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Abstract

Variation in the onset, progression, and severity of symptoms associated with metabolic disorders such as diabetes impairs the diagnosis
and treatment of at-risk patients. Diabetes symptoms, and patient variation in these symptoms, are attributed to a combination of genetic
and environmental factors, but identifying the genes and pathways that modify diabetes in humans has proven difficult. A greater under-
standing of genetic modifiers and the ways in which they interact with metabolic pathways could improve the ability to predict a patient’s
risk for severe symptoms, as well as enhance the development of individualized therapeutic approaches. In this study, we use the
Drosophila Genetic Reference Panel to identify genetic variation influencing hyperglycemia associated with loss of Sirt1 function. Through
analysis of individual candidate functions, physical interaction networks, and gene set enrichment analysis, we identify not only modifiers
involved in canonical glucose metabolism and insulin signaling, but also genes important for neuronal signaling and the innate immune
response. Furthermore, reducing the expression of several of these candidates suppressed hyperglycemia, making them potential candi-
date therapeutic targets. These analyses showcase the diverse processes contributing to glucose homeostasis and open up several
avenues of future investigation.
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Introduction
Metabolic diseases, and in particular diabetes, are one of the

most pressing health crises in the developed world, with inciden-

ces continuing to rise in the last 20 years (CDC 2020). A total of

37.7% of adults in the United States are diagnosed as obese and

10.5% as having some form of diabetes, and it is estimated that

millions more go undiagnosed (Flegal et al. 2016; CDC 2020). What

is more, the monetary cost of these disorders to the public has

grown to astronomical levels. It is estimated that $237 billion in

direct costs and at least $90 billion in indirect costs were spent on

healthcare related to diabetes and its various complications in

2017 alone, up �25% from 2012 (Flegal et al. 2016). A focused

effort has been made to understand both the genetic and envi-

ronmental contributors to metabolic homeostasis, as well as to

the disruption of that homeostasis that leads to disease (Barroso

and McCarthy 2019).
Unfortunately, even identifying these contributors has proven

difficult. Metabolic diseases are complex, and the onset, progres-

sion, and ultimately the severity of any individual case is depen-

dent upon a myriad of genetic and environmental variables and

the ways in which they interact with one another (Queitsch et al.

2012; Barroso and McCarthy 2019). Even when there is a strong

familial link, phenotypic heterogeneity in disease phenotypes can

make it difficult to identify at-risk patients or make accurate
prognostic predictions (Udler et al. 2019). This is particularly true
when it comes to predicting complications of diabetes such as
neuropathy, retinopathy, or kidney disease (Barroso and
McCarthy 2019; Cabrera et al. 2020). Much of this variation is due
to interindividual differences in genetic background, including si-
lent cryptic genetic variation that is revealed upon disease or
stress (Queitsch et al. 2012; Chow 2016; Barroso and McCarthy
2019).

One example of this kind of symptom heterogeneity can be ob-
served in disease associated with the deacetylase SIRT1. This
highly conserved gene was originally identified as a histone
deacetylase important in heterochromatin formation in yeast
(Shore et al. 1984; Ivy et al. 1986; Rine and Herskowitz 1987). Since
then, SIRT1 and its paralogs (the sirtuins) have been found to
have a number of additional targets, many of which are tran-
scription factors and enzymes with key roles in metabolic ho-
meostasis (Brunet et al. 2004; Picard et al. 2004; Li et al. 2007;
Rodgers and Puigserver 2007; Yang et al. 2009; Palu and Thummel
2016). Importantly, as part of their enzymatic reaction, sirtuins
consume the cofactor NAD, which also serves as an electron car-
rier in central metabolic pathways such as glycolysis and the
TCA cycle. Sirtuin enzymatic activity, therefore, is directly linked
to the availability of this cofactor and thus is responsive to the
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energetic state of the cell. This information is then conveyed to
the targets, whose acetylation state alters their activity and sta-
bility in the cell (Nogueiras et al. 2012). With this centralized role
in regulating the response of metabolic factors to cellular energy
availability, it is unsurprising that variation in SIRT1 has been
linked to, among other things, the development of diabetes
(Zillikens et al. 2009; Botden et al. 2012; Biason-Lauber et al. 2013;
Zhao et al. 2017).

