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Summary
Meliaceae is a useful plant family owing to its high-quality timber and its many limonoids that

have pharmacological and biological activities. Although some genomes of Meliaceae species

have been reported, many questions regarding their unique family features, namely wood quality

and natural products, have not been answered. In this study, we provide the whole-genome

sequence of Melia azedarach comprising 237.16 Mb with a contig N50 of 8.07 Mb, and an

improved genome sequence of Azadirachta indica comprising 223.66 Mb with a contig N50 of

8.91 Mb. Moreover, genome skimming data, transcriptomes and other published genomes were

comprehensively analysed to determine the genes and proteins that produce superior wood and

valuable limonoids. Phylogenetic analysis of chloroplast genomes, single-copy gene families and

single-nucleotide polymorphisms revealed that Meliaceae should be classified into two

subfamilies: Cedreloideae and Melioideae. Although the Meliaceae species did not undergo

additional whole-genome duplication events, the secondary wall biosynthetic genes of the

woody Cedreloideae species, Toona sinensis, expanded significantly compared to those of A.

indica and M. azedarach, especially in downstream transcription factors and cellulose/

hemicellulose biosynthesis-related genes. Moreover, expanded special oxidosqualene cyclase

catalogues can help diversify Sapindales skeletons, and the clustered genes that regulate terpene

chain elongation, cyclization and modification would support their roles in limonoid biosynthesis.

The expanded clans of terpene synthase, O-methyltransferase and cytochrome P450, which are

mainly derived from tandem duplication, are responsible for the different limonoid classes

among the species. These results are beneficial for further investigations of wood development

and limonoid biosynthesis.

Introduction

Meliaceae (Sapindales), with 56 genera and 575–650 species, are

common canopy and understory trees in tropical and subtropical

forests and pervade rain forests, mangrove swamps and semidesert

regions (He et al., 2022; Kubitzki, 2011; Mabberley et al., 1995;

Pennington and Styles, 1975). Although the family Meliaceae

exhibits a diversity of vegetativemorphology andgrowthproperties,

it is best known for its high-quality timber andmany limonoids. The

graceful and woodworm-proof mahogany furniture had higher

market share compared to oak and walnut furniture in Europe

(Kubitzki, 2011; Mabberley et al., 1995; Pennington and

Styles, 1975). Additionally, Meliaceae limonoids are unique and

show insect antifeedant and growth-regulating properties, medic-

inal effects in humans and other animals, and antifungal, bacteri-

cidal and antiviral activities (Tan and Luo, 2011; Tundis et al., 2014).

Many genera of Meliaceae are economically important to the

timber industry, and some are the most sought after worldwide.

For example, the famous mahogany mainly derived from

neotropical Swietenia macrophylla. Asiatic toon, Toona ciliata,

and Chukrasia tabularis have been the most desirable timber in

India and Australia. Other famous species include the neotropical

Cedrela odorata and the African genera Entandrophragma

(sapele and utile), Khaya (African mahogany) and Lovoa (Nigerian

golden walnut). In the Old World, Azadirachta indica and Melia

azedarach have also been grown as shade or avenue trees as

some Melioideae trees, notably of Azadirachta and Dysoxylum

species, have sulphur-containing volatiles with onion- or garlic-

like smells (Kubitzki, 2011; Mabberley et al., 1995). The most

widely grown and important timber type is Cedreloideae. The

wood anatomy of Meliaceae, which is well documented owing to

its economic significance, has exhibited different characteristics of

the secondary xylem of the subfamily Melioideae and Swiete-

nioideae (now included in Cedreloideae) (Oyedeji Amusa

et al., 2020; Riesco Mu~noz et al., 2019).

One characteristic of the Sapindales order is the synthesis of

nortriterpenoids derived from tetracyclic triterpenes, which are

known as protolimonoids (Kubitzki, 2011). The term ‘limonoids’
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originated from the bitterness of lemon or other citrus. Limonoids

mainly occur in plants of the Meliaceae and Rutaceae families.

The bitterness of Meliaceae bark has long been known and used

in medicine and pharmaceutical applications (Bao et al., 2016;

Tan and Luo, 2011; Tundis et al., 2014). For example, a traditional

Chinese medicine formulation containing toosendanin, a limo-

noid from M. azedarach and M. toosendan, displayed anti-

botulism effects and has been used as an anthelmintic vermifuge

against ascarids (Lian et al., 2020). The neem tree, A. indica, one

of the most famous limonoid-producing plants, produces special

limonoids, such as azadirachtin, that are bioactive against

approximately 400 species from more than 10 important insect

orders, including antifeedant, growth and development inhibi-

tion, repellent, gastric toxicity and sterilization (Saleem

et al., 2018). Limonoids are significant chemotaxonomic markers

of Meliaceae, Rutaceae and Simaroubaceae; the chemotaxonomy

significances of Meliaceae limonoids mainly focused on the

subfamily Swietenioideae and Melioideae (Fernandes Da Silva

et al., 2021; Tan and Luo, 2011). For example, almost all citrus

limonoids belong to the ring A,D-seco limonoids, which are found

only in the Toona, Cedrela and Dysoxylum genera in Meliaceae.

Ring C-seco limonoids possess the highest bioactivities and

originate from the Azadirachta and Melia genera. The ring B-

seco limonoids are found only in the Turraea and Toona genera

(Fernandes Da Silva et al., 2021; Tan and Luo, 2011).

In addition to these features, the affinities with other Sapin-

dales families, relationships within the family, karyology and

palaeobotany of Meliaceae are important issues in understanding

its developmental biology and evolutionary trajectory (Muellner

et al., 2008, 2011; Muellner-Riehl et al., 2016). Despite the

importance of the Meliaceae family, genetic research on this

family is not well-developed. The low genome contiguity of A.

indica, which was obtained with HiSeq short Illumina reads

(Krishnan et al., 2012, 2016; Kuravadi et al., 2015), limited its

utility for downstream genomic research, and the chromosome-

level genome of Toona sinensis provided limited information on

evolutionary history and genetic variation (Ji et al., 2021).

Recently, a chromosome-level genome of A. indica was assem-

bled to reveal terpene biosynthesis, and the results revealed that

most A. indica-specific terpene synthase (TPS) genes and

cytochrome P450 (CYP) genes were located on chromosome 13

(Du et al., 2022). However, many more questions related to

Meliaceae features have not been settled and require attention.

Overall, the high-quality genomes of A. indica and M. azedarach

and the genome resequencing of many other related species

would help clarify the phylogenetic relationship of Meliaceae

members. A wide and complete investigation would help to

uncover the genetic mechanisms behind the special features of

the Meliaceae family, including timber quality and limonoid

biosynthesis.

