denoising algo-
rithms were set as follows: 1) MA: Segment size = 3; 2) GF: Segment
size = 3, standard deviation = 2; 3) MF: Segment size = 3; 4) SG: Poly-
nomial order = 2, Number of left/right side points = 3. As for the WT
algorithm, the situation was a bit complicated. In this study, we used
soft threshold, hard threshold and fixed threshold to compare the
SNR and RSME values, respectively, and then selected the best wave-
let threshold denoising method. After comparison, the parameters
were set as: tptr = sqtwolog, Sorh = s, soft threshold, Scal = sln,
adjusted according to the noise level estimation of the first-layer
wavelet decomposition, lev = 3, and wname = db4.

2.5.2. Supervised machine learning analysis
After normalization, smoothing and denoising, four deep learn-

ing algorithm models, that is, CNN (Convolutional Neural Net-
work), GRU (Gate Recurrent Units), LSTM (Long Short-Term
Memory), and MLP (Multilayer Perceptron), together with two
classic machine learning algorithms Random Forest (RF) and
Support-Vector Machine (SVM), were recruited to analyze the SERS
spectra computationally. During machine learning analyses, spec-
tral data were divided into training set, validation set and test
set in a ratio of 6:2:2. The SERS spectral data were analyzed in
three aspects as previously defined: 1) smear-positive and
smear-negative sputum samples; 2) pulmonary and extrapul-
monary Mtb strains; and 3) drug-sensitive and drug-resistant
Mtb strains. It should be noted that when dealing with the antibi-
otic profiling of Mtb strains, the labels in the data set were con-
verted to One-hot Encoding form due to the presence of four
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subsets of SERS spectra. As for the classification of pulmonary/ex-
trapulmonary Mtb strains and smear-negative/positive sputum
samples, no transformation of the dataset labels was required
due to their intrinsic binary classification nature.

In general, the deep learning models mainly have two frame-
works: CNN and Recurrent Neural Networks (RNN). MLP is a spe-
cial CNN network structure, which is composed of fully
connected layers (also known as dense layers). Schematic illustra-
tion of the structures of the two deep learning frameworks of MLP
and CNN were shown in Fig. 1. As for the LSTM model, it inherits
most of the features of RNN and solves the problem of vanishing
gradients in the RNN model. GRU is a simplified LSTM model,
which has only two gates, that is, the update gate and the reset
gate. Since GRU has fewer parameters and faster convergence, it
speeds up the iterative process during model training. The illustra-
tive structures of the two deep learning frameworks of GRU and
LSTM were shown in Fig. 2. The specific structure of all the
machine learning models were described below.

In specificity, CNN included one input layer, four convolutional
layers and two max-pooling layers, each two convolutional layers
followed by a max-pooling layer, a fully connected layer and an out-
put layer. The softmax activation function was used when classifying
drug-resistant/sensitive Mtb strains, while the sigmoid activation
function was used when analyzing pulmonary/extrapulmonary Mtb
strains and smear-positive/negative sputum samples. The activation
function of the convolutional layer was set to ‘‘relu” while the convo-
lution kernel sizes were 5*1 (softmax activation function) and 3*1
(sigmoid activation function), respectively (Fig. 1A). MLP consisted
of one input layer, four fully connected layers and one output layer;
in addition, Dropout layer was used to prevent overfitting and
improve the generalization ability of the model (Fig. 1B). For both
LSTM and GRU models, the same model structure was used, which
consisted of two RNN layers, two Dropout layers and a fully con-
nected layer (Fig. 2). During the model training process, the test set
was completely independent of the training set and the validation
set. The model trained on the training set and the validation set
was tested using the test set to avoid overfitting. For the two classical
learning algorithms RF and SVM, before analyzing the test set data,
grid search algorithm GridSearch was used to test the two models
on the training and validation data set to obtain the best parameters.
The optimal parameters were passed into the model to classify and
predict the test set data (Supplementary Table S4-S6).