Elucidating the mechanism behind this link, however, has
proven difficult. Loss-of-function and gain-of-function studies in
model systems have demonstrated a clear role for SIRT1 in meta-
bolic homeostasis, but the actual impacts on the animals in ques-
tion have frequently been contradictory (Boutant and Cantó
2014). For example, overexpression of SIRT1 in the liver has in
separate studies been linked to both increased and decreased glu-
cose production (Rodgers and Puigserver 2007; Wang et al. 2010).
Complete loss of SIRT1 in mice has led to phenotypes ranging
from embryonic lethality to survival to adulthood with metabolic
dysfunction depending on the strain (McBurney et al. 2003; Boily
et al. 2008). It is likely that at least some of these contradictory
results stem from differences in genetic background between the
animals used in the various studies. Understanding the role of
this variation and the genes or pathways which modify metabolic
disease will enable the development of improved diagnosis, pre-
diction of prognosis, and personalized treatment strategies for
patients.

Model organism tools, such as the Drosophila Genetic
Reference Panel (DGRP), provide a way to study of the impact of
natural genetic variation on diseases such as diabetes (Mackay
et al. 2012; He et al. 2014; Ivanov et al. 2015; Nelson et al. 2016;
Jehrke et al. 2018; Everman et al. 2019). The DGRP is a collection of
�200 isogenic strains derived from a wild population, such that
each strain represents one wild-derived genome (Mackay et al.
2012). The variation in the DGRP is well tolerated under healthy,
nondisease conditions and allows for the identification of genetic
polymorphisms that are associated with phenotypic variation in
models of human disease (Chow and Reiter 2017). Importantly,
the availability of full-genome sequence for these strains allows
for genome-wide association (GWA) analyses that link quantita-
tive phenotypes with genetic variation and modifier genes.

The utility of the DGRP in identifying candidate modifiers of
metabolic disease has already been demonstrated numerous
times, with screens associated with misfolded insulin, high sugar
and high fat feeding, and starvation resistance already docu-
mented (Mackay et al. 2012; He et al. 2014; Ivanov et al. 2015;
Nelson et al. 2016; Jehrke et al. 2018; Everman et al. 2019). While
some of these used biochemical assays to precisely measure me-
tabolite levels in flies as a quantitative phenotype for the screen
(Nelson et al. 2016; Jehrke et al. 2018; Everman et al. 2019), several
used more general physiological measurements such as starva-
tion resistance and lifespan (Mackay et al. 2012; Ivanov et al.
2015). Although effective, the use of this kind of general readout
reduces the specificity of the modifiers identified. Many genetic
factors impact survival and could lead to a high background sig-
nal. The same could be true for otherwise wild-type flies sub-
jected to different environmental conditions, even when more
precise assays are used as a quantitative phenotype (Nelson et al.
2016). A multitude of pathways and processes impact the re-
sponse to dietary changes through feeding rate, hormone secre-
tion, anabolism and catabolism rates, and nutrient absorption.
Using a specific genetic model of disease and then focusing on a
specific phenotype, such as hyperglycemia, may reduce some of
the noise and increase specificity of the modifiers identified.

Furthermore, recent studies using the DGRP have demon-
strated that the top candidate modifier genes and pathways dif-
fer when different but related models of genetic disease are
screened (Chow et al. 2016; Palu et al. 2019). These results rein-
force the idea that different causative genes and mutations will
interact with different pathways over the course of disease. It
also highlights the importance of exploring multiple disease
models in something so diverse as diabetes, and the utility of the
DGRP in precisely distinguishing modifiers of a particular
genotype-phenotype combination.