Results

Improved A. indica genome sequencing and assembly of
the M. azedarach genome

Based on the results of k-mer counting, both A. indica and M.

azedarach had a small genome with lower heterozygosity

(approximately 0.3%, k-mer = 17). The estimated genome sizes

were 267.28 Mb for A. indica and 270.17 Mb for M. azedarach

(Figure S1A,B). The Oxford Nanopore Technologies (ONT) plat-

form generated a total of 50.27 Gb and 35.99 Gb subreads of A.

indica and M. azedarach respectively. After filtering, 19.12 Gb

and 16.37 Gb of clean bases were used to generate the primary

genome assembly (Table S1, Figure S1C,F). After self-correcting

and polishing, the analyses yielded a final assembly of 232.68 Mb

with a contig N50 value of 8.91 Mb for A. indica, covering

87.05% of the estimated genome and an assembly of

239.23 Mb with a contig N50 of 8.07 Mb for M. azedarach,

covering 88.54% of the estimated genome (Table 1 and

Table S3). The Benchmarking Universal Single-Copy Orthologs

(BUSCO) results showed 99.07% completeness for A. indica and

96.05% completeness forM. azedarach. In Core Eukaryotic Gene

Mapping Approach (CEGMA) estimation, both of the two

genome assemblies had 231 complete core genes (93.15%),

suggesting completeness (Table S2). The assemblies were further

assessed using RNA sequencing transcripts and Illumina short

reads. The mapping rates and average coverage depth of the

third-generation data of the two genome assemblies reached

97.82% and 200.179 for A. indica and 95.15% and 134.439 for

M. azedarach. Furthermore, a total of 41.93 Gb and 43.30 Gb

clean bases were obtained from the Illumina sequencing platform

for HiC-based assembly of A. indica and M. azedarach respec-

tively (Table S4). After paired-end mapping and valid interaction

pair filtering, 44.18% and 45.97% of the clean data were used

for contig clustering. Finally, 96.13% and 99.14% of the

assembled genome were anchored to 14 pseudo-chromosomes

comprising 223.66 Mb in A. indica and 14 chromosomes

comprising 237.16 Mb in M. azedarach (Figure S1D,G). The

chromosome lengths of A. indica ranged from 12.42 Mb to

21.50 Mb, while that of M. azedarach ranged from 14.01 Mb to

22.81 Mb (Table S5).

Gene repeats and annotations

In the repeat annotation, a total of 71.36 Mb and 84.01 Mb

transposon elements (TEs), comprising 30.67% and 35.12% of

the whole-genome size, were identified in the A. indica and M.

azedarach genome respectively (Table S7). Among all the

classifications of TEs, long terminal repeat retrotransposons

(LTR-RTs) constituted the largest portion (17.42% and 23.28%

respectively), followed by DNA transposons (10.11% and 8.53%

respectively). Accompanied by tandem repeats, and simple

repeats, total repeats reached 33.11% and 37.47% of the two

genomes, respectively, while 0.03% and 0.04% of the two

genomes were identified as non-coding RNA (ncRNA), including

miRNA, snRNA and spliceosomal RNA respectively (Table S6).

Protein-coding genes were annotated using a combination of

RNA-seq data and ab initio-bases. Genome annotation yielded

23 087 and 21 983 protein-coding genes with 97.53% and

97.45% BUSCO completeness in A. indica and M. azedarach

respectively (Table S8). 94.01% and 94.82% of the genes had

related transcripts in the Non-Redundant Protein Sequence

Database (NR), and most of them could be classified using Gene

Ontology (GO) terms, Cluster of Orthologous Groups of proteins

(COG/KOG) terms, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways and the SwissProt database (Figure S1E,H). In

total, 21 799 and 20 925 proteins were annotated (Table S9). As

expected, the density of coding genes increased towards the

telomeres with the opposite trend for repeated elements

(Figure 1). Our results indicated that an improved chromosome-

level A. indica genome, whose contig N50 increased almost 400-

fold compared to the reference genome, and a new

chromosome-level genome of the Meliaceae species, M. azedar-

ach, which is widely distributed in China and Old World tropics,

was obtained with high base accuracy, high continuity, high
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degree of genome coverage and more accurate gene structure

annotation compared to previous attempts.

Phylogenetic and whole-genome duplication analyses

To reconstruct the phylogeny of Meliaceae, another nine species

representing important lineages of Meliaceae were sampled and

sequenced using the Illumina platform (Figure 2a and Table S10).

After k-mer evaluation, the genome sizes ranged from

239.25 Mb to 867.80 Mb and the heterozygosity ranged from

0.34% to 1.18%. Moreover, genome repeat length and genome

uniqueness were also assessed, but these indices had little

relevance between the subfamilies. To investigate the genetic

diversity and evolutionary history of Meliaceae species, phyloge-

netic relationships for the whole family were reconstructed using

single-copy genes, chloroplast genomes and single nucleotide

polymorphisms (SNP). The divergence times were then estimated

using MCMCTree with calibrations of fossil evidence (Figure 2b

and Figure S2). All three phylogenetic trees displayed congruent

topology and divided Meliaceae into two clades. Clade one

contained species that belonged to Cedreloideae (Khaya sene-

galensis, Swietenia macrophylla, T. sinensis, Chukrasia tabularis

and C. tabularis velutina), whereas clade two contained

Melioideae species (M. azedarach, M. toosendan, A. indica,

Aphanamixis grandifolia, Aglaia duperreana and Trichilia con-

naroides macrocarpa). The divergence time of Cedreloideae and

Melioideae was approximately 22.16 million years ago (Mya), and

that of A. indica and M. azedarach was approximately 6.45 Mya.

In addition, Meliaceae was relatively closer to the family

Rutaceae, which exhibited divergence at approximately 52.52

Mya, followed by Sapindaceae (approximately 53.51 Mya) and

Anacardiaceae (approximately 72.06 Mya). However, the diver-

gence times of Sapindales families were indistinct because the

estimated divergence time of Sapindaceae was close to that of

the Rutaceae. Thus, more evidence is needed to distinguish the

topology of Sapindales.

To evaluate the historical whole-genome duplication (WGD)

events of A. indica and M. azedarach, four-fold synonymous

third-codon transversion rates (4DTv) and synonymous substitu-

tion rates (Ks) were analysed (Figure 2c and Figure S3). Self-

comparison of the two genomes was performed using MCScanX,

and the distribution of Ks values revealed a potential WGD event

for A. indica, M. azedarach and other angiosperm species,

indicating that A. indica and M. azedarach underwent a single

WGD in close proximity. The Ks distributions of other Meliaceae

species were also calculated, and two notable peaks were

identified (Figure 2d). This result indicates that all Meliaceae

species share a single WGD event, and the old peak may be an

ancient WGD event. Further studies should be conducted to

confirm that this WGD event specifically occurred in Meliaceae or

another upper clade.

The expansion and contraction gene families of the 11 species

were estimatedusingCAFE.A total of 649 and 550genes expanded

in A. indica and M. azedarach genomes, respectively, while the

contracted genes were 4143 and 4239 respectively. Significantly

expanded families (P ≤ 0.05) were clustered in the GO items and

KEGG pathways (Figure S4). Among the expanded genes of A.

indica, the most enriched molecular function was catalytic

activity (GO:0003824), which mainly resulted from the expan-

sion of oxidoreductase (GO:0016747/0016705), transferase

(GO:0016491/0016705) and terpene synthase (GO:0010333)

activities. As for the expanded genes of M. azedarach, the most

enrichedmolecular functionwas catalytic activity, but the expanded

geneswere classified into oxidoreductase and serine-type endopep-

tidase activities (GO:0004252). These expanded genes may be

involved in specific phenotypes and environmental adaptability.

