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Abstract: Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long
been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast
cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer
stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an
underrecognized but very promising target for cancer immunotherapy. In this review, we discuss
the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells
and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we
address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and
phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies
targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast
cell mediators and their downstream effects. Finally, we discuss the importance of translational
research using patient samples to advance the field of mast cell targeting to optimally improve patient
outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical
and translational studies targeting mast cells in different cancer contexts are now warranted.

Keywords: mast cell; cancer; immunotherapy; microenvironment; cancer immunology; c-KIT; TLR;
toll-like receptors

1. Introduction

Cancer immunotherapy—in particular, immune checkpoint blockade (ICB)—has
transformed oncology care in the last decade and significantly improved survival in a
wide range of metastatic tumors and more recently has improved outcomes in earlier stage
disease. Based on significant treatment benefit, ICB treatments are FDA approved either as
monotherapy or in combination with other cancer therapies in melanoma, breast cancer,
renal cell carcinoma, head and neck squamous cell carcinoma, and lung cancer, among
others [1–5]. Unfortunately, while responders derive significant benefit from therapy,
many patients do not have treatment responses. While currently, programmed cell death
protein 1 (PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) immune checkpoint blockade are clinically approved, other
immune checkpoint targets are under clinical investigation. Initial investigation of cancer
immunotherapies has focused on T-cell targeted therapies such as ICB because T-cells
are considered primary effector cells of anti-tumor immunity and induce particularly
long-lasting memory responses. There is also increasing research into targeting upstream
determinants of T-cell activation such as antigen-presenting dendritic cells that initiate
the cancer immunity cycle with T cells [6]. Recently, there is a growing awareness of the
importance of other immune cells in shaping cancer outcomes and anti-tumor immunity,
including mast cells, which we recently described to be associated with chemoresistance in
breast cancer [7].

Mast cells are tissue-resident myeloid cells present throughout the connective tissues
in our body that contain coarse granules with potent inflammatory mediators such as
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histamine. While they are traditionally associated with allergy and inflammation, mast
cells are now recognized to critically shape tumor cell and tumor microenvironment
behavior. In this review, we examine the role of mast cells as context dependent and
highly plastic mediators of anti-tumor immunity and discuss strategies to therapeutically
manipulate them to elicit durable immune responses as monotherapy or in combination
with T-cell-targeted approaches such as immune checkpoint blockade. In addition to
reviewing existing pre-clinical and clinical data in oncology, we address mast cell targeting
modalities used in other fields such as allergic diseases. While there is extensive pre-clinical
and some translational research regarding the relationship between mast cells and cancer
pathogenesis or outcomes, targeting mast cells as a therapeutic strategy in human cancer
patients is in its relative infancy. We therefore address the importance of a translational
research approach that utilizes samples from cancer patients to identify optimal mast-cell-
targeting therapies and determine future rational therapeutic combinations.

2. Mast Cell Background

Mast cells are derived from CD34+ bone marrow myeloid precursors that circulate
in the blood and migrate to peripheral tissues where they develop and differentiate into
mature mast cells under the pressure of tissue specific chemokines and cytokines (such as
stem cell factor and IL-4), extracellular matrix proteins, and adhesion molecules. Mast cells
are strategically located throughout the body near blood vessels, lymphatics, and mucosal
surfaces such as the skin and gastrointestinal tract, where they interface with the external
environment. Their location allows them to mediate systemic responses to local stimuli
and orchestrate important aspects of both innate and adaptive immunity as well as other
physiologic processes.

Mast cells have numerous stimulatory and inhibitory ligands that lead to integration
of incoming signals and secretion of various stored mediators in secretory granules as
well as newly synthesized mediators. Pre-formed secretory granules contain proteases
such as tryptase and chymase, histamines, heparin, lysosomal enzymes, and inflammatory
cytokines such as TNF-α that are implicated in severe allergic diseases such as urticaria
and anaphylaxis. Mast cells exhibit substantial heterogeneity in their granule content,
with one subtype classification distinguishing based on whether they contain tryptase
without chymase (MCT), chymase without tryptase (MCC), or both (MCTC) [8,9]. Murine
studies suggest that mast cell phenotypes are versatile and can change based on the
surrounding microenvironment including cytokine exposure as well as the stage of mast
cell development [8,10–14]. Two types of degranulation have been described: anaphylactic
degranulation in which entire granule contents are rapidly released to the extracellular
environment, or piecemeal degranulation in which only a portion of the contents of pre-
formed granules are released in a more graded and specific manner [9,15]. Both of these
have been described in humans as well as other species. In addition to or separately from
degranulation, mast cell activation can result in the release of various pre-formed but
also largely de novo synthesized growth factors, eicosanoids including prostaglandins,
leukotrienes, chemokines such as CXCL10, and cytokines [8,16,17]. Cytokines shown to be
secreted by mast cells include inflammatory cytokines such as TNF, IL-6, and IL-1, but also
anti-inflammatory cytokines such as IL-10 and TGF-ß; mast-cell-derived growth factors,
cytokines, and chemokines are reviewed more thoroughly elsewhere [16].