In this study, we report the results of a natural variation
screen in a model of Sirt1 loss of function. Loss of this gene in
Drosophila has been shown to lead to progressive metabolic dys-
function including obesity, hyperglycemia, and ultimately insulin
resistance (Palu and Thummel 2016). Our study design is specifi-
cally focused on the phenotype of hyperglycemia when Sirt1 ex-
pression is disrupted using RNAi in the adipose and liver-like fat
body organ (G�eminard et al. 2009; DiAngelo and Birnbaum 2009;
Arrese and Soulages 2010). While there are likely roles for Sirt1 in
other metabolic tissues, its function in the fat body clearly con-
tributes to the maintenance of glucose homeostasis and insulin
sensitivity over time (Palu and Thummel 2016). We observed sub-
stantial phenotypic variation across the DGRP for hyperglycemia
associated with loss of Sirt1. Using GWA analysis, pathway en-
richment, and the generation of a physical interaction network,
we identified a number of modifying pathways and processes,
several of which have known roles in central carbon metabolism,
the immune response, and the kind of neuronal signaling and
communication expected to influence the neuroendocrine cells
responsible for insulin secretion in Drosophila. Finally, we con-
firmed that reduction in the expression of several of the top can-
didate modifier genes significantly alters glucose levels in the
Sirt1 RNAi model. Our findings highlight exciting new areas of
study for modifiers of Sirt1 function, glucose homeostasis, and in-
sulin sensitivity.

Materials and methods
Fly stocks and maintenance
Flies were raised at room temperature on a diet based on the
Bloomington Drosophila Stock Center standard medium with
malt. Experimental crosses were maintained on a media contain-
ing 6% yeast, 6% dextrose, 3% sucrose, and 1% agar, with 0.6%
propionic acid and 0.1% p-hydroxy-benzoic acid methyl ester in
95% ethanol included as antifungal agents. Flies subjected to an
overnight fast were transferred to media containing only 1% agar
in water. The r4>Sirt1-RNAi strain, which serves as the model of
hyperglycemia in this study, is derived from an r4-GAL4 strain
(BDSC 33832) outcrossed to w1118 (Palu and Thummel 2016) and a
Sirt1 RNAi strain (32481) from the Bloomington Drosophila Stock
Center (w�/w�; þ/þ; [r4-GAL4, UAS-Sirt1-RNAi]/[r4-GAL4, UAS-
Sirt1-RNAi]). 185 strains from the DGRP were used for the modifier
screen (Supplementary Tables 1–3), wherein virgin females carry-
ing the model were crossed to males of the DGRP strains. Male F1
progeny carrying r4>Sirt1-RNAi were separated and aged for 1–2
weeks. These flies were then either collected under ad libitum fed
conditions or fasted overnight and then collected. The following
RNAi and control strains are from the Bloomington Drosophila
Stock Center: CG4168 RNAi (28636), CG5888 RNAi (62175), uif
RNAi (38354), CTPSyn RNAi (31924), smt3 RNAi (36125), ilp5 RNAi
(33683), Vha55 RNAi (40884), snRNP-U1-70k RNAi (33396), CG10265
RNAi (43294), CG15803 RNAi (51449), Roe RNAi (57836), CG34353
RNAi (58291), CadN2 RNAi (27508), Ace RNAi (25958), CG43897
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(31560), dsxc73A RNAi (56987), bgm RNAi (56979), CG3407 RNAi
(57762), control attP40 (36304), and control attP2 (36303).
Additional RNAi lines were also obtained and tested from the
Bloomington Drosophila Stock Center for bgm (55918, 28639),
CTPSyn (31752, 53378), dsxc-73A (56964), ilp5 (31378), smt3 (28034),
and uif (38365) (data not shown).

Glucose assay
Glucose was measured specifically in males. Adult female
Drosophila devote much of their physiological output to egg pro-
duction (Millington and Rideout 2018). The consequence of this is
that metabolic changes are frequently buffered or undetectable
in nonvirgin females. In contrast, adult males have proven to be
a consistent model for metabolic homeostasis in the fly while
also being easier to collect and maintain than virgin females.
When that homeostasis is disrupted, physiological changes are
readily detectable in males (Sieber and Thummel 2009;
Tennessen et al. 2014; Barry and Thummel 2016; Palu and
Thummel 2016; Beebe et al. 2020).