Expansion of secondary wall biosynthesis-related genes
may associate with wood development in Cedreloideae

Cellulose, hemicellulose, lignin and other substances accumulate

continuously in the secondary wall, and the xylem’s main and

hard parts in woody plants are important factors in determining

the yield and quality of wood (Liu et al., 2022; Xie et al., 2022).

Thus, the main gene families involved in the formation of these

three compounds were checked between the Cedreloideae

species, T. sinensis, and the Melioideae species, A. indica and

M. azedarach, to identify the ancestral mechanism for timber

formation in the woody Cedreloideae species, which may further

improve tree breeding (Figure 3a,b and Table S12).

Cellulose accounts for approximately 20% of plant primary cell

walls and approximately 50% of secondary cell walls by weight

Table 1 Statistics for published Meliaceae genomes

Material Ain (Guangzhou) Maz (Kunming) Ain (India) Ain (AzaInd) Ain (GKVK) Tsi (Fuyang) Ain (Hainan)

Year This study This study 2012 2016 2015 2020 2022

Sequencing platform Illumina,

ONT, HiC

Illumina,

ONT, HiC

Illumina,

IonTorrent

Illumina,

PacBio

Illumina,

Roche/454

Illumina,

ONT, HiC

Illumina,

PacBio, HiC

Coverage 78.489, 200.179 68.569, 134.439 13–509, 0.59 13–509, 5–9.79 219 67–1179, 1469 1189, 2569

Denovo NextDenovo NextDenovo SOAP denovo SOAP denovo2 Velvet smartdenovo RACON, Pilon

Genome size/Mb 232.68 239.23 364 182.93–308.83 267 596 281

contig N50/bp 8 907 986 8 068 821 740 3491 15 948 1 525 641 6 039 544

Longest Contig/bp 19 556 515 18 913 001 10 111 - 241 170 - 15 111 501

Longest Scaffold/bp 21 501 397 22 810 243 3 641 215 12 211 325 - 32 278 227

Number of Scaffolds 82 98 9714 21 743 - - 70

Number of genes 23 087 21 983 20 169 32316.77 44 495 34 345 25 767

Average gene length/bp 3101.7 3308.55 1695.95 - 876 (CDS) 3959 2837

Total repeat element/bp 77 049 478 89 633 253 47 427 034 54 375 206 86.9 Mb 385 217 481 115 181 900

Repeat element Ratio/% 33.11 37.47 13.03 24.15 32.44 64.56 40.99

Level Chromosome Chromosome Draft Draft Draft Chromosome Chromosome

Ain for A. indica, Maz for M. azedarach, Tsi for T. sinensis.

ª 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 21, 574–590

Gaofeng Cui et al.576



(Baez et al., 2022). Almost all the genes related to cellulose

synthesis were increased from Melioideae to Cedreloideae; the

gene numbers of cellulose synthase A (CESA), glycosyltransferase

STELLO1 (STL), cellulose synthase interactive protein (CSI) and

sucrose synthetases (SUS) in T. sinensis genome were almost

double of those in A. indica and M. azedarach (Figure S5). In

Arabidopsis thaliana cellulose biosynthesis, CESA1, CESA3 and

CESA6 have been shown to act on the primary walls, while

CESA4, CESA7 and CESA8 function in the secondary walls (Endler

and Persson, 2011). However, only CESA4 and CESA2/5/6/9 were

expanded in T. sinensis (Figure 3d). The synteny of STL and CSI

exhibited one to two manners, while that of sucrose-phosphate

synthase (SPS)/SUS was almost many-to-many manners, with the

gene number expanding from four in A. indica to six in T. sinensis.

Hemicellulose helps maintain the integrity and stability of the

cell wall, and can account for 25% of the secondary wall’s

content (Baez et al., 2022; Julian and Zabotina, 2022). Hemicel-

lulose can be divided into three classes: xylan, glucomannan and

galactoglucomannan. Coniferous wood is mainly galactogluco-

mannan, whereas broadleaf timber and grass is mainly xylan.

Glycosyltransferases (GTs) are involved in xylan synthesis, and the

GT8, GT43 and GT47 gene families are involved in hemicellulose

synthesis in Arabidopsis (Hao and Mohnen, 2014). Both glyco-

syltransferases underwent gene expansion, since the number of

GT8, GT43 and GT47 gene families increased from 33, 4 and 39

in A. indica and M. azedarach to 65, 9 and 64 in T. sinensis

(Figure 3d and Figure S5). Most GTs revealed one-to-many

syntenies between A. indica and T. sinensis, suggesting a positive
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role of xylan in wood formation. Among the cellulose synthase-

like (CSL) genes, CLSA and CSLC, b-1,4-glucan synthase and

xyloglucan 6-xylosyltransferase, are involved in the synthesis of

the xyloglucan backbone. CSLD and CSLG are both thought to be

Golgi-localized b-glycan synthases that polymerize the backbones

of non-cellulosic polysaccharides, such as hemicelluloses, in plant

cell walls (Wang et al., 2001). Interestingly, the expansion pattern

varied between the different subfamily species. The CSLA, CLSC

and CSLD families showed an increase in gene numbers in T.

sinensis, whereas only CSLG expanded in A. indica and M.

azedarach.

Lignin is a three-dimensional polymer of phenylpropanoid

alcohols (or monolignols), including p-coumaryl alcohol, coniferyl

alcohol and sinapyl alcohol. These alcohols are associated with

cellulose and hemicellulose and provide rigidity to plant-

supporting and plant-conducting tissues (Boerjan et al, 2003;

Yang et al, 2007; Vanholme et al., 2010). The lignin biosynthesis

pathways can be divided into phenylpropane synthesis (shikimic

acid pathway), lignin monomer synthesis (phenylpropane meta-

bolic pathway) and monomer polymerization (Figure 3a). After

examining all enzymes related to the lignin pathway (Figure S6),

there was little difference between A. indica and T. sinensis,
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Figure 2 Phylogenetic and WGD analyses of Meliaceae. (a) Information on sequencing samples, including leaf morphology, estimated genome sizes and

heterozygosity. (b) Maximum Likelihood based phylogenetic analysis of 11 Meliaceae species and 10 other plant species using chloroplast genomes with

PhyML software. The divergence times (Mya) are estimated according to the fossil evidence on the TimeTree website. The numbers of expanded (red) and

contracted (green) gene families shown in each branch are based on the genome data of selected species (red). (c) Ks distribution of self-syntenic genes of

selected genomes. (d) Ks distribution of sequenced Meliaceae species.
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except for the expansion of caffeoyl-CoA-O-methyltransferase 4

(CAMT4), 1-aminocyclopropane-1-carboxylate (ACC) synthase 7

(ACS7) and three CYPs: cinnamic acid 4-hydroxylase (C4H, also

known as CYP73A5), p-coumaroyl shikimate/quinate 30-
hydrolxylase (C3H, CYP98A3) and coniferyl aldehyde 5-

hydroxylase (F5H, CYP84A1). Although some 4-coumarate-CoA

Figure 3 Expansion of secondary wall biosynthesis-related genes in Cedreloideae, T. sinensis. (a) Synthetic pathways of the main components of

secondary wall, namely cellulose, hemicellulose and lignin. (b) Statistics of related genes in T. sinensis (Tsi), A. indica (Ain), M. azedarach (Maz) and A.

thaliana (Ath) genomes. (c) Transcriptional regulation network of secondary cell walls using the A. thaliana factors with STRING. (d) Synteny (e < 1e�05) of

cellulose and hemicellulose biosynthesis-related genes between T. sinensis (Tsi) and A. indica (Ain) genomes. (e) Synteny (e < 1e�05) of lignin biosynthesis-

related genes between T. sinensis (Tsi) and A. indica (Ain) genomes. In d and e, the one-to-many synteny was marked with red and many-to-many synteny

was marked with green.
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ligases (4CLs) showed many-to-many synteny between A. indica

and T. sinensis, the total gene number with stricter selection

criteria showed little difference (Figure 3e). Interestingly, methyl-

transferase, O-methyltransferase (OMT) and CAMT all showed

increased total gene number in A. indica genome, which may be

important for plant special features.