This study also measured the generalization ability of the six
models by calling the evaluation metrics from the scikit learn

library https://scikit-learn.org in order to compare their prediction
performances. The most common evaluation index was Accuracy
(ACC), that is, the proportion of accurately classified samples. In
order to verify the reliability of the ACC score, we used FiveFold
Cross-Validation (CV) for the analysis. FiveFold CV can also elimi-
nate the disadvantages caused by data imbalance. For example,
during the prediction of drug-resistant and drug-sensitive Mtb
strains, there were 1410 SERS spectra from 47 R-/H- Mtb strains,
while only 270 SERS spectra from 9 R+/H- Mtb strains. Such a
biased distribution of spectral numbers may cause larger samples
to have a negative impact on smaller samples, resulting in poor
model prediction performance. In addition, we also use Precision
(P), Recall (R) and F1-score as evaluation metrics, where F1-score
is equivalent to the harmonic mean of P and R. The larger the F1,
the better the model performance.
2.5.3. ROC curves
To further verify the model performance, we also calculated the

ROC curve for each of all the six supervisedmachine learning models,
which could easily find out the ability of a classifier model to identify
samples at a certain threshold. Lines with different colors were used

https://scikit-learn.org/


Fig. 1. Schematic illustration of the frameworks of deep learning models of CNN and MPL. (A) MLP network structure including the input layer, the hidden layer and the
output layer. Different layers of the MLP network are fully connected. (B) CNN network structure composing of input layer, convolution layer, pooling layer, fully connected
layer and output layer. It can be seen that the fully connected layer of CNN is similar to that of MLP. Therefore, MLP is a special CNN network structure. When the data arrives
at the fully connected layer, a multi-class neural network is performed through the Softmax activation function to obtain the final output.
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to represent the ROC curves of different models. The closer the ROC
curve is to the upper left corner, the higher the sensitivity, the lower
the false positive rate, and the better the diagnostic performance of a
model. It can also be seen that the point on the ROC curve closest to
the upper left corner on the ROC curve has the largest sum of sensi-
tivity and specificity. This point is also called the optimal critical
point [25]. Finally, the area under curve (AUC) value under the ROC
curve of eachmodel was calculated. The large the AUC value, the bet-
ter the model performance.
2.5.4. Confusion matrix
Confusion matrix is a table for summarizing classification and

prediction results during machine learning analysis. The records
in the data set are summarized in matrix form according to the
two criteria of the real category and the classification judgment
made by the classification model [25]. Each column in the confu-
sion matrix represents the predicted class, and each row represents
the true class of the data. Through the analysis of the samples by a
machine learning model, it is able to predict which data is positive
or negative. Four indicators can be obtained through the analysis:
True Positive (TP), False Negative (FN), False Positive (FP), and True
Negative (TN). In this study, we trained six machine learning mod-
els, and by comparing the performance of the six models, CNN was
identified as the best prediction model, the confusion matrix of
which was calculated for further analysis. A complete procedure
of the experimental and computational studies was summarized
in the flow chart below (Fig. 3).
3. Results and discussion

Surface enhanced Raman spectroscopy has potential for rapid
and accurate diagnosis of various infectious diseases when com-
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bined with machine learning algorithms, which shows great
advantages in the turnaround time, operation procedures, and test-
ing costs [21]. Previously, SERS technique has been widely applied
to detect many infection-causing bacterial pathogens, such as
Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa,
etc.; these studies normally focused on analyzing SERS spectra and
corresponding characteristic peaks via statistical methods such as
partial least square-discriminant analysis (PSL-DA), principal com-
ponent analysis (PCA), and hierarchical cluster analysis (HCA), etc.
[26–29]. However, due to the complexity of the SERS spectral data,
these classical statistical methods are insufficient for data analysis
and pattern recognition, which requires the assistance of advanced
computational algorithms such as machine learning methods
[21,30]. In fact, a variety of studies have already applied machine
learning algorithms on SERS spectroscopy for the rapid detection
of bacterial pathogens, which include but not limited to support
vector machine (SVM) and random forest (RF), etc. [31–32].
Recently, deep learning algorithms were also introduced into the
field for the rapid analysis of low SNR and one-dimensional SERS
spectra. Ho et al. conducted the pioneering study in which the
state-of-the-art CNN technique was applied to 60,000 SERS spectra
for rapid identification of 30 common bacterial pathogens with the
accuracy of 82% [33]. A series of studies then compared the predic-
tion accuracies of various machine learning algorithms including
deep learning algorithms in different types of bacterial pathogens
[22,30,34]. In specificity, Tang et al. performed the comparative
analysis of ten machine learning algorithms on 2752 SERS spectra
of nine Staphylococcus species, which confirmed that the convolu-
tional neural network (CNN) algorithm was the best model with
an accuracy of 98.21% [22]. In another study, Tang et al. compared
eight machine learning algorithms on the SERS spectra of 15 differ-
ent bacterial pathogens, which also showed that the deep learning
algorithm CNN achieved the best prediction accuracy at 99.86%