The most well-studied mechanism through which mast cell degranulation occurs
is antigen-specific immunoglobulin E (IgE) cross-linking of the high-affinity IgE-bearing
surface receptor FcεRI following exposure to a cognate antigen leading to rapid mast cell
degranulation [17]. Mast cells can also be activated via alternative mechanisms such as by
damage-associated and pathogen-associated molecular patterns through toll-like receptors,
complement proteins, cytokines, and other stimuli. Substantial heterogeneity among mast
cells in the expression of different surface receptors such as complement receptors has been
demonstrated with resulting functional consequences, though our understanding of the
mechanism for this differential expression is limited [8,18–20].



Cells 2021, 10, 1270 3 of 17

The net results of mast cell activation, degranulation, and/or secretion of inflam-
matory mediators include activation or attraction of other immune, stromal, neuronal,
and epithelial cells which lead to changes in the local tissue microenvironment such as
vasodilation and angiogenesis and also activation of systemic immune responses (Figure 1).
Mast cell activation and/or degranulation can happen in the classical rapid manner leading
to a massive release of inflammatory mediators and dramatic clinical presentations such
as anaphylaxis and angioedema. However, these processes can also occur gradually with
the slow release of specific mediators leading to chronic inflammatory and local tissue
changes. This latter form of mast cell activation is particularly relevant in cancer where
mast cells have been seen to function as central regulators of tissue remodeling and as
sentinel immune cells that coordinate innate and adaptive immune responses [21].
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Figure 1. Mast cells are orchestrators of anti-tumor immunity and tumor control. Mast cells directly impact tumor cells
as well as immune and non-immune components of the tumor microenvironment through chemokine secretion and
release of other mediators, leading to varied cancer-promoting or cancer-suppressive properties. These components of
the tumor microenvironment can further interact with each other and/or the tumor cells directly, with the net cumulative
signals determining the impact on tumor control. TNF-α, tumor necrosis factor alpha; VEGF, vascular endothelial growth
factor; PDGF-β, platelet derived growth factor beta; IL-6, interleukin 6; CXCL10, C-X-C motif chemokine ligand 10; CCL3,
chemokine ligand 3; CCL5, chemokine ligand 5; OX40L, OX40 ligand; CXCL8, C-X-C motif chemokine ligand 8; CCL2,
chemokine ligand 2; CXCL1/2, chemokine ligand 1 or 2; Tregs, regulatory T cells; NK cells, natural killer cells; MDSCs,
myeloid-derived suppressor cells.
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3. Mast Cells in Cancer and Anti-Tumor Immunity

Tumor-associated mast cells have been observed in the solid tumor microenvironment
of numerous cancers and have intriguingly been found to be a favorable prognostic factor
in some cancers, such as esophageal adenocarcinoma, ovarian cancer, and diffuse large
B-cell lymphoma [22–24], while they are associated with a poor or mixed prognosis in other
cancers, such as gastric cancer, lung cancer, melanoma, and breast cancer [7,25–29]. There
is also growing awareness that mast cells are a biomarker and important determinant of
cancer treatment responses. We recently demonstrated that higher pre-treatment mast cell
infiltration is significantly associated with poor responses to pre-surgical chemotherapy in
an aggressive form of localized breast cancer [7], and recent data show that higher mast cell
tumor infiltration predicts poor responses to anti-PD-1 ICB in melanoma [30]. Mast cells
can accumulate in cancers due to various growth factors and chemokines, including stem
cell factor (SCF), vascular endothelial growth factor (VEGF), CCL2, IL-8, complements, and
PGE2 [21,31]. Due to the multifaceted nature of mast cells and their immunomodulatory
effects upon activation or degranulation, mast cells have been found to be both pro- and
anti-tumorigenic (Figure 1). As discussed above, there is substantial variation in mast cell
phenotype and function and the extent to which they produce and release mediators based
on anatomic location, stage of mast cell development, and exposure to environmental
inflammatory mediators. Additionally, the downstream effects of secreted mediators are
also heterogeneous based on the specific constitution of the surrounding environment
and target cells. Therefore, the ability of mast cells to promote or impede tumorigenesis
has been shown to be dependent on tumor type, cancer stage, the activation status of the
mast cells, the location of the mast cells within the tumor microenvironment, and the net
balance of pro- and anti-tumorigenic effects on the tumor cells [15]. For example, in a
study of surgically resected non-small cell lung cancer patients, intratumoral mast cells
but not stromal mast cells were associated with a favorable prognosis [32,33]. Similarly,
analysis of prostate cancer samples shows that a higher number of mast cells in the tumor
compartment had longer cancer-specific survival, whereas the inverse was seen with mast
cell infiltration in the non-malignant stromal compartment [23].