Samples of 5 flies each were collected at 1 or 2 weeks of age
and washed in 1XPBS. Samples were then either frozen in liquid
nitrogen and stored long term at �80�C or immediately homoge-
nized in 100 ml 1� PBS. Samples were kept frozen until immedi-
ately upon addition of PBS and homogenization. After
homogenization samples were subjected to heat inactivation of
enzymes at 70�C for approximately 10 min. Lysates could then
be stored long term at �80�C. Samples were centrifuged at
�16,000 � g for up to 5 min at room temperature and glucose
was measured undiluted from the supernatent using the Sigma
HK Glucose Assay kit as described (Tennessen et al. 2014). This is
a quantitative assay where higher concentrations of glucose
correlate with more severe hyperglycemia, and lower concentra-
tions of glucose correlate with milder disease, or potentially
hypoglycemia.

Protein assay
Prior to heat inactivation, 10 ml of the fly lysate isolated for
glucose measurement was saved and kept on ice. Protein samples
could then be stored long term at �80�C. Samples were centri-
fuged at �16,000 � g for up to 5 min at room temperature, and
protein was measured from the supernatant after a 1:10 dilution
using the Sigma Protein Assay Reagent as described (Tennessen
et al. 2014).

Phenotypic analysis and genome-wide
association
For each DGRP line, glucose was measured from 3 samples of 5 flies
each aged to 13–16 days posteclosion and fasted for 12–13.5 h. The
P-values for association of genetic background and glucose concen-
tration were calculated using 1-way ANOVA on R software taking
into account all collected data points for each experiment. Average
glucose concentration was used for the GWA. GWA was performed
as previously described (Chow et al. 2016; Palu et al. 2019). DGRP gen-
otypes were downloaded from the website, http://dgrp.gnets.ncsu.
edu/. Nonbiallelic sites were removed. A total of 3,636,891 variants
were included in the analysis. Mean eye glucose concentration for
555 samples representing 2775 DGRP/r4>Sirt1-RNAi F1 progeny
were regressed on each SNP. To account for cryptic relatedness (He
et al. 2014; Huang et al. 2014), GEMMA (v. 0.94) (Zhou and Stephens
2012) was used to both estimate a centered genetic relatedness ma-
trix and perform association tests using the following linear mixed
model (LMM):

y ¼ aþ xbþ u þ 2

u � MVNnð0; kT ð�1ÞKÞ

2 � MVNnð0;T ð�1Þ1nÞ

where, as described and adapted from Zhou and Stephens (2012),
y is the n-vector of average glucose concentration for the n lines,
a is the intercept, x is the n-vector of marker genotypes, b is the
effect size of the marker. u is a n � n matrix of random effects
with a multivariate normal distribution (MVN_n) that depends on
k, the ratio between the 2 variance components, T ^(�1), the var-
iance of residuals errors, and where the covariance matrix is in-
formed by K, the calculated n � n marker-based relatedness
matrix. K accounts for all pairwise nonrandom sharing of genetic
material among lines. e, is a n-vector of residual errors, with a
multivariate normal distribution that depends on T ^(�1) and
I_n, the identity matrix. Quantile-quantile plots demonstrate an
appropriate fit to the LMM at the positive end of the plot, but a
greater number of points than expected by chance with an insig-
nificant P-value (Supplementary Fig. 1). Genes were identified
from SNP coordinates using the BDGP R54/dm3 genome build. A
SNP was assigned to a gene if it was 61 kb from a gene body.

RNAi validation
Virgin females from the r4>Sirt1-RNAi model were crossed to
males carrying RNAi constructs targeting candidate modifiers of
those models, and the glucose levels of F1 male progeny express-
ing both Sirt1i and the modifier RNAi construct specifically in the
fat body under the control of the r4-GAL4 driver were measured
as described above on 4–5 samples of 5 male flies each. Glucose
concentrations from RNAi-carrying strains are compared directly
to genetically matched attP40 or attP2 controls using a Dunnett’s
multiple comparisons test. Glucose measurements are normal-
ized to the appropriate genetically matched controls. Normalized
controls from individual experiments are compared in
Supplementary Fig. 2. Standard deviation did not significantly
vary between controls for individual experiments.