Fig. 2. Schematic illustration of LSTM and GRU framework structures. Both LSTM and GRU can be considered as a special RNN network, where GRU is a variant of LSTM. (A)
The general framework structure for LSTM and GRU mainly consisting of input layer, hidden layer (LSTM or GRU layer), dropout layer and output layer. (B) Differences
between LSTM and GRU frameworks. Left half is the internal structure interaction diagram of LSTM, which includes three gate structures: Forget Gate, Input Gate and Output
Gate. A Cell State gate is also included for protection and control. The GRU in the right half, as a variant of LSTM, combines the Forget Gate and the Input Gate into a single
Update Gate, which also includes a Reset Gate. Although there are differences in the internal structure of LSTM and GRU, both structures can effectively prevent the
phenomenon of gradient dispersion during data analysis.
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[30]. Therefore, combination of SERS spectrometry with deep
learning algorithm provides an advanced method with sufficient
accuracy in identifying bacterial species that holds the application
potential in clinical settings.
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3.1. Discrimination of smear-negative and smear-positive sputum
samples

In clinical laboratories, sputum is one of the most common
specimens for the diagnosis of pulmonary infection with Mycobac-



Fig. 3. Schematic summary of the SERS-based diagnostics of Mtb strains and clinical sputum samples. In particular, Mtb strain or sputum sample was first mixed with silver
nanoparticles (AgNPs) and then dried on silicon wafer. SERS fingerprinting data in the smearing dot area were then produced. Raw SERS spectra were pre-processed,
averaged, and then analyzed through a series of computational steps.
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terium tuberculosis, while the AFB smear test of sputum samples is
frequently used to diagnose an active tuberculosis infection [35].
However, it has been suggested that sputum smear microscopy is
insensitive, laborious, and time-consuming [36]. Therefore, it
would be convenient if the simpler Raman spectroscopy method
could be used to discriminate the smear-negative and smear-
positive sputum samples directly. In this study, we first used AFB
method to test the eight clinically collected samples (Fig. 4A),
which experimentally divided the samples into Mtb-positive group
(n = 4) and Mtb-negative group (n = 4). During sputum detection
via SERS spectroscopy, 30 spectra were obtained for each sample
and a total of 120 spectra were generated for each group, which
were then combined together to calculate the averaged SERS spec-
trum in order to reduce the systematic errors via technical repeats
(Fig. 4B). According to the averaged SERS spectra, comparatively
high reproducibility was achieved as indicated by the thin error
bands, which suggested the good applicability of handheld Raman
spectrometer in the detection of clinical samples. For the averaged
Raman spectrum of each sputum group, multiple characteristic
peaks were identified as labelled in black arrows in Fig. 4B.

Some of the spectral peaks were assigned to known metabo-
lites, though the identities of metabolites could only be speculated
due to the complexity of Raman spectra [22]. Previously, many
studies showed that distinctive differences were normally
observed in SERS spectral data in the Raman shift region of 500–
1800 cm�1 [22,37–38]. In addition, the characteristic peaks out of
1800 cm�1 corresponding to metabolites were rarely reported.
Therefore, in this study, we mainly focused on the characteristic
peaks identified in the region of 500–1800 cm�1 as shown in
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Table 1, though the range of the Raman shifts automatically gener-
ated by the handheld Raman spectrometer ranged from 402 to
2298 cm�1.