Mast cells have been shown to directly impact the tumor cells as well as the surround-
ing tumor-associated stroma to alter tumor pathogenesis through multiple mechanisms
(Figure 1). For example, mast cells can release large quantities of tumor necrosis factor
alpha (TNF-α), which leads to direct tumor cell cytotoxicity [34], while in other contexts
TNF-α promotes tumor growth [35]. Histamine is another secreted mast cell factor that
has varied downstream effects depending on its surrounding context and which of its
receptors (H1R, H2R, H3R, and H4R) are stimulated. Direct anti-proliferative as well as
tumor-promoting effects have been observed on cancer cells [36–38]. Mast cells also release
proteases such as tryptase and chymase that can activate matrix metalloproteinases that
degrade the extracellular matrix and tissues around the tumor, allowing for tumor growth,
angiogenesis and metastasis [39]. In addition, mast cells release VEGF, platelet-derived
growth factor-β (PDGF-β) and IL-6 that promote angiogenesis, allowing for enhanced
blood vessel formation, cellular proliferation and tumor growth [40,41]. Mast-cells also
secrete IL-1, a pro-inflammatory cytokine that has been linked to tumorigenesis, tumor
progression, and excessive inflammatory reactions [42,43]. Other mast cell mediators, such
as heparin, prostaglandins, and other cytokines, also impact the non-immune aspects of
the tumor and its environment.

A critical role for mast cells in modulating tumor progression is their role as a sen-
tinel immune cell that releases chemokines, cytokines, and other factors that recruit other
immune cells to the tumor microenvironment and alter their function. Located close to
the vasculature, mast cells can translate local cues to systemic tumor modulating immune
responses and also can be among the first cells to respond to systemic signals and be re-
cruited themselves to sites of inflammation. Mast cells release chemokines such as CXCL10,
CLL3, and CCL5 that recruit CD8 T cells and CD4 T cells to the tumor. After recruitment,
they can modulate T-cell activity further [44–52] through TNF-α secretion that can enhance
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activation, or upregulate PD-L1 that can inhibit CD8 T cells. Mast-cell-secreted histamine
can favor specific T helper subtypes or T regulatory responses depending on which recep-
tor is stimulated. Secreted IL-6 can preferentially inhibit suppressive T regulatory cells,
and direct OX40–OX40 ligand contact-dependent interactions can inhibit T regulatory
cell functions relative to T effector cells. Activated mast cells have also been shown to
upregulate MHC-II and costimulatory molecules to function as local antigen-presenting
cells to T cells [44,53]. While several of these T-cell-modulating functions can promote
anti-tumor immunity, other studies have shown that mast cell infiltration is associated with
reduced IFN-γ producing CD8 T cells [54]. NK cells are another lymphoid cell subtype that
can be recruited to the tumor microenvironment through mast-cell-secreted chemokines
such as CCL3 and CXCL8 [21] and are activated in a contact-dependent manner by mast
cells to secrete IFN-γ. Histamine secreted by mast cells has been shown to mediate changes
to monocytes which in turn reduce immunosuppressive signals to NK cells [55–57].

Mast cells can also recruit and alter the function of myeloid cells such as tumor-
associated macrophages, myeloid-derived suppressor cells, neutrophils and dendritic
cells. Activated mast cells recruit tumor-associated macrophages by CSF2, CCL3, and
IL-6 secretion, resulting in increased tumor growth, as shown in a gastric cancer murine
model [58]. Myeloid-derived suppressor cells are recruited through CCL2 [59] and possibly
CXCL1 and CXCL2 (which recruit neutrophils) to the tumor [60], where their suppressive
activity is enhanced by direct contact with mast cells [61] or alternatively matured to less
suppressive differentiated cells through histamine [62]. Dendritic cells are a critical myeloid
cell subset that is considered the most potent antigen-presenting cell and stimulates antigen-
specific T-cell immunity. However, depending on local cues, dendritic cells can stimulate
anti-tumor phenotypes or can instead stimulate T regulatory cells and promote tolerance.
Mast cells have been shown to promote dendritic cell migration to lymph nodes through
TNF-α, histamine, and IL-6 and promote anti-tumor T-cell phenotypes through histamine.
Alternatively, mast cells can promote immune tolerance through prostaglandins [63–68].
Mast cell degranulation has importantly been shown to counter T-cell tolerance [69]. Mast
cells also secrete TGF-β and IL-10, which have suppressive effects on multiple immune
cell subsets [70,71]. Mast-cell-derived TGF-β and IL-10 promote the development of IL-
10-secreting T regulatory cells, downregulate costimulatory molecules on dendritic cells,
decrease pro-inflammatory cytokines by macrophages, ultimately reduce antigen-specific T-
cell responses, enhance fibrosis, and even regulate mast cells in an autocrine and paracrine
manner [18,67,68].

The net balance of mast-cell-induced anti-tumor and tumor-promoting signals on the
tumor, stroma, and immune microenvironment determines how tumor-associated mast
cells impact final tumor growth. Tumor-directed cancer therapies such as chemotherapy,
targeted therapies, radiation therapy, and immunotherapies further contribute to the tumor
context that determines this balance. Appropriately understanding how these factors
interact will therefore be important to studying relevant mast cell biology and how to
optimally target mast cells as a therapeutic option to improve cancer outcomes.