The expression of these secondary wall biosynthetic genes is

also controlled by a complex transcriptional regulation network,

which is mainly divided into three levels. The first level contains a

group of wood-related NAC domain transcription factors (WNDs)

(Lin et al., 2017; Ohtani et al., 2011). The second level features

the main switches MYB46 and MYB83, which are directly

regulated by SND1 and its homologues NST1, NST2, VND6,

VND7 and other MYB transcription factors (Grima-Pettenati

et al., 2012; McCarthy et al., 2010). Lastly, the third layer

contains other transcription factors, including MYB, WRKY and

bHLH, that directly activate or inhibit the expression of key

enzymes in secondary wall biosynthesis (Liu et al., 2022). We

checked the transcriptional regulation network in A. thaliana with

STRING, and the results provided similar divisions (Figure 3c and

Figure S7), in which vascular-related NAC domains (VNDs)

regulated MYB46 and MYB83. Additionally, many other NAC

and MYB transcription factors constitute a regulatory network

that interacts with other transcription factors. However, the NAC

and WND transcription factors in T. sinensis were the fewest

among the four species. Using the same procedure, we only

identified two WND transcription factors in the T. sinensis

genome and 13 members within the A. thaliana genome. This

T. sinensis number was also significantly smaller than that of

Melioideae species (Figure S8). Further studies are needed to

explore the biological functions of these transcription factors and

the incomplete annotation of T. sinensis genome. However, the

other three groups, MYB, WRKY and bHLH of T. sinensis genome,

were larger in number than those of the other species (Fig-

ures S9–S11). And we found that almost all WRKY subfamilies

experienced expansion in T. sinensis genome.

Expansion of terpenoids oxidases may be responsible for
limonoids biosynthesis

Structurally, limonoids are also known as tetranortriterpenoids

because they are formed by the loss of four terminal carbons of

the side chain in the apotirucallane or apoeuphane skeleton,

which then cyclize to form the 17b-furan ring (Hodgson

et al., 2019; Tan and Luo, 2011). Thus, limonoid biosynthesis

from a triterpene backbone can originate from the isoprenoid

biosynthesis pathway, starting with squalene cyclization and

altered by oxidoreductases, isomerases, methyl/acetyltransferases

and hydrolases (Bhambhani et al., 2017; Wang et al., 2016,

2022). The first committed step of both mevalonate pathway

(MVA) pathways and methyl-erythritol phosphate pathway (MEP)

leads to the synthesis of isopentenyl diphosphate (IPP) and its

isomer dimethylallyl diphosphate (DMAPP) (Aarthy et al., 2018;

Pandreka et al., 2015). Oxidosqualene cyclases (OSCs) are the

primary enzymes to convert triterpenoid carbon structures into

precursors of triterpenoid metabolites (Lian et al., 2020; Wang

et al., 2022; Xue et al., 2012). However, only euphane and

triucallane from the tetracyclic skeleton can be modified and

converted to limonoids by CYPs, TPS, methyltransferases and

acyltransferases.

To determine the mechanisms that enrich for limonoids in

Meliaceae, we analysed all genes involved in the limonoid

biosynthesis pathway of the main Sapindales taxonomy

(Table S11). First, we focused on the copy number variations of

these gene families (Figure 4a and Table S13). There were few

differences between the MVA and MEP pathway factors among

these genomes, except for T. sinensis and Z. armatum for their

potential duplication events. Although some species or families

possessed more gene repetition, including phosphomevalonate

kinase (PMK) of Sapindaceae species and 4-hydroxy-3-methylbut-

2-enyl diphosphate reductase (ISPH) of Rutaceae, the majority of

these genes shared similar numbers in different families, sug-

gesting conservation of basic pathways (Figure S12). The gene

numbers varied with chain elongation, cyclization and modifica-

tion, especially for geranylgeranyl pyrophosphate synthase

(GGPPS), squalene epoxidase (SQE), OSC, TPS, OMT and CYP

gene families (Figure S13). We noticed that some of these

terpenoid oxidases did not have large gene families in the

Meliaceae species. Thus, limonoids in Meliaceae are not depen-

dent on the gene dosage effect but on other mechanisms.

We then focused on the comparison within Meliaceae,

especially for compounds with higher bioactivities, such as ring

C-seco limonoids, which mainly originated from the Azadirachta

and Melia genera. We found that gene duplication related to

the limonoid biosynthesis pathway in A. Indica and M.

azedarach was mainly due to tandem duplication and proximal

duplication (Figure 4b). Among them, terpenoid oxidase expan-

sion may be responsible for limonoid biosynthesis. WGD had the

least contribution to gene duplication, suggesting that the two

species did not undergo additional polyploid events. We then

checked the locations of these genes on the chromosomes of A.

Indica and M. azedarach (Figure 4c,d). The majority of these

terpenoid oxidases are clustered within 10 gene gaps to

facilitate their roles. For example, GGPPS clustered at Chr10

of A. Indica and M. azedarach. Four out of five GGPPS of M.

azedarach were derived from tandem duplication, while three of

five GGPPS of A. Indica resulted from proximal duplication.

Many OSCs were derived from proximal duplication, and they

clustered with SQE cyclization at Ain_Chr5 and Maz_Chr12.

Moreover, a cluster consisting of two OSC and four CYP at

Ain_Chr11 was not found in the corresponding Maz_Chr01. As

Figure 4 Tandem duplication of terpenoids oxidases may be responsible for limonoid biosynthesis in A. indica andM. azedarach. (a) Statistics of limonoids

biosynthesis-related genes in selected genomes. (b) Limonoid synthetic pathways, which are divided into MVA and MEP pathway, cyclization stage and

oxidative modification. (c) Gene positions and duplication sources of related genes in A. indica. (d) Gene positions and duplication sources of related genes

in M. azedarach. Ain, A. indica; Ath, Arabidopsis thaliana; Atri, Amborella trichopoda; Atru, Acer truncatum; Aya, Acer yangbiense; Ccl, Citrus clementina;

Csi, C. sinensis; Cun, C. unshiu; Dlo, Dimocarpus longan; Maz, M. azedarach; Min, Mangifera indica; Osa, Oryza sativa; Ptr, Poncirus trifoliata; Pve, Pistacia

vera; Sbi, Sclerocarya birrea; Tsi, T. sinensis; Vvi, Vitis vinifera; Xso, Xanthoceras sorbifolium; Zar, Zanthoxylum armatum. AACT, acetyl-CoA

acetyltransferase; HMGS, 3-hydroxy-3-methylglutaryl CoA synthase; HMGR, 3-hydroxy-3-methylglutaryl CoA reductase; MVK, mevalonate kinase; MVD,