As seen in Fig. 4B, characteristic peaks in the SERS spectra (500–
1800 cm-1) of smear-positive and -negative sputum samples were
largely similar, and it was rather difficult to recognize the individ-
ual contributions of single peaks. Therefore, it is more accurate and
efficient to use advanced statistical methods such as machine
learning models to analyse SERS spectra overall. In this study, we
compared six supervised machine learning algorithms in terms of
their capacities in the analysis of SERS spectra for sputum samples
through the parameters of ACC, Precision, Recall, F1 Score and Five-
Fold CV (Table 2). According to the result, it was revealed that all
the deep learning algorithms (ACCCNN = 95.67%, ACCMLP = 91.92%,
ACCLSTM = 94.25% and ACCGRU = 93.75%) performed better than
the classical machine learning algorithms (ACCSVM = 87.50% and
ACCRF = 89.58%) in terms of prediction accuracy, among which
CNN had the best prediction accuracy at 95.67%. As for the fivefold
cross validation, the deep learning algorithm GRU performed the
best with accuracy at 95.50%.

In addition, the receiver operating characteristic (ROC) curve is
a graphical demonstration of true-positives and false-positives
across a range of cut-offs and is normally used to assess the sensi-
tivity and specificity of machine learning algorithms across a range
of values, it was calculated in this study to compare the capacities
of six machine learning algorithms in sputum SERS analysis. In
addition, since the area under the ROC curves (AUCs) could be used
to quantify the overall accuracies in distinguishing smear-positive
and -negative samples, it was also calculated (Fig. 4C). The results



Fig. 4. Experimental and computational analyses of smear-positive (n = 4) and -negative (n = 4) sputum samples. (A) Acid-fast bacilli testing of sputum samples. Red arrow:
Mycobacterium tuberculosis cells in pink color. Blue areas are sputum and other bacterial cells. (B) Averaged surface enhanced Raman spectra of smear-positive and -negative
sputum samples with computationally identified characteristic peaks labelled in black arrows and numbered with corresponding Raman shifts. Shadow region for each
averaged spectrum represented 20% of standard error of Raman shift. (C) Comparison of receiver operating characteristic (ROC) curves used for the evaluation of the
performance of 6 supervised machine learning algorithms. (D) Confusion matrix of fivefold cross-validated identification of smear-positive and -negative sputum samples via
CNN model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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clearly showed that deep learning algorithms had the significantly
better performances than classical machine learning algorithms
with CNN (AUC = 1.0) and MLP (AUC = 0.9755) as the top two algo-
rithms. Since confusion matrix describes the classification results
in terms of true class and predicted class, we also calculated it
for CNN analysis, according to which smear-positive sputum sam-
ples could be correctly predicted at 89% while smear-negative spu-
tum samples were correctly predicted at 86%.

3.2. Prediction of pulmonary and extra-pulmonary Mtb strains

AlthoughM. tuberculosis is primarily a respiratory pathogen and
mainly targets lung for infection, there are approximately 15% of
all TB infections occurring at extra-pulmonary sites, making diag-
nosis and treatment of tuberculosis complicated in clinical settings
[47]. Therefore, it would be beneficial to quickly identify the pres-
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ence of Mtb strains in extrapulmonary sites or discriminate extra-
pulmonary Mtb strains from pulmonary Mtb strains. Previously,
metabolomic analysis revealed that Mtb could rewire their meta-
bolic network during adaptation to different stresses [48], which
also indicated that Mtb strains isolated from different sites could
be metabolically diverse. However, few studies explored the meta-
bolic differences of pulmonary and extrapulmonary Mtb strains
in vivo and in vitro. Since Raman spectra are able to reveal meta-
bolic fingerprintings for tested samples [49], we recruited the SERS
technique to discriminate pulmonary and extrapulmonary Mtb
strains with the assistance of computational methods in this study.
In particular, 47 pulmonary Mtb strains (R+/H + ) and 11 extrapul-
monary Mtb strains (R+/H + ) were investigated in this study. For
each of Mtb strains, 30 spectra were collected, leading to 1441
spectra for pulmonary Mtb and 330 spectra for extra-pulmonary
Mtb. The averaged SERS spectra for pulmonary and extra-



Table 1
Band assignments of characteristic peaks to potential metabolites in SERS spectra of
smear-positive and -negative sputum samples.