4. Targeting Mast Cells for Cancer Therapy

Based on the growing literature supporting the key role of mast cells in both promoting
and decreasing tumor growth across cancers, they are a highly attractive therapeutic target
for a variety of different malignancies. Therapeutics aimed at targeting mast cells in cancer
have generally taken three approaches: (1) reducing mast cell numbers, (2) modulating
mast cell activation and phenotype, and (3) altering secreted mast cell mediators and their
downstream effects (Figure 2).
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made using the tyrosine kinase inhibitor imatinib. Imatinib is a FDA-approved treatment 
for gastrointestinal stromal tumors which are driven by c-KIT mutations in >80% of cases, 
chronic myelogenous leukemia where it targets the aberrant BCR-ABL kinase, and in se-
lect metastatic melanoma tumors with activating c-KIT mutations [73–75]. Additional c-
KIT-targeting therapies used in clinical practice include nilotinib, dasatinib, sunitinib, 
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Figure 2. Therapeutic strategies to target mast cells for cancer immunotherapy. Mast cells can be therapeutically targeted by
(1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast
cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, TLR
agonists), and (3) altering secreted mast cell mediators and their downstream effects. c-KIT, tyrosine protein kinase KIT or
CD117; SYK, spleen tyrosine kinase; PI3K, phosphoinositide 3-kinase; BTK, Bruton’s tyrosine kinase; SHIP-1, Src homology
2 domain containing inositol polyphosphate 5-phosphatase 1; SIGLEC-8, sialic acid-binding Ig-like lectin 8; FcγRIIB, Fc
gamma receptor IIB; PD-L1, programmed death ligand 1; TLR, toll-like receptor; TNF-α, tumor necrosis factor alpha;
H1R-H4R, histamine 1–4 receptor; FcεR1, high-affinity IgE receptor or Fc epsilon receptor 1; IgE, immunoglobulin E.

4.1. Reducing Mast Cell Numbers

Modulation of mast cell numbers has been a successful therapeutic strategy in disor-
ders such as systemic mastocytosis in which mast cell numbers are pathologically increased.
Mast cell numbers can be reduced by preventing terminal mast cell differentiation from
myeloid precursor cells, decreasing growth factors needed for survival, or reducing recruit-
ment of mast cells to the tumor. SCF is a cytokine that binds to the c-KIT receptor and is
important for hematopoiesis and the regulation of hematopoietic stem cells, but later in
hematopoietic development it is especially important for mast cell differentiation, survival,
proliferation, and recruitment, as mast cells are one of the only terminally differentiated
immune cells that express c-KIT [72]. Attempts at reducing or enhancing mast cell numbers
through targeting c-KIT in a variety of solid tumors have been made using the tyrosine
kinase inhibitor imatinib. Imatinib is a FDA-approved treatment for gastrointestinal stro-
mal tumors which are driven by c-KIT mutations in >80% of cases, chronic myelogenous
leukemia where it targets the aberrant BCR-ABL kinase, and in select metastatic melanoma
tumors with activating c-KIT mutations [73–75]. Additional c-KIT-targeting therapies
used in clinical practice include nilotinib, dasatinib, sunitinib, midostaurin, ibrutinib and
masitinib [76]. Notably, mast cells are not the direct or intended targets of these drugs in
the malignancies for which they are clinically used (other than systemic mastocytosis), and
additionally these drugs are not specific to c-KIT but inhibit other receptors such as ABL
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kinase, Src kinase, and PDGFR-α and PDGFR-β. c-KIT-specific monoclonal antibodies such
as CDX-1058 and CDX-0159 are in clinical development in inflammatory disease as well as
in c-KIT-positive solid tumors (NCT02642016) and, unlike the tyrosine kinase inhibitors,
are more specific to the intended target. In c-KIT-driven tumors, translational studies
support the immunomodulatory role of c-KIT inhibition. Rusakiewicz et al. showed that
imatinib treatment in gastrointestinal stromal tumors leads to a decrease in major histo-
compatibility class I molecules on tumor cells along with an increase in NK cell infiltration,
which was associated with improved progression-free survival [77]. Unfortunately, mast
cells were not assessed in this analysis, and it appears the immune effects are related to
tumor-specific effects.

In cancers (not driven by c-KIT or Abl mutations), reducing mast cell numbers through
c-KIT-targeting therapy alone has not yet proven to be a successful cancer strategy clinically
or pre-clinically. For example, in the transgenic TRAMP mouse model of prostate cancer,
while imatinib administration did decrease the development of well-differentiated prostate
adenocarcinoma, it unexpectedly increased the incidence of an aggressive neuroendocrine
phenotype of prostate cancer [78,79], raising a significant clinical concern that prevented
translation to human studies. This discrepancy was felt to be due to defective signaling in
the neuroendocrine tumors downstream of c-Kit. In the 4T1 mouse model of triple negative
breast cancer, the administration of imatinib led to an increase rather than decrease in tumor
mass as well as an increase in peri-tumoral blood clotting [80]. The authors concluded
that this tumor growth was related to reduced mast cells and associated heparin secretion
that would normally inhibit clotting and promote tumor control. Notably, the mast cell
stabilizer sodium cromolyn also led to enhanced blood clotting and intratumoral hypoxia
in this tumor model [80].