Mevalonate 5-diphosphate decarboxylase; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase; ISPD,

2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; ISPE, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; ISPF, 2-C-methyl-D-erythritol 2,4-

cyclodiphosphate synthase; ISPG, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; IPI, isopentenyl diphosphate isomerase.
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for TPS, there were two large clusters at Ain_Chr12 and

Ain_Chr02, the majority of which resulted from tandem

duplication. However, there was only one cluster at Maz_Chr14,

corresponding to the chromosome of Ain_Chr12. The OMT of

A. indica was significantly higher than that of M. azedarach,

resulting in two large OMT clusters at Ain_Chr01 and

Ain_Chr06. These results were mainly attributed to tandem

replication. Considering the main limonoid differences, extra

tandem replications might contribute to the biosynthesis of

azadirachtin and other related compounds.
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We further reconstructed the phylogeny for OSC, TPS, OMT

and CYP and analysed the information. A diverse array of

triterpenoid skeletons are directly cyclized from 2,3-

oxidosqualene by members of the OSC family, which had

expanded greatly by lineage-specific duplication in plants (Lian

et al., 2020; Wang et al., 2022). There was only one OSC gene in

Amborella trichopoda, belonging to the cycloartenol synthase

clade, which showed different expansions in other angiosperm

lineages (Figure 5a). Many members appeared, and they can be

roughly divided into cycloartenol synthase, lanosterol synthase

and pentacyclic triterpene synthase-like enzymes. Although some

Sapindales species may have expanded in related catalogues, the

most important were two unknown groups consisting only of

Sapindales OSCs. MaOSC1, here indicated as Maz_Chr01.1022,

was shown to produce tirucalla-7,24-dien-3b-ol, the precursor of

limonoids from A. Indica, M. azedarach and C. sinensis (Hodgson

et al., 2019). Thus, these two groups contribute to the skeletons

of special triterpenoids from Sapindales species.

Based on its structure and catalytic mechanisms, TPS can be

classified into seven subfamilies (Li et al., 2021; Zhou and

Pichersky, 2020). As shown in Figure 5b, almost all TPS clades

appeared to expand from 18 A. trichopoda TPS to approximately

332 TPS in the other nine species. The TPS-e/f and TPS-a

subfamilies increased dramatically in O. sativa, whereas all TPS

subfamilies expanded in Sapindales species. Interestingly, Meli-

aceae and Rutaceae TPSs split into different branches of the TPS-a

and TPS-b subfamilies, suggesting a division between the main

terpenes. In Meliaceae, increased TPS genes mainly resulted from

the tandem duplication of A. indica, and most TPS of T. sinensis

were in the TPS-c subfamilies.

The numbers of CAMT andOMTwere significantly increased inA.

indica genome, which led us to focus on their roles in neem special

features. OMTs, characterized by the Methyltransf_2 (PF00891)

domain, were divided into eight clades based on protein structure

and similarity to Arabidopsis proteins (Figure 5c). The OMT genes of

O. sativa mainly clustered into other OMT clades, which mainly

consisted of trans-resveratrol di-O-methyltransferase, probable O-

methyltransferase 3 and isoflavone 40-O-methyltransferase. Ruta-

ceaemembers expandedatCAMT,anthranilateN-methyltransferase

(ANMT) and other OMTs, while Meliaceae members increased at

acetylserotonin O-methyltransferase (ASMT), xanthohumol

40-O-methyltransferase (OMT2) and indole glucosinolate O-

methyltransferase (IGMT). The special clusterof neemOMTbelonged

to the OMT2 clade, which exhibits low substrate selectivity and is

involved in prenylated phenolic natural product biosynthesis, which

commonly appears at the side chains or rings of terpenes (Nagel

et al., 2008).

Finally, the characteristics and evolution of the CYP450 gene

families were investigated among the main limonoids, including

A. indica, M. azedarach, T. sinensis and C. sinensis (Figure 6).

More than 1100 CYP sequences from the genomes were aligned

to construct the phylogenetic tree, and they were further

clustered into nine clans. Clan74, Clan711, Clan710, Clan51

and Clan97 are single-family CYP clans. Clan71 is the largest CYP

clan, followed by Clan85, Clan86 and Clan72. Clan71 comprised

almost half of all the genes, and those of C. sinensis experienced

significant expansion since the gene numbers of CYP82, CYP705,

CYP76, CYP79, CYP71A-like, CYP71A and CYP83 were several

times larger than that of the Meliaceae species. These results

were in accordance with a previous conclusion that Clan71

produced many gene duplications at an accelerated rate (Zheng

et al., 2019). Moreover, the Rutaceae CYPs seemed to increase at

CYP704, CYP90 and Clan97, while Meliaceae CYPs showed

expansion in other clans. For example, all three Meliaceae CYP74

genes were much more abundant than those in Rutaceae. CYP88

and CYP716 were expanded in M. azedarach, while CYP94B,

CYP707, CYP77 and CYP14 were mainly increased in T. sinensis.

These CYPs might benefit the adaptability of these two species,

since they are the only Meliaceae species that are widely

distributed in temperate zones and would help enrich limonoid

structures. As reported previously, CYP71CD and CYP71BQ in C.

sinensis and M. azedarach help oxidize tirucalla-7,24-dien-3b-ol,
resulting in spontaneous hemiacetal ring formation and produc-

ing protolimonoid melianol (Hodgson et al., 2019). Thus, the

most increased genes for A. indica, CYP71B, were suggested to

be associated with the biosynthesis of the species-specific

compound, azadirachtin.

Discussion

With improved sequencing technologies, more plant and animal

species have had their whole genomes sequenced (Mei

et al., 2022; Sun et al., 2022). Because of its economic value,

different sequencing technologies have been used to obtain the

draft genome of A. indica (Table 1), with contig N50 lengths

ranging from 740 to 15 948 bp and genome sizes from 182.93 to

364 Mb (Krishnan et al., 2012, 2016; Kuravadi et al., 2015).

However, low genome contiguity limits its use for downstream

genomic research. In 2020, a genome assembly of the Chinese

mahogany, T. sinensis, was reported, of which 28 chromosomes

comprised 596 Mb with a contig N50 value of 1.5 Mb (Ji

et al., 2021). More recently, a chromosome-level genome assem-

bly of A. indica, of which 14 chromosomes were estimated to be

281 Mb with a contig N50 value of 6 Mb, was reported to identify

terpene biosynthesis (Du et al., 2022). However, we noticed that

the repeat element library of neem genomes varied among

different versions. In the recently reported neem genome, 40.99%

(approximately 115 Mb) of the sequences were identified as

repetitive sequences, and unclassified elements accounted for

14.28% (Du et al., 2022). In our study, the total number of repeat

elements was 77.05 Mb, and the unclassified elements were only

1.24% of the sequences. Historically, the neem tree was

introduced to China by the Academician Shanhuan Zhao in

1983, and it was first planted in the Insecticidal Herbarium Garden

of South China Agricultural University, Guangzhou. It has been

successfully introduced in Xuwen, Guangdong, and Wanning,

Hainan (Xu et al., 2017). The heterozygosity ratio of neem from

Hainan was estimated to be 0.896%, and the genome size was

estimated to be 165 Mb based on the 21-mer depth distribution of

Illumina short reads. Our plant sample was collected from the

original neem tree in China, and the heterozygosity was lower than

0.30%, which provided the basis for us to obtain a better genome

assembly. In our opinion, more information is needed to reveal the

evolutionary pathways and feature adaptability of neem trees

when comparing samples collected from different regions and

countries, including China, India, Pakistan and West Africa.