RNA isolation and qPCR
RNA was isolated from whole adult male flies, or from adult ab-
dominal fat body attached to cuticle using the NEB Monarch RNA
Isolation Kit with DNAse digestion. cDNA was generated using
the ThermoFisher Verso cDNA Synthesis Kit with Olido-dT
primers. Expression of Sirt1 and the 3 candidate suppressor
modifiers (CG4168, CG5888, and uif) was analyzed using qPCR
(Supplementary Table 1). Expression was normalized using rpl19
expression as a control (Supplementary Table 1).

Bioinformatics analysis
Genetic polymorphisms were associated with candidate genes
within 1 kb of the polymorphism. Information about candidate
genes and their human orthologs was gathered from a number of
databases including Flymine, Flybase, OMIM, and NCBI, then ver-
ified through primary sources. Physical interaction maps were
generated using the GeneMANIA plugin on Cytoscape (version
3.8.2) (Shannon et al. 2003; Montojo et al. 2010). Data on the
GeneMANIA database is pulled from a variety of physical interac-
tion networks including immunoprecipitation, yeast two-hybrid,
and specific single-gene studies (Warde-Farley et al. 2010). GSEA
was run to generate a rank-list of genes based on their enrich-
ment for significantly associated polymorphisms. For GSEA
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analysis, polymorphisms within 1 kb of more than 1 gene were
assigned to one gene based on a priority list of exon, UTR, intron,
and upstream or downstream. Genes were assigned to GO
categories, and calculation of enrichment score was performed
as described (Subramanian et al. 2005). Categories with ES scores
> 0 (enriched for associated genes with low P-values), gene num-
ber > 3, and P-values <0.05 were included in the final output.

Results
Glucose levels in r4>Sirt1-RNAi flies vary with
genetic background in a consistent pattern across
multiple conditions
Loss of Sirt1 expression leads to progressive hyperglycemia, obe-
sity, and insulin resistance. To model the hyperglycemia that is
commonly associated with diabetes, we reduced the expression
of the deacetylase Sirt1 specifically in the fat body of Drosophila
melanogaster. This is achieved using the GAL4/UAS system, with
r4-GAL4 driving expression of UAS-Sirt1 RNAi (Supplementary Fig.
4a). r4-GAL4 is strongly expressed primarily in the fat body of fly,
starting in early development and continuing through adulthood
(Lee and Park 2004). Sirt1 RNAi expressed in the fat body
(r4>Sirt1-RNAi) reproduces the hyperglycemia phenotype, with
an approximately 50–60% increase in whole fly glucose levels
(P ¼ 0.02, Supplementary Fig. 3) (Palu and Thummel 2016).

The line containing the model serves as the donor strain that
was crossed to each DGRP strain. Females from the donor strain
were crossed with males of each of 185 DGRP strains to generate
F1 progeny lacking Sirt1 expression in the fat body. The progeny
received 50% of their autosomes from the maternal donor strain
and 50% from the paternal DGRP strain (Supplementary Fig. 4b).
Therefore, we are measuring the dominant effect of the DGRP
background on the Sirt1 RNAi hyperglycemia phenotype. This ex-
perimental design is similar to a model of NGLY1 deficiency using
RNAi that was also crossed to the DGRP (Talsness et al. 2020).

To ensure an appropriate set of conditions with respect to diet
and age, we performed a preliminary analysis on 37 DGRP strains
at 1 or 2 weeks of age, and under fasted or ad libitum fed condi-
tions (Supplementary Table 2). Three samples were collected for
glucose measurements in each strain and condition. Glucose lev-
els vary across genetic background for each of the conditions be-
ing tested (Fig. 1, a–d). Average glucose for each strain is
significantly correlated between 1 and 2 week fasted flies
(R¼ 0.53, P¼ 4E-03), between 1-week-old fed and fasted flies
(R¼ 0.45, P ¼ 0.020), and between 1-week-old fed and 2-week-old
fasted flies (R¼ 0.62, P¼ 2E-04) (Supplementary Fig. 5, a–c). This
supports glucose concentration as a consistent quantitative mea-
surement. Interestingly, evidence for correlation with 2-week-old
flies fed ad libitum is not as strong. While a significant correla-
tion is still detected with 1-week-old fasted flies (R¼ 0.43,
P ¼ 0.014), the correlation is not significant with 2-week-old
fasted flies (R¼ 0.25, P ¼ 0.219) and 1-week-old flies fed ad libitum
(R¼ 0.34, P ¼ 0.063) (Supplementary Fig. 5, d–f). By 2 weeks of age,
Sirt1 loss-of-function flies are beginning to experience more se-
vere symptoms of disease, and we expect to see variability in
symptoms and behavior in response to those symptoms. Fed flies
at 2 weeks may have more variable glucose because feeding be-
havior is a big contributor to glucose levels in flies that have not
been subjected to a fast.