In contrast to the limited success with monotherapy studies, recent studies focusing
on the immunomodulatory impact of mast cells suggest that depleting mast cells may
synergize with other immunotherapeutics to most effectively control tumor growth. Using
a humanized mouse model of melanoma, Somasundaram et al. identified that after PD-1
blockade, mast cells co-localize with T regulatory cells in regions of the tumor with reduced
Granzyme B+ CD8+ immune cells and decreased HLA-class I expression, indicating a
potential mechanism of resistance to PD-1 blockade [30]. While PD-1 blockade alone led to
partial tumor control, complete regression of melanoma tumors was seen after depleting
mast cells with sunitinib or imatinib. These mice further rejected rechallenged tumors
indicating long-term memory T-cell responses. Notably, mast cell depletion alone in the
absence of PD-1 blockade was insufficient at controlling tumor growth, underscoring the
importance of the synergy between these two immunomodulatory approaches. Cedirinib,
another tyrosine kinase inhibitor that instead targets VEGF and PDGF receptors, also did
not demonstrate complete regression when combined with PD-1 blockade.

Mast cell infiltration could also be reduced by targeting chemoattractants in the tumor
tissue that recruit mast cells to the tumor microenvironment. While SCF is an important
mast cell chemokine, many of the other chemoattracts such as CCL2 and VEGF that attract
mast cells have also been shown to attract other immune subtypes; it is also not clear which
are most relevant to mast cells in humans [81]. Until we can clarify the importance of
these chemokines in human cancers and their impact on mast cells, at this time these are
suboptimal mast-cell-targeting therapies in cancer.

4.2. Modulating Mast Cell Activation and Phenotype
4.2.1. Stabilizing Mast Cell Degranulation

Another therapeutic strategy for targeting mast cells under investigation is the pre-
vention or abrogation of mast cell activation. Mast cell stabilizing agents that prevent
degranulation are commonly used in allergic diseases, such as cromolyn sodium, and have
been investigated in different preclinical models of solid tumors. In a xenograft mouse
model of thyroid cancer, tumor growth was enhanced when co-injected with human mast
cells due to an increase in tumor proliferation and vascularization [82]. Treatment with
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cromolyn significantly reduced tumor cell proliferation and growth. It should be noted
that cromolyn did not impact tumor growth in this xenograft model in the absence of the
human mast cells. In a study of MYC-induced pancreatic neuroendocrine tumors, MYC ac-
tivation was associated with mast cell recruitment that was required for tumor growth, and
treatment with cromolyn sodium prevented mast cell degranulation and decreased tumor
growth [83]. More recently, in a gastric adenocarcinoma mouse model, it was demonstrated
that gastric tumor cells produced IL-33, which resulted in mast cell activation that led to the
production of macrophage-attracting factors CSF-2, CCL3, and IL-6 and subsequent tumor
growth [58]. Cromolyn sulfate was successfully used in this model to decrease macrophage
recruitment to the tumor microenvironment, tumor angiogenesis, tumor proliferation, and
ultimately tumor growth. As described above with the 4T1 breast cancer tumor model,
however, cromolyn is not universally effective as a monotherapy across tumor types, likely
due to the context-dependent role of mast cells. While cromolyn is clinically effective in
the treatment of allergic diseases and systemic mastocytosis, we do not have clinical trials
at this time evaluating its efficacy in cancer patients.

4.2.2. Targeting the FcεR1 Signaling Pathway

Rather than stabilize and prevent the release of mast cell mediators, upstream intracel-
lular signaling pathways within mast cells can alternatively be targeted. IgE binding to the
FcεRI results in FcεRI aggregation, then downstream phosphorylation of immunoreceptor
tyrosine-based activated motifs on the receptor subunits, activation of spleen tyrosine
kinase (SYK), phosphoinositide 3-kinase (PI3K), and Bruton’s tyrosine kinase (BTK) with
ultimate downstream release of inflammatory mediators [84]. In allergic disorders such
as asthma, anti-IgE monoclonal antibodies that inhibit the crosslinking of the FcεRI have
been developed to prevent mast cell activation and degranulation. Omalizumab is an
anti-IgE humanized monoclonal antibody that has been shown to be effective in severe
allergic asthma and is commonly prescribed to patients today [85]. From the perspective
that mast cell and mast-cell-induced inflammation is favorable in inducing anti-tumor
responses, anti-tumor IgE antibodies have been proposed. Especially in tumors with high
mast cell infiltration, the high density of FcεRI and longer half-life of antibodies com-
pared to IgG antibodies make this an attractive therapeutic modality. Anti-tumor mast
cell degranulation and decreased tumor cell growth were observed with tumor targeted
humanized monoclonal anti-HER-2/neu IgE and also the humanized anti-CD20 IgE in
in vitro studies [86]. Anti-MUC-1 IgE in an MUC-1-expressing 4T1 murine breast cancer
model in combination with mast-cell-attracting chemokines led to tumor rejection, and
importantly also led to the rejection of 4T1 cells subsequently on the contralateral flank
in the absence of either the IgE antibody or chemokines, suggesting a memory immune
response [87]. Of note, anti-tumor IgE antibodies are limited to targetable tumor antigens
such as HER2, CD20, and MUC-1 as above.