Using the genomes of A. indica, M. azedarach and other

Meliaceae species, we reconstructed the inter- and intrafamily

phylogenetic relationships. The three phylogenetic trees using

different methods were consistent, suggesting that Meliaceae

should be divided into two subfamilies: Cedreloideae and

Melioideae. The divergence times showed that these two

subfamilies diverged during the transition from the Palaeogene

to Neogene, accompanied by the formation of modern mountain

ª 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 21, 574–590
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Figure 5 Phylogenetic analysis of OSC (a), TPS (b) and OMT (c) from related Sapindales species. 7OMT, (R, S)-reticuline 7-O-methyltransferase; NAMT,

Nicotinate N-methyltransferase 1.
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and climatic zonation. Moreover, many living genera and species

appeared as the arrival of high prosperity of angiosperms and

flowering plants. Our molecular clock produced a similar result on

the time estimation of Meliaceae appearance, accompanied by

adequate species and information. We also checked genes

related to wood formation in all species, but there were few

differences between the Cedreloideae and Melioideae subfami-

lies. Therefore, we only used the assembled genomes to

investigate limonoid biosynthesis. However, the data and tran-

scripts were used to compensate for the deficiency of T. sinensis

genome assembly in later investigations.

Wood formation is controlled by transcriptional regulatory

networks that consist of transcription factors and secondary cell

wall genes. Many genes related to cellulose, hemicellulose and

lignin biosynthesis play vital roles in woody plants (Nakano

et al., 2015; Taylor-Teeples et al., 2015). For example, five of the

17 identified CESA genes in Populus trichocarpa, CESA4,

CESA7A, CESA7B, CESA8A and CESA8B5, exhibited high expres-

sion levels in mature stems, especially in secondary vascular tissue

development (Kumar et al., 2009; Xu et al., 2021). Moreover,

CSLA1 is highly expressed in the developing xylem of poplar and

pine trees. Although monolignol transport and lignification
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mechanisms remain unclear, many enzymes critical in lignin

monomer synthesis have been studied. For example, 4CL1

inhibition or downregulation of cinnamoyl-CoA-reductase in

poplar decreases lignin content in the secondary wall (Wang

et al., 2009). In this study, there were more genes involved in

both cellulose and hemicellulose biosynthesis in T. sinensis from

Cedreloideae, while the number of lignin biosynthesis pathways

did not increase. This finding may contribute to the different

compound contents in the secondary wall between subfamilies,

and further analysis of timber constitution would help confirm

this hypothesis. Transcription factors also play a role in the

secondary cell wall. Inhibiting PtSND2 thinned xylem fibres and

reduced lignin and cellulose contents in poplar, reducing

secondary cell wall thickness (Wang et al., 2013). NAC1 regulates

phenylalanine biosynthesis by activating MYB4 in pines (Pascual

et al., 2018). In poplar, PtrMYB3 and PtrMYB20 are highly

expressed in ducts and fibres to regulate lignin, cellulose and

xylose biosynthesis (McCarthy et al., 2010). Recent research has

revealed that PtrMYB074 and PtrWRKY19 transcriptionally acti-

vate PtrbHLH186 for secondary xylem development in P. tri-

chocarpa (Liu et al., 2022). However, we found only two related

SNDs in the T. sinensis genome, which might result from

imperfect genome assembly or species-specific features, but we

found significant expansion of the downstream transcription

factors MYB, WRKY and bHLH. These collective results will

contribute to future investigation of secondary wall biosynthesis

and wood development. However, more focus should be placed

on identifying the expression patterns of critical transcription

factors between additional Cedreloideae and Melioideae species

and how they influence biosynthetic pathways.

Terpenes of Sapindales or limonoids from Meliaceae and

Rutaceae have drawn attention because of their anticancer,

antimicrobial, antioxidant and insecticidal properties (Fernandes

Da Silva et al., 2021; Saleem et al., 2018; Zhang and Xu, 2017).

Almost 50 limonoid aglycones have been reported in Rutaceae

primarily with seco-A,D-ring structures (Bao et al., 2016; Zhang

and Xu, 2017). Meliaceae limonoids are known to contain

approximately 1500 structurally diverse compounds, of which

seco-C-ring limonoids are the most interesting because of their

insecticidal activity (Bao et al., 2016; Fernandes Da Silva

et al., 2021; Saleem et al., 2018; Tan and Luo, 2011). Many

researchers have attempted to identify the key enzymes involved

in limonoid biosynthesis, which would improve and increase the

application of these compounds. For example, transcriptome

analysis of neem fruits, flowers and leaves revealed that GGPPS,

farnesyl diphosphate synthase and squalene synthase initiate

isoprenoid biosynthesis (Pandreka et al., 2015). Another analysis

based on transcriptome datasets from neem leaf and fruit

suggested that the CYP450 members CYP16671, CYP16365

and CYP18835 catalyse secondary modifications of bioactive

triterpenoids (Bhambhani et al., 2017). Moreover, transcriptomic

analysis of C. grandis revealed that CYP450s and the transcription

factor MYB exhibited high correlation coefficients with limonoid

biosynthesis (Wang et al., 2017). Comparative analysis of the

terpenoid biosynthesis pathways in A. indica and M. azedarach

also revealed that only six of these genes were upregulated in A.

indica (Wang et al., 2016). The conserved enzymes, OSC1,

CYP71CD and CYP71BQ, were identified in M. azedarach and C.

sinensis are responsible for protolimonoid melianol biosynthesis,

contributing to limonoid metabolic engineering and diversifica-

tion (Hodgson et al., 2019). However, the lack of a high-quality

reference genome has been identified as an urgent problem

despite whole genomes of T. sinensis and A. indica being

reported. Regarding terpene synthesis, these two reports con-

cluded: (1) tandem duplication or a recent WGD event may be

responsible for most TPS gene expansion in T. sinensis (Ji

et al., 2021); (2) most A. indica-specific TPS and CYP genes were

located on chromosome 13 (Du et al., 2022). In our study, all the

related genes were compared using the terpene biosynthesis

differences between Meliaceae and Rutaceae, between Cedre-

loideae and Melioideae and between A. indica and M. azedarach.