To identify the conditions under which the impact of genetic
background was the strongest, we performed a 1-way ANOVA
test that included all data points collected. We found that while
there is a significant association between glucose levels and

genetic background under all conditions (P < 0.05), this effect is
most pronounced in the 1-week-old flies fed ad libitum
(P¼ 1.87E-5) and in the 2-week-old fasted flies (P¼ 1.95E-5) (Fig. 1,
a and d). Because fasting reduces possible intrastrain variation
caused by food in the gut, 2 weeks fasted was selected for the full
screen.

We examined total protein concentration in 90 samples from
the first 30 strains collected at 2 weeks fasted to ensure that any
variation we observe in glucose is not due to differences in body
size. Total protein levels do not significantly vary across the
DGRP (P ¼ 0.63, Supplementary Fig. 6a), nor do protein levels
correlate with glucose levels in individual samples (R¼ 0.04,
P ¼ 0.6577, Supplementary Fig. 6b). We conclude that the
variation we observe in fasting glucose levels are indeed due to
differences in glucose and not to differences in body size.

Genome-wide association analysis identifies
candidate modifiers of Sirt1i-associated
hyperglycemia
Using the conditions determined in the preliminary screen, we
proceeded to cross the donor strain with the remaining 149 DGRP
strains (Fig. 2 and Supplementary Tables 2 and 3). We found a
significant effect of genetic background on glycemia in the
r4>Sirt1-RNAi flies (P< 2E-16) using 1-way ANOVA including all
data points for each strain (N¼ 555). Individual glucose measure-
ments ranged from 0.306 to 3.416 mg/fly (Supplementary Table 3),
while average concentrations ranged from 0.395 mg/fly (RAL 801)
to 2.438 mg/fly (RAL 357) (Fig. 2, Supplementary Table 4).

To identify genetic polymorphisms that may be responsible
for this observed variation in glycemia, we performed a GWA
analysis. Average glucose level for each strain was used as a
quantitative phenotype to test for association with polymor-
phisms in the DGRP. A total of 3,636,891 variants were tested
for the r4>Sirt1-RNAi model across 186 lines. This analysis as a
result is insufficiently powered for candidates to remain statis-
tically significant after multiple testing corrections. Instead,
the focus is on identification of candidate modifiers and path-
ways that can be validated through further study and that will
provide the basis for future projects. This approach has been
quite successful in previous studies (Chow et al. 2013, 2015,
2016; Lavoy et al. 2018; Palu and Chow 2018; Palu et al. 2019,
2020; Talsness et al. 2020).

Because the analyzed F1 hybrids in this case were male and
inherited their X chromosome from the donor strain and not the
DGRP strain, we do not include any X-linked variants in the
resulting candidate modifiers. Using an arbitrary cut-off of
P< 10�4, we identified 237 polymorphisms on the second and
third chromosomes (Supplementary Table 5). Of these 237, 62
were not considered further as they were not within 61 kb of a
candidate gene. The remaining 175 polymorphisms are associ-
ated with a total of 161 candidate genes (Supplementary Table 6).
A total of 100 of these polymorphisms are intronic, 29 are exonic
with 6 producing nonsynonymous changes to the peptide and 1 a
start gain, 10 are located in the 50 or 30 untranslated regions, and
36 are within 1 kb up or downstream of the candidate gene
(Supplementary Table 5). Of note in this analysis is that the
results were not filtered for allele frequency > 0.05. This was a
concerted choice; several of the most interesting candidates, in-
cluding CG5888 and ilp5, would otherwise have been left out of
the analysis. The number of total variants analyzed drops from
237 to 90, and the number of candidate genes associated at
P< 10�4 drops from 161 to 75. While this, along with the use of a
low stringency P-value cut-off, increases the probability of false
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positives, it likewise increases our power when performing path-
way enrichment. Validation of candidate genes with low minor
allele frequencies in later studies will distinguish true positives
from false positives.