Downstream of IgE binding to FcεRI, the signaling cascade can be inhibited by block-
ing early stimulatory signals such as SYK, PI3K, and BTK. These proteins are being targeted
in allergic diseases in order to target mast cell mediators and are also either approved
or in clinical testing in cancers, though not specifically for the purpose of targeting mast
cells. For example, the PI3K alpha-specific inhibitor alpelisib has been studied in allergic
rhinitis and is used in estrogen-receptor-positive metastatic breast cancer [88,89]. PI3K
delta and PI3K gamma-specific inhibitors are undergoing clinical testing in multiple can-
cers, especially in the context of combination immunotherapy. It will be informative to
the field of mast cell cancer therapy to study pharmacodynamic changes in intratumoral
mast cells and mediators in patient samples treated with these therapies, and to study the
mast-cell-specific role of these therapies in pre-clinical studies. Alternatively, there have
been attempts at stimulating inhibitory signaling pathways in mast cells such as SHIP-1 (Src
homology 2 domain-containing inositol 5′ phosphatase 1) phosphatase. The phosphatase
SHIP-1 can inhibit the above signal by dephosphorylating the stimulatory product of PI3K
activation. A SHIP-1 activator AQX-1125 is currently undergoing clinical testing in allergic
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asthma [90]. A limitation of targeting the SYK/PI3K/BTK/SHIP-1 pathway is that the
enzymes have widespread expression across cell types, so toxicity is a significant concern
in drug development.

4.2.3. Stimulating Toll-Like Receptors to Modulate Mast Cells towards an
Anti-Tumor Phenotype

Given mast cell abundance in many solid tumors and their plasticity that ranges
from pro-tumorigenic to anti-tumorigenic function, there are also significant efforts to
favorably manipulate already existent intra-tumoral mast cells towards an anti-tumor
phenotype rather than deplete them. Targeting toll-like receptors (TLR) presents a viable
therapeutic strategy to achieve this either directly with synthetic TLR agonists or indirectly
via intermediate natural TLR agonists that are secreted in the body in response to other
immunotherapies. TLRs are membrane pattern recognition receptors expressed on both
immune and some non-immune cells that recognize structurally conserved molecules
derived from microbes such as lipopolysaccharide (LPS), flagellin, and unmethylated
CpG oligodeoxynucleotide DNA. In response to receptor activation, TLRs recruit adaptor
proteins to initiate a downstream signaling cascade that results in an innate immune
response with resultant antigen-specific adaptive immune responses. The field of TLR
cancer immunotherapy has historically focused on enhancing TLR activity on dendritic
cells, macrophages, and even B cells, but there is growing appreciation of the importance
of TLRs on mast cells in shaping cancer immunity. Human mast cells have been shown
to express the majority of TLRs—though the specific expression and role of the TLRs are
likely context dependent—and are now recognized to mediate the effects of several cancer
immunotherapies [91].

In the poorly immunogenic aggressive B16.F10 melanoma model, the TLR2 agonist,
Pam3CSK4, was shown to inhibit tumor growth in a mast cell TLR2-dependent manner;
tumor control was significantly reduced in the mast-cell-deficient KitW-sh/W-sh murine back-
ground or in mice with TLR2-deficient bone-marrow-derived mast cells compared to
wildtype mast-cell-containing mice [92]. This anti-tumor effect was mediated by recruit-
ment of CD8 T cells and NK cells likely by CCL3 secretion, IL-6 secretion potentially leading
to an anti-proliferative impact on tumor cells, and also reduced mature blood vessel density.
The latter highlights that repolarizing mast cells promotes favorable anti-tumor effects but
also decreases tumor-promoting properties such as vascular proliferation associated with
the suppressive tumor-infiltrating mast cells. In another melanoma study with B16-F10 and
M3 tumor models, the TLR7 agonist, imiquimod, was observed to significantly increase
mast cell production of the chemokine CCL2 in a TLR7-dependent fashion, which subse-
quently leads to the recruitment of effector plasmacytoid dendritic cells that ultimately
mediate cell killing and tumor control [93]. This is another example of mast cells being
critical intermediates for the efficacy of TLR agonist cancer immunotherapy.

Mast cells have also recently been shown to facilitate responses to immune checkpoint
inhibitor therapy. Kaesler et al. identified a systemic lipopolysaccharide signature in
melanoma patients treated with anti-CTLA-4 immune checkpoint blockade that developed
immune-mediated colitis and asked if this LPS activation at the tumor site may contribute
to cancer treatment responses. Using an ovalbumin-expression B16 melanoma model,
they observed a partial reduction in tumor volumes with adoptive transfer of tumor-
specific T cells. However, when tumor-specific T cells were combined with a peritumoral
LPS injection, complete tumor control was achieved. The authors then went back to
patient tumors to hypothesize potential mediators of LPS activation and observed that
mast cells were highly infiltrated in tumors with spontaneous immune regression. They
subsequently tested the role of mast cells in their murine models by studying the effect
of LPS exposure in two mast-cell-deficient models, which failed to mount an immune
response in contrast to wildtype mice. Furthermore, reconstituting these mast-cell-deficient
models with bone-marrow-derived mast cells restored the LPS-induced anti-tumor immune
response. Notably, this was shown to be TLR4 dependent as well as downstream NF-κB
dependent. This mast cell LPS-mediated TLR4 activation led to subsequent mast cell
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secretion of CXCL10, a chemokine that attracts effector T cells to tumors, which then
mediate anti-tumor immunity [94].