Although there were few gene differences in the triterpene

backbone of the isoprenoid biosynthesis pathway, the gene

numbers varied for isoprenoid chain elongation, cyclization and

modification. For example, two expanded, unknown, and

Sapindales-specific OSC catalogues may contribute to the unique

skeletons of Sapindales compounds, and some expanded TPS

subfamilies may enrich for terpene species. Moreover, the

majority of these genes were located as clusters to facilitate their

roles; however, there were differences in cluster locations

between A. indica and M. azedarach, which may produce

different limonoid contents. For example, a cluster consisting of

two OSC and four CYP at Ain_Chr11 was not found in the

corresponding Maz_Chr01. There were two large TPS clusters at

Ain_Chr12 and Ain_Chr02, while there was only one large cluster

at Maz_Chr14. Moreover, the OMT of A. indica was significantly

higher than that of M. azedarach, resulting in two large OMT

clusters at Ain_Chr01 and Ain_Chr06. The CYP71 clan of

Rutaceae C. sinensis showed significant expansion, whereas all

three Meliaceae CYP74 genes were much more abundant than in

Rutaceae. Thus, expansions of different terpenoid oxidases are

responsible for different limonoid biosynthesis.

In conclusion, we report improved genomes for A. indica and

M. azedarach. Chloroplast genomes, single-copy gene families

and SNP of 11 Meliaceae species revealed their phylogenetic

relationships, which should be classified into the Cedreloideae

and Melioideae subfamilies. Moreover, segmental duplication,

rather than WGD, in Meliaceae species improved their charac-

teristics. Many downstream transcription factors and cellulose/

hemicellulose biosynthesis-related genes in T. sinensis expanded

significantly compared to those in A. indica and M. azedarach,

and these genes may be involved in wood formation. Moreover,

expanded special OSCs catalogues may contribute to the skeleton

diversification of Sapindales compounds. Additionally, further

research on the clustered genes focusing on terpene chain

elongation, cyclization and modification can contribute to

improved limonoid biosynthesis. The different expanded clans

of TPS, OMT and CYPs are responsible for the different classes of

limonoids in these species. These results would benefit further

investigations into wood development and limonoid biosynthesis.

Materials and methods

Plant sampling and DNA extraction

Leaves of Azadirachta indica, Aglaia duperreana, Chukrasia

tabularis, C. tabularis velutina, Khaya senegalensis, Swietenia

macrophylla and Trichilia connaroides were collected from the

Insecticidal Herbarium Garden of the South China Agricultural

University (Guangzhou, China). The leaves of Aphanamixis

grandifolia and Toona sinensis were collected from the

Arboretum of South China Agricultural University (Guangzhou,

China). Leaves of Melia azedarach were collected from the

Kunming Institute of Botany, Chinese Academy of Sciences

(Kunming, China) with institutional permission. Leaves of M.

ª 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 21, 574–590

Exploring genomes for Meliaceae limonoids 585



toosendan were collected from Southwest University (Chongq-

ing, China).

The following procedures of DNA extraction, library prepara-

tion and sequencing, de novo assembly, de novo annotation, Hi-C

library construction and sequencing were performed by Nex-

tomics Biosciences Co., Ltd. (Wuhan, China). Genomic DNA was

prepared using the SDS method, followed by purification with the

QIAGEN Genomic kit (Cat#13343, QIAGEN, USA) according to

the provided instructions. DNA degradation and contamination

were monitored using 1% agarose gel electrophoresis. DNA

purity was detected using a NanoDrop One UV–Vis spectropho-
tometer (Thermo Fisher Scientific, USA), and DNA concentration

was measured using a Qubit 3.0 Fluorometer (Invitrogen, USA).

Library preparation and sequencing

A total of 2 lg of DNA was used for ONT library preparation.

After the sample was qualified, size selection of long DNA

fragments was performed using the BluePippin system (Sage

Science, USA). Next, the ends of the DNA fragments were

repaired, and the A-ligation reaction was conducted using the

NEBNext Ultra II End Repair/dA-tailing Kit (Cat#E7546, NEB, USA).

The adapter in the SQK-LSK109 kit (Oxford Nanopore Technolo-

gies, UK) was used for further ligation reactions, and a Qubit 3.0

Fluorometer was used to quantify library fragment size. Sequenc-

ing was performed on a Nanopore PromethION sequencer

(Oxford Nanopore Technologies, UK) instrument by NextOmics

(Wuhan China). Output base-calling was first performed to

convert the FAST5 files to FASTQ format using Guppy (Version

3.2.2 + 9fe0a78). Raw reads with mean_qscore_template <7
were then filtered, resulting in pass reads. A further filter with

fastp (version 0.19.4) obtained clean data for genome assembly.

De novo assembly and assessment

The assembly was constructed using the overlap layout-

consensus/string graph method with NextDenovo (v2.0-beta.1).

First, the original clean reads were self-corrected using NextCor-

rect to obtain consistent sequences. Then, correlations were

performed using NextGraph, and the preliminary genome was

assembled (Senol et al., 2019). To improve the accuracy of the

assembly, the contigs were refined with Racon (v1.3.1) using ONT

long reads, and NextPolish (v1.0.5) using Illumina short reads with

default parameters (Hu et al., 2020). To discard possibly redun-

dant contigs and generate a final assembly, similarity searches

were performed with the parameters: identity = 0.8, overlap = 0.8.

The completeness of genome assembly was assessed using

BUSCO (v4.0.5) and CEGMA (v2). To evaluate the accuracy of the

assembly, all Illumina paired-end reads were mapped to the

assembled genome using the BWA (Burrows-Wheeler Aligner,

Version 0.7.12-r1039), and the mapping rate and genome

coverage of sequencing reads were assessed using Samtools

(v1.4). Base accuracy of the assembly was calculated using

BCFtools (v1.8.0). The coverage of the expressed genes was

examined using HISAT2 (v2.1.0) with default parameters. The

draft genome assembly was submitted to the Nucleotide

Sequence Database library (NT), and aligned sequences were

eliminated to avoid including the mitochondrial sequences.

Hi-C library construction and sequencing

Genomic DNA was extracted, and sequencing data were

obtained using the Illumina NovaSeq platform. In brief, freshly

harvested leaves were cut into 2 cm pieces and vacuum-filtrated

in nuclei isolation buffer supplemented with 2% formaldehyde.

Crosslinking was halted with glycine, and fixed tissue was then

ground to powder before resuspending in nuclei isolation buffer.

Purified nuclei were digested with 100 units of DpnII and marked

by incubation with biotin-14-dCTP. The ligated DNA was sheared

into 300–600 bp fragments, followed by blunt-end repair, A-

tailing and purification through biotin-streptavidin-mediated pull-

down. Finally, the Hi-C libraries were quantified and sequenced

using the Illumina NovaSeq platform (PE150, Illumina, USA).

Paired-end reads were generated, and quality control of the Hi-

C raw data was performed using HiC-Pro (Servant et al., 2015).

First, low-quality sequences (quality scores <20), adaptor

sequences and sequences shorter than 30 bp were filtered out

using fastp (Version 0.12.6), and then the clean paired-end reads

were mapped to the draft assembled sequence using Bowtie2

(v2.3.2) to obtain unique mapped paired-end reads. Valid

interaction paired reads were identified and retained using HiC-

Pro (v2.8.1) from unique mapped paired-end reads for further

analysis (Burton et al., 2013). The scaffolds were further

clustered, ordered and oriented to chromosomes by LACHESIS

(https://github.com/shendurelab/LACHESIS), with parameters

CLUSTER_MIN_RE_SITES = 100, CLUSTER_MAX_LINK_DEN-

SITY = 2.5, CLUSTER NONINFORMATIVE RATIO = 1.4, ORDER

MIN N RES IN TRUNK = 60, and ORDERMIN N RES IN SHREDS = 60.