One concern with using an RNAi model to reduce Sirt1
expression is that the modifiers identified might be specific RNAi
efficacy, rather than hyperglycemia. The modifiers could be
altering the degree and efficiency of Sirt1 knockdown, so that
hyperglycemia is actually correlating with the amount of Sirt1
expression that is achieved. If this was the case, we would expect
to see: 1—correlation of wild-type Sirt1 expression with glucose
levels across the DGRP: 2—the top candidate modifiers associated
with RNAi machinery or the efficiency of the GAL4/UAS system:
and 3—differences in Sirt1 expression between r4>Sirt1-RNAi/

DGRP lines determined to have low versus high glucose measure-
ments. None of these appear to be the case. We do not see candi-
date genes with functions in RNAi, either from a single-gene
function perspective or when looking at enriched gene categories
(Supplementary Tables 6 and 7). We do not see any correlation in
Sirt1 expression with glucose levels in corresponding DGRP lines
(Supplementary Fig. 7a). We also see no significant difference in
Sirt1 expression between experimental lines associated with high
or low glucose, as determined by qPCR (Supplementary Fig. 7b).
Furthermore, the GAL4/UAS system is commonly used to model
disease in the DGRP, and the candidates identified have always
been unique to the disease and, at times, even the specific model
in question (He et al. 2014; Chow et al. 2016; Lavoy et al. 2018; Palu
et al. 2019; Talsness et al. 2020). All of this suggests that the

Fig. 1. Glucose levels vary under a variety of environmental conditions. Glucose levels were measured in 3 samples for each of 30–36 strains under one
of the indicated conditions: 1 week of adult age and fed ad libitum (N ¼ 30 strains, P ¼ 1.87E-05) (a), 1 week of adult age and fasted for 12–13 h (N ¼ 30
strains, P ¼ 0.0194) (b), 2 weeks of adult age and fed ad libitum (N ¼ 30 strains, P ¼ 0.0103) (c), and 2 weeks of adult age and fasted for 12–13 h (N ¼ 36
strains, P ¼ 1.95E-05) (d). Mean glucose concentrations are indicated, with error bars indicating standard deviation. DGRP strain or RAL numbers are
indicated along the X-axis. P-values were calculated using 1-way ANOVA incorporating all individual measurements comparing DGRP strain with
glucose concentration. Adult flies were collected within 2–3 days after eclosion from the pupal case and aged to the ages indicated at the top of the plot.
*P < 0.05, ****P < 5E-05.

R. A. S. Palu et al. | 5



candidate genes identified through this screen are modifying

Sirt1-associated hyperglycemia directly rather than altering the
degree of Sirt1 knockdown.

Candidate modifiers of Sirt1 are involved in basic
metabolic processes, the immune response, and
the regulation of neuronal communication
Because loss of Sirt1 in the fat body alters glucose metabolism
and insulin sensitivity in the organism, we expected modifiers of
hyperglycemia to impact pathways linked to central carbon me-

tabolism as well as external processes that influence secretion
and signaling of hormones such as insulin. To determine if this is

the case, we examined the individual functions of the top GWA
candidates and looked for pathways and processes that are
enriched in this list. While we attempted first to do this through

Gene Ontology analysis of our top candidates, we found no signif-
icantly enriched terms. We therefore utilized individual known

physical interactions and GO term enrichment through GSEA to
highlight likely candidate pathways.