4.2.4. Targeting Inhibitory Receptors and Ligands

Antibodies targeting inhibitory cell surface receptors to inhibit mast cell activation
are another avenue of active research. Recently, SIGLEC-8 was identified as an inhibitory
receptor primarily present on the cell surface of mast cells, eosinophils and to a lesser degree
basophils [95,96], and when engaged by its ligand leads to direct antibody-dependent cell-
mediated cytotoxicity and decreased degranulation. Antolimab is a humanized IgG1
monoclonal antibody that agonizes SIGLEC-8 leading to decreased mast cell activation and
decreased inflammation in mouse models of anaphylaxis. It is currently being studied in
numerous clinical trials of allergic disorders and if safe and effective could be expanded to
clinical studies of solid tumor patients. FcγRIIB and CD300a are other known inhibitory
receptors on mast cells. FcγRIIB bi-specific antibodies and recombinant Fcγ and Fcε
recombinant fusion proteins that recognize both FcεR1 and FcγRIIB have been shown to
suppress human mast cells and prevent anaphylaxis in in vivo studies [97–100]. Similarly,
bispecific antibodies linking CD300a to IgE-bound FcεR1 have been shown to downregulate
mast cell activation and allergic processes in pre-clinical models [101]. With increasing
awareness that PD-L1 expressing myeloid cells are a critical mediator of PD-1/PD-L1
immune checkpoint blockade, emerging data suggest that mast cells may play a role in
this pathway. In a gastric cancer mouse study, tumor cell-derived TNF-α was shown to
increase the number of intratumoral mast cells expressing the inhibitory ligand PD-L1
which resulted in the suppression of T-cell immunity [52]. Blockade of mast-cell-associated
PD-L1 resulted in enhanced tumor control, CD3 T-cell infiltration, as well as increased IFN-
γ and granzyme B production. As we identify which clinical settings are most appropriate
for the inhibition of mast cell activation or inhibitory PD-L1, clinical trials in cancers with
these agents can be appropriately designed.

4.3. Modulating Effects of Mast Cell Mediators

Directly modulating the effects of mast cell mediators after secretion is a final thera-
peutic approach to alter mast cell downstream activation, including targeting histamine
or histamine receptors, proteases such as tryptase, and TNF-α. The effect of histamine is
highly tumor type dependent and has been shown to be both tumorigenic and have anti-
tumor effects depending on which histamine receptor (H1–H4) is activated and other local
cues as discussed above, complicating clinical translation. Along these lines, preclinical
and retrospective studies have supported both histamine receptor agonists or antagonists
in different settings [102]. In patients, systemic administration of histamine combined with
IL-2 was found to improve the efficacy of IL-2 therapy, potentially due to augmented NK
cell mediated tumor cell cytotoxicity [103,104]. Histamine antagonism has been studied
with mixed results. A pre-surgical trial of the H2 receptor antagonist cimetidine in breast
cancer did not influence tumor cell proliferation, though changes in immune cells were
not tested in this study [105]. Another trial of the H2 receptor antagonist famotidine in
the preoperative setting in a breast cancer cohort showed an increase in tumor-infiltrating
lymphocytes [106], but no clinical or anti-cancer endpoints were assessed. In colorectal
cancer, a Cochrane systematic review of six randomized control trials [107–112] of H2
receptor antagonists demonstrated improved overall survival (HR 0.70) with pre- and/or
postoperative therapy in patients who have had surgical resection with curative intent [113].
The modern relevance of these findings, however, is limited by more effective adjuvant
chemotherapy being available for high-risk patients compared to the control arms used in
these colorectal cancer trials.

Tryptase is another mast cell mediator released during mast cell activation and pro-
motes angiogenesis and degradation of the extracellular matrix, resulting in cancer growth,
cell invasion, and metastasis. Tranilast, nafamostat mesylate, and gabexate mesylate are
three mast cell tryptase inhibitors that have been shown preclinically to have anti-cancer



Cells 2021, 10, 1270 11 of 17

activity across multiple solid tumors either as monotherapy or in combination with other
cancer therapies, with the majority of studies focused on pancreatic, colorectal, and breast
cancer [114]. Uwagawa et al. studied the effect of nafamostat mesylate in combination with
gemcitabine in a phase II clinical trial in 35 patients with unresectable locally advanced
or metastatic pancreatic cancer and found the drug decreased circulating levels of tumor
marker CA19.9, improved quality of life, and had a median overall survival of 10.0 months
with a 40% 1-year survival rate [115,116]; this combination was not further pursued, as
combination chemotherapy regimens became standard of care. In a recent study, tranilast
synergized with liposomal doxorubicin and dual immune checkpoint inhibition (anti-
CTLA4 and anti-PD1 inhibitors) in triple negative breast cancer mouse models, where it
was found to restore perfusion and oxygenation and restore T-cell infiltration [117]. Of note,
while tryptase inhibitors decrease angiogenesis and inhibit matrix metalloproteinases, they
have additional effects, including the suppression of the immunosuppressive cytokine TGF-
β, inhibition of additional proteases, NF-κB down regulation, and MAP kinase pathway
inhibition [114].