Raman Shift
(cm�1)

Band Assignment Refs.

530 Silicon substrate [39]
670 COO-bending in tyrosine, Guanine vibration [39–

42]
956 CAN stretching, C@C deformation [39–

41]
1006 m(CACAO) [43]
1096 Stretching of OAPAO�, CAOAC stretch from

glycosidic link
[44]

1364 V (COO–), d (CAH) [45]
1390 COO-stretching [42]
1442 d (CH2) [45]
1564 (C@C) stretch [43]
1712 Amide I [42]
2120/2198/2244/

2276
C„C [46]

*Note: characteristic peaks that were shown in Fig. 4B but not listed in the table
were those that could not be identified in the literature.
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pulmonary Mtb strain were present in Fig. 5A with characteristic
peaks indicated by black arrows. It is noteworthy that, in order
to avoid the influences of antibiotic profiles, all the Mtb strains
used during the analysis were resistant to both isoniazid and
rifampicin. For most of the characteristic peaks, their correspond-
ing metabolites could be identified according to literature, while
it is difficult for the rest to be mapped to particular metabolites.
Band assignments of characteristic peaks to potential metabolites
in the two SERS spectra were present in Table 3. However, since
it was insufficient to describe the Raman spectra simply based on
the characteristic peaks, more advanced computational methods
were needed to characterize the whole spectra in order to achieve
the classification and prediction of Mtb strains in pulmonary and
extra-pulmonary samples.

In order to understand the intrinsic differences between the
SERS spectra of pulmonary and extra-pulmonary Mtb strains, we
first recruited unsupervised machine learning algorithm K-means
for the clustering of all the spectral data (Fig. 5B), according to
which the two types ofMtb strains were grouped into two different
clusters with the Rand Index (RI) score reaching to 67.92%. In
specificity, RI aims to calculate the similarity between the two
clusterings and counting samples that are designated to the same
or different clusters in the predicted and true clusterings. In addi-
tion, RI has the value between 0 and 1, where 0 means that the two
data clusters do not agree on any pair of points and 1 suggesting
that the data clusterings are exactly the same. Since the RI score
in this study is only 67.92%, it suggested that the unsupervised
clustering analysis was not good enough to separate the two
groups ofMtb strains. Therefore, supervised machine learning algo-
rithms were then applied to the spectral data for further analysis.

A total of six supervised machine learning algorithms in terms
of their capacities in discriminating SERS spectra of pulmonary
and extra-pulmonary Mtb strains. The parameters that were used
to assess the prediction included ACC, Precision, Recall, F1 Score
Table 2
Comparison of 6 machine learning algorithms in terms of their capacities in the analysis o

ML Algorithms ACC Precision

CNN 95.67% 94.00%
MLP 91.92% 94.40%
LSTM 94.25% 91.25%
GRU 93.75% 93.75%
SVM 87.50% 87.50%
RF 89.58% 89.58%
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and FiveFold CV, which were present in Table 4. According to the
result, it was revealed that all the machine learning algorithms
showed very high prediction accuracy, among which CNN, MLP
and LSTM had the best prediction accuracy. As for the fivefold cross
validation, the deep learning algorithm CNN performed the best
with accuracy at 99.86%. Moreover, ROC curves were drawn while
the areas under the ROC curves (AUCs) were also calculated
(Fig. 5C). The results suggested that the performance of all the deep
learning algorithms was better than classical machine learning
algorithms. In addition, confusion matrix was also present for
CNN model, according to which both pulmonary and extra-
pulmonary Mtb strains could be correctly predicted at 100% accu-
racy (Fig. 5D).
3.3. Identification of drug-sensitive and drug-resistant Mtb strains