Finally, placement and orientation errors exhibiting discrete

chromatin interaction patterns were manually adjusted.

Repeat and ncRNA annotation

Tandem repeats were annotated using GMATA (v2.2) and

Tandem Repeats Finder (TRF, Version 4.07b). GMATA identifies

simple repeat sequences, and TRF recognizes all tandem repeat

elements. TEs were identified using a combination of ab initio-

and homology-based methods. Briefly, an ab initio repeat library

was first predicted using MITE-Hunter (Han and Wessler, 2010)

and RepeatModeler (version open-1.0.11) with default parame-

ters. This library was aligned to Repbase (http://www.girinst.org/

repbase) with TEclass (Abrus�an et al., 2009). RepeatMasker

(version 1.331) was used to search for known and novel TEs.

Overlapping TEs belonging to the same repeat class were collated

and combined.

To obtain ncRNA, we searched the database using a prediction

model. Transfer RNAs (tRNAs) were predicted using tRNAscan-SE

(v2.0) and eukaryotic parameters. MicroRNA, rRNA, small nuclear

RNA, and small nucleolar RNA were detected using Infernal

(v1.1.2) cmscan to search the Rfam database (http://rfam.xfam.

org/). rRNAs and their subunits were predicted using RNAmmer

(v1.2).

Gene prediction and functional annotation

Three independent approaches–ab initio prediction, homology

search and reference-guided transcriptome assembly–were used

for gene prediction. GeMoMa (v1.6.1) was used to align the

homologous peptides from related species to the assembly and

obtain the gene structure information. For RNA-seq-based gene

prediction, the filtered mRNA-seq reads were aligned to the

reference genome using STAR (2.7.3a, default). The transcripts

were then assembled using StringTie (v1.3.4d) and open reading

frames (ORFs) were predicted using PASA (v2.3.3). For de novo

prediction, AUGUSTUS (v3.3.1) with default parameters was

utilized for ab initio gene prediction using the RNA-seq assembled

training set. EVidenceModeler (v1.1.1) was used to produce an

integrated gene set in which genes with TEs were removed using
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the TransposonPSI package (http://transposonpsi. sourceforge.

net/). Untranslated regions (UTRs) and alternative splicing regions

were determined using PASA based on RNA-seq assemblies. The

longest transcripts for each locus were retained, and regions

outside the ORFs were designated as UTRs.

Gene function information, motifs and domains were assigned

by comparisons with public databases, including SwissProt (http://

www.gpmaw.com/html/swiss-prot.html), NR, KEGG (http://

www.genome.jp/kegg/), KOG/COG (http://www.ncbi.nlm.nih.

gov/COG/) and GO (http://www.geneontology.org/). Putative

domains and gene GO terms were identified using the InterProS-

can program (version 5.32–71.0) with default parameters. For the

other four databases, BLASTp (v2.7.1) was used to compare the

protein sequences against the four well-known public protein

databases with an E-value cut-off of 1 e-5, and the results with

the lowest E-values were retained.

Gene cluster and gene family analyses

Gene clustering was conducted using OrthoFinder (Emms and

Kelly, 2019), and the input gene sets were collected from

sequenced plant species. The extracted protein sequences were

aligned pairwise to identify conserved orthologs using BLASTp set

to an E-value threshold of ≤1 e-5. Orthologous intergenomic

gene pairs, paralogous intra-genome gene pairs and single-copy

gene pairs were further identified from the OrthoFinder results.

Genes with no homologues in other plant genomes were

identified as species-specific. The GO and KEGG enrichment

analyses were conducted using the AllEnricher software (Zhang

et al., 2020), and a P-value <0.05 was used as the significance

threshold.

The coding sequences were extracted from single-copy fam-

ilies, and each ortholog group was aligned multiple times using

MAFFT (v7.313). Poorly aligned sequences were eliminated using

Gblocks (version 0.91b), and the GTRGAMMA substitution model

of RAxML was used for phylogenetic tree construction with 1000

bootstrap replicates. The generated tree files were displayed

using MEGA (version 10.1.8). Based on the phylogenetic tree,

Reltime of MCMCTree (Puttick, 2019) was used to compute the

mean substitution rates along each branch and estimate the

species divergence time. Three fossil calibration times were

obtained from the TimeTree database (http://www.timet ree.org/

), including the divergence times of Toona and Citrus (50.1–69.2
Mya), the divergence time of Citrus and Acer (68.0–82.8 Mya)

and the divergence time of monocot and eudicot (lower

boundary of 130.0 Mya).

Gene family expansion and genes under positive
selection

According to the results of OrthoMCL (http://orthomcl.org/

orthomcl/), expansions and contractions of orthologous gene

families were detected using CAFE (v4.2.1), which uses a birth

and death process to model gene gain and loss over phylogeny.

The average nonsynonymous (Ka)/synonymous (Ks) substitution

rate values were calculated, and the branch-site likelihood ratio

test was conducted using Codeml implemented in the PAML

package (version 4.8) to identify positively selected genes. Genes

with a value <0.05 under the branch-site model were considered

positively selected genes.

Screening for whole-genome duplication events

4DTv and Ks were used to detect WGD events. First, protein

sequences were extracted, and all-vs-all paralog analysis was

performed using the best hits from primary protein sequences by

self-BLASTp in these plants. After filtering by identity and

coverage, the BLASTp results were subjected to MCScanX (Wang

et al., 2012), and the collinear blocks were identified. Finally,

4DTv was calculated for the syntenic block gene pairs using

KaKs_Calculator (Version 2.0), and potential WGD events in each

genome were evaluated based on their Ks and 4DTv distribution.

WGD (Zwaenepoel et al., 2019) was used to conduct the Ks

estimation under the default parameters.

Duplication source detection

To investigate the resources of the duplication genes during gene

family evolution, we identified genome-wide duplications for A.

indica and M. azedarach using T. sinensis as an outgroup. We

identified different modes of gene duplication, namely WGD,

tandem duplicates (TD), proximal duplicates (less than 10 gene

distance on the same chromosome: PD), transposed duplicates

(transposed gene duplications: TRD) or dispersed duplicates (other

duplicates than WGD, TD, PD and TRD: DSD) using DupGen_-

finder (Qiao et al., 2019) with default parameters.

Gene family analysis

The genomes of all species were obtained from the NCBI

database (Supplementary Table S1). A simple HMM search and

BLASTn (2.2.30+) were used for sequence searching within the

TBtools software (Chen et al., 2020). The original genes and

selected Pfam IDs (Table S12 and Table S13) of the relevant genes

were selected from the reviewed A. thaliana sequences from the

UniProt website (https://www.uniprot.org/). The representative

genes were collected using TBtools, and redundant sequences

were screened manually. All the final sequences were aligned

with the MUSCLE algorithm of MEGA 11 (MEGA, USA) and then

screened by length (>30%) and conservative amino acid sites of

the main Pfam sequence HMM logo. Adobe Illustrator CS6

(Adobe, USA) was used to edit and produce the figures.
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