TNF-α is another mast cell mediator that has long been implicated in the pathogenesis
of inflammatory bowel diseases such as ulcerative colitis and Crohn’s disease where TNF-
α inhibitors such as infliximab have been mainstays of therapy. In a study of colitis,
treatment with infliximab led to a significant decrease in the development of colorectal
cancers [118]. TNF-α has been shown to be detrimental for immune checkpoint blockade
by upregulating the secondary checkpoint component TIM-3 on ICB-induced CD8 T
cells [119]. The safety of the triple combination of ipilimumab, nivolumab and an antibody
inhibiting TNF-α (infliximab or certolizumab) is being studied in a phase I clinical trial in
advanced melanoma (NCT03293784). In cancer, TNF-α has had dual roles and in addition
to promoting cancer through chronic inflammation, also has direct cytotoxic effects and
stimulates anti-tumor immunity as discussed above. Given toxicity concerns, TNF-α has
been deemed unsafe to administer systemically but has shown some efficacy in isolated
limb perfusion in melanoma and sarcoma, where it has ≥80% objective response rates [90].
In colon cancer, direct injection of TNF-α into liver metastases has shown to be an effective
therapy in preclinical testing and was shown to have acceptable safety in a small phase I
trial of colon cancer patients [120].

Additional mediators such as the protease chymase, prostaglandins, leukotrienes,
cytokines, chemokines, and growth factors may also be relevant targets, but, as with the
other mediators, specificity to mast cells is limited.

5. Conclusions and Future Directions: Importance of Translational Research

Translational data from patient tumor tissues across a range of solid tumors and
preclinical studies strongly indicate that mast cells are critical determinants of anti-tumor
immunity and cancer outcomes. Existing work suggests that mast cells may be key or-
chestrators of the initial anti-tumor immune response but also a mechanism of resistance
to immune checkpoint blockade as well as other cancer therapies. As mast-cell-targeting
therapies are increasingly used and studied in allergic diseases, their application to cancer
presents an exciting and practical frontier in cancer immunotherapy. Possible therapeutic
avenues include c-KIT inhibitors, mast cell stabilizers, FcεR1 signaling pathway activa-
tors/inhibitors, antibodies targeting inhibitory receptors and ligands, TLR agonists, and
modulators of mast cell mediators. Especially compelling are newer studies showing syn-
ergy and durable responses induced by combination with immune checkpoint blockade.
However, clinical translation is limited by mast cell phenotypic plasticity and context
dependence, with different anti-tumor and pro-tumor ramifications depending on specific
biologic circumstances such as tumor type, mast cell location in the tumor microenviron-
ment and the activation status of the mast cells.

For optimal translation of mast-cell-directed therapies to the clinic, it is imperative to
incorporate patient tissue-based translational research to study the biologic relevance and
therapeutic efficacy of mast-cell-directed therapies. First, our understanding of relevant
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mast cell biology is limited by a substantial portion of studies conducted in vitro with
human and murine samples, inherent differences in mast cell biology between humans and
experimental murine models, and difficulty in showing specificity of mast cell mediators
such as cytokines and chemokines to mast cells as they can be secreted by multiple cell
types. In addition, the context dependence of mast cells necessitates a comprehensive
understanding of the relevant context not only of the background cancer—cancer type,
stage, likely treatment history and concurrent anti-cancer therapies—but also of the mast
cells’ activation status, location within tumor and how they are being altered by the investi-
gational agents of interest. Advances in immune monitoring are allowing for the in-depth
profiling of immune cells with single cell sequencing technologies, functional assays that
enable the assessment of polyfunctional responses, and multiplexed immunohistochem-
istry that allow for an understanding of spatial organization and interaction between cells.
Together, this type of research will not only be critical in advancing the field by identifying
targetable features and pathways in mast cells that can be therapeutically manipulated but
also how these change longitudinally with other systemic therapies to determine optimal
therapeutic combinations. As preclinical investigations such as combination studies with
PD-1 immune checkpoint blockade in melanoma suggest, it may be identifying optimal
therapeutic combinations that will be most successful rather than mast cell targeting as
monotherapy. Importantly, in designing the clinical trials to test such novel combinations, it
will be important to pair rationale trial design with pharmacodynamic assessments to best
identify mechanisms of treatment response and resistance. Clinical assessment of toxicities
will also be critical to ensure that while attempting to favorably modulate the anti-tumor
properties of mast cells, biological responses critical to maintaining the host’s state of health
are not adversely perturbed. Together with continued preclinical mechanistic studies, such
a translational research approach will allow us to most effectively extrapolate the success
of mast-cell-directed therapies in other diseases to the field of cancer immunotherapy.
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