Mycobacterium tuberculosis is intrinsically resistant to a variety
of antibiotics, which makes it rather difficult for its treatment and
poses significant challenges and public risks to tuberculosis control
programs [13]. In clinical settings, multidrug-resistant Mtb strains
are defined as those that are resistant to at least two most com-
monly used tuberculosis drugs, isoniazid and rifampicin [54]. How-
ever, current methods for profiling the drug resistance of Mtb
strains are either time-consuming or technically challenging, espe-
cially in LMICs [55]. Therefore, in this study, we investigated the
applicability of the short-turnaround-time, non-invasive and
label-free SERS technique in predicting the profiles of Mtb strains
with the assistance of computational methods. A total of four
groups of Mtb strains with different drug-resistant profiles were
explored through SERS analysis, which were R+/H+ (n = 47), R+/
H- (n = 9), R-/H+ (n = 20) and R-/H- (n = 47). Here, n represents
the number of sample strains, and a total of 30 spectra were mea-
sured for each sample strain. The averaged SERS spectra for the
four groups of Mtb strains were provided, in which characteristic
peaks were indicated by black arrows and marked with specific
Raman shifts (Fig. 6A).

The metabolites corresponding to the characteristic peaks were
sourced from literature and listed in Table 5. Through the compar-
ison of the averaged Raman spectra and also the characteristic
peaks, it could be seen that the differences between the four
groups were not significant and further analysis should be con-
ducted to differentiate these spectra.

Clustering analysis based on the unsupervised machine learning
algorithm K-means was also conducted, aiming to separate SERS
spectra into different groups based on their overall features rather
than discrete characteristic peaks (Fig. 6B). According to the anal-
ysis, Rand Index that was used to assess the clustering effect was
only 35.80%, which indicated that the algorithm could not divide
the four types of Mtb strains into separate groups. In order to dis-
criminate Mtb strains based on their antibiotics-resistant profiles,
further computational analysis through supervised machine learn-
ing algorithms was then performed, the results of which revealed
that all the tested algorithms could accurately predict different
types of Mtb strains in terms of antibiotic resistance (Table 6). In
addition, CNN topped all other algorithms with the highest predic-
f SERS spectral data generated from smear-positive and -negative sputum samples.

Recall F1-Score FiveFold CV

96.50% 96.37% 94.32%
95.45% 95.21% 93.45%
91.25% 91.24% 92.67%
95.42% 93.73% 95.50%
87.41% 87.50% 91.33%
88.99% 89.49% 93.28%



Fig. 5. Experimental and computational analyses of pulmonary (n = 47) and extra-pulmonary Mtb strains (n = 11). (A) Averaged surface enhanced Raman spectra of
pulmonary and extra-pulmonary Mtb strains with computationally identified characteristic peaks labelled in black arrows and numbered with corresponding Raman shifts.
Shadow region for each averaged spectrum represented 20% of standard error of Raman shift. (B) Clustering analysis of pulmonary and extra-pulmonary Mtb strains via K-
means algorithm. Red dots: pulmonary Mtb strains. Blue dots: extra-pulmonary Mtb strains. (C) Comparison of receiver operating characteristic (ROC) curves used for the
evaluation of the performance of 6 supervised machine learning algorithms. (D) Confusion matrix of fivefold cross-validated identification of pulmonary and extra-pulmonary
Mtb strains via CNN model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Band assignments of characteristic peaks to potential metabolites in SERS spectra of
pulmonary and extra-pulmonary Mycobacterium tuberculosis strains.

Raman Shift (cm�1) Band Assignment Refs.

486 CAOAC ring deformation [50]
530 Silicon substrate [39]
678/680 COO– bending in tyrosine, guanine vibration [39–

42]
736 Adenine [41]
826 Phosphodiester [51]
982/1006 m(CACAO) [43]
1140 CAC stretching [52]
1344/1346 V (COO–), d (CAH) [45]
1440 d (CH2) [45]
1562 (C@C) stretching [43]
1590 CC str + NH2 bend, Phenylalanine, Amide II [44,53]
2120/2198 C„C [46]
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tion accuracy (ACC = 99.59%) and robustness (FiveFold
CV = 99.59%), which was consistent with the analyses above when
dealing with sputum-negative/positive samples and pulmonary/
extra-pulmonary Mtb strains. Moreover, according to the ROC
curves and the corresponding AUCs as shown in Fig. 6C, it was
found that the performance of all the machine learning algorithms
could reach very high value. In terms of the confusion matrix for
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CNN model, all the four types ofMtb strains could be correctly pre-
dicted at the accuracy of 99% and above (Fig. 6D). In fact, only 1% of
R+/H- Mtb strains was mistakenly identified as R-/H + Mtb strains,
while all other strains were correctly predicted with 100%
accuracy.