Analysis of candidate modifiers
We expected our top candidates to include genes that function in
pathways or processes related to Sirt1 regulation or activity.
Among the most interesting candidates are those involved in

NAD metabolism, as NAD is an important cofactor in the Sirt1 en-
zymatic reaction (Nogueiras et al. 2012). NDUFS4 and ND-PDSW

both encode parts of the NADH dehydrogenase component of
Complex I in the electron transport chain (FlyBase Curators 2008;
Gaudet et al. 2011). There are also 2 NADP kinases, enzymes in-

volved in the generation of NADP from NAD (CG33156 and
CG6145) (Gaudet et al. 2011). DUOX, an NADPH oxidase, passes
electrons from NADPH to oxygen, generating hydrogen peroxide

and altering the redox balance of the mitochondria and, by
extension, the cell (Anh et al. 2011; Gaudet et al. 2011; Willems
et al. 2015).

Genes involved in central glucose metabolism as well as insu-
lin signaling are also candidate modifiers. MFS5 acts as a trans-
porter of both glucose and trehalose for the uptake of these
sugars from circulation (McMullen et al. 2021). Glucose-6-
phosphatase (G6P) is the last rate-limiting step in both gluconeo-
genesis and glycogenolysis, which are used to generate glucose
for release into the body during fasting (Gaudet et al. 2011; Lizák
et al. 2019). These 2 genes directly regulate circulating glucose
levels. Candidates involved in other metabolic pathways include
CTPSyn, which encodes the rate limiting step in cytidine synthe-
sis, the very long chain fatty acid ligase bgm, the mannosidase
Edem2, and the oxoglutarate dehydrogenase complex subunit
CG33791 (Kang and Ryoo 2009; Gaudet et al. 2011; Jang et al. 2015;
Sivachenko et al. 2016; Zhou et al. 2019).

Partially responsible for regulating general metabolic flux
through these various pathways is insulin. Interestingly, a top
candidate is ilp5, one of several insulin-like peptides expressed in
the insulin-producing cells (IPCs) in the Drosophila brain
(G�eminard et al. 2009). Our analysis also identified IA-2, a phos-
phatase involved in ilp secretion, CG4168, an uncharacterized
gene whose closest human ortholog IGFALS encodes a protein
that binds to and stabilizes IGF proteins in circulation, and wrd, a
subunit in the protein phosphatase PP2A that negatively regu-
lates insulin and TOR signaling (Boisclair et al. 1996; Kim et al.
2008; Hahn et al. 2010). Other potential modifiers of insulin stabil-
ity and signaling in circulation are dally, cow, and Hs3st-A. Both
dally and cow encode heparin sulfate proteoglycans, while Hs3st-
A encodes an O-sulfotransferase that acts on these proteoglycans
(Filmus and Selleck 2001; Gaudet et al. 2011; Chang and Sun
2014). Previous work has demonstrated an impact of the enzyme
heparanase, which cleaves heparan sulfate, on diabetic autoim-
munity and complications such as nephropathy (Rabelink et al.
2017). While this is more peripheral to the central insulin signal-
ing pathway in Drosophila, it highlights the utility of such factors
in altering disease processes in subtle ways.

Another interesting group of candidates are those associated
with neuronal development and function. Several members of
the defective proboscis extension response (dpr) family were
represented in our list (dpr2, dpr6, and dpr13) along with the dpr-
interacting protein DIP-eta. The dpr gene family is collectively
associated with synapse organization and function, as are the
candidate genes fife, CG32373, and atilla (FlyBase Curators et al.
2004; Kurusu et al. 2008; Carrillo et al. 2015; Bruckner et al. 2017).
We also noted candidates involved in neuropeptide signaling (rk
and RYa-R), voltage-gated potassium channels and their regula-
tion (CG5888 and CG1688), and axon guidance (tutl, CadN2,
CG34353, and sbb) (Rao et al. 2000; Luo et al. 2005; Prakash et al.
2005; Al-Anzi and Wyman 2009; Gaudet et al. 2011; Ida et al. 2011).
The IPCs in Drosophila are actually neuroendocrine cells located
in the brain, as are the AKH-producing cells responsible for se-
creting the glucagon-like hormone AKH (G�eminard et al. 2006).
The secretion of insulin is therefore dependent upon the correct
development, connection, and signaling of neuronal cells