3.4. Influences of SERS spectra pretreatment on machine learning
analysis

Raw Raman spectral data are normally not suitable for the
direct input into machine learning algorithms due to the low
signal-to-noise ratio (SNR) [30]. Therefore, in order to improve
the SNR of SERS spectra and enhance the main features in the data,
all the SERS spectra need to be pre-processed before machine
learning analysis [30,34]. Therefore, in this study, we compared
five different denoising algorithms and assessed their capacities
via two scoring criteria, SNR and RMSE. After SERS spectral pre-
processing, the higher the SNR, the better the denoising effect,
while the smaller the RMSE, the better the spectral quality. For
the specific analysis, SERS spectra from sputum-negative sample
were used as an example and the result was shown in Table 7.
The computational results revealed that GF algorithm had the best
performance with maximum SNR value at 38.1128 and the mini-
mum RMSE score at 13.633 � 10�4. Therefore, GF algorithm was



Table 4
Comparison of six machine learning algorithms in terms of their capacities in the analysis of SERS spectral data generated from pulmonary and extra-pulmonary Mtb strains.

ML Algorithms ACC Precision Recall F1-Score FiveFold CV

CNN 100.00% 100.00% 100.00% 100.00% 99.86%
MLP 100.00% 100.00% 100.00% 100.00% 99.01%
LSTM 100.00% 100.00% 100.00% 100.00% 99.16%
GRU 98.85% 98.85% 97.42% 98.34% 91.44%
SVM 99.36% 100.00% 100.00% 100.00% 99.93%
RF 98.14% 98.14% 97.76% 98.13% 98.57%

Fig. 6. Experimental and computational analyses of four groups of drug-resistant and drug-sensitiveMtb strains. (A) Averaged surface enhanced Raman spectra of four groups
of drug-resistant and -sensitive Mtb strains with computationally identified characteristic peaks labelled in black arrows and numbered with corresponding Raman shifts.
Shadow region for each averaged spectrum represented 20% of standard error of Raman shift. (B) Clustering analysis of four groups of drug-resistant Mtb strains via K-means
algorithm. Red dots: R+/H +. Blue dots: R+/H-. Yellow dots: R-/H +. Green dots: R-/H-. (C) Comparison of receiver operating characteristic (ROC) curves used for the evaluation
of the performance of 6 supervised machine learning algorithms. (D) Confusion matrix of fivefold cross-validated identification of the four groups ofMtb strains with different
drug-resistant profiles via CNN model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 5
Band assignment of characteristic peaks to potential metabolites in SERS spectra of
the four groups of Mtb strains with different antibiotics-resistant profiles.

Raman Shift
(cm�1)

Band Assignment Refs.

486 CAOAC ring deformation [50]
530 Skeletal mode [39]
678/680 COO– bending in tyrosine, Guanine vibration [39–

42]
730 Adenine [41]
826 Phosphodiester [51]
984/1006 m(CACAO) [43]
1344/1346 m(COO–), d (CAH) [45]
1440 d (CH2) [53]
1562 (C@C) stretching vibration [43]
1572/1578/

1580/1590
CC stretching vibration + NH2 bend,
Phenylalanine, Amide II

[44,53]

2120/2198 C„C [46]

Table 6
Comparison of six machine learning algorithms in terms of their capacities in the
analysis of SERS spectral data generated from four groups ofMtb strains with different
drug-resistant profiles.

ML Algorithms ACC Precision Recall F1-Score FiveFold CV

CNN 99.59% 99.64% 99.61% 99.67% 99.59%
MLP 97.19% 97.22% 97.35% 97.22% 97.22%
LSTM 98.72% 98.73% 98.73% 98.73% 96.89%
GRU 98.93% 98.59% 98.34% 98.59% 95.67%
SVM 96.32% 96.32% 96.43% 96.33% 96.86%
RF 96.61% 96.61% 92.71% 96.70% 96.98%

Table 7
The scores of SNR and RMSE obtained through different filtering algorithms.

Scores GF MF WT MA SG

SNR 38.1128 28.5252 26.5230 25.9983 25.4500
RMSE (�10�4) 13.633 41.113 51.771 54.995 58.578
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applied to all the SERS spectra for denoising SERS spectra before
machine learning analysis, which could also be generalized to
future studies for the preprocessing of the SERS spectral data.

4. Conclusion

Due to the large number of tuberculosis infections around the
world and the high public health risks globally, rapid and accurate
methods for the diagnosis of M. tuberculosis are highly in demand.
Currently, although conventional and molecular methods have
been widely applied in clinical settings for tuberculosis detection,
many limitations exist such as long turnaround time and complex
procedures, etc., leading to significant challenges in TB treatment
and prevention. Therefore, we explored the application of the rapid
and simple SERS technique in the identification, discrimination,
and prediction of Mtb strains. Although previous studies also
explored the same issue, most of them used heavy benchtop
Raman spectrometer for spectral collection that significantly
restricted the capacity of technique in terms of its point-of-care
test. In addition, through the comparison of machine learning algo-
rithms in the analysis of SERS spectra, we also figured out the best
computational methods for accurate discrimination of Mtb strains
and Mtb-containing samples. Our results confirmed that SERS
detection coupled with deep learning algorithms could discrimi-
nate smear-negative sputum from smear-positive sputum accu-
rately (5-fold cross-validation accuracy = 94.32%), which held
application potentials in clinical settings for fast screening of spu-
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tum samples. However, it should be emphasized that high bacterial
concentrations in sputum samples are essential in obtaining qual-
ified SERS spectra for further computational analysis. Since smear-
test-positive Mtb sputums typically contain high densities of Mtb
cells, the SERS technique was applicable to the discrimination of
sputum samples. As for other bacterial infections, the low bacterial
concentrations in sputums will potentially obscure the relative
peak intensity and the baseline intensity and leads to the genera-
tion of low-quality SERS spectra, which made the technique
unsuitable for other sputum sample analysis. In addition, extra-
pulmonary Mtb strains were swiftly separated from pulmonary
Mtb strains (5-fold cross-validation accuracy = 99.86%), which
might be caused by their metabolic differences due to their adap-
tations to specific niches during infection. Finally, Mtb strains with
diverse antibiotics-resistant profiles were also accurately differen-
tiated (5-fold cross-validation accuracy = 99.59%). Taken together,
in this study, we demonstrated the application potential of hand-
held Raman spectrometer in terms of rapid and accurate diagnosis
of Mtb strains in clinical samples and also with different features
e.g., infection sites and antibiotics-resistant profiles, through the
integration of machine learning algorithms. Thus, the combination
of SERS technique and computational methods are promising for
rapid point-of-care diagnosis of Mtb infections in clinical settings,
which should be further developed and evaluated in future studies.

5. Novelty Statement

In this study we applied the portable handheld Anton Paar
CORA100 Raman spectrometer to conduct the detection of severe
pathogen Mycobacterium tuberculosis (Mtb) in three clinical set-
tings within Physical Containment Level 3 (PC3) facility: 1)
smear-positive and smear-negative sputum samples; 2) pul-
monary and extra-pulmonary Mtb strains; and 3) pulmonary Mtb
strains with different antibiotic resistance profiles. Our study is
the first systematic investigation ofMtb detection via the combina-
tion of SERS technique and machine learning algorithms, which not
only successfully discriminated clinical sputum samples with/
without Mtb cells, but also accurately predicted Mtb strains from
different infection locations and having different antibiotic resis-
tance profiles. Thus, our study supported that handheld Raman
spectrometer had a high application potential in real-world set-
tings for rapid point-of-care diagnosis of Mtb infections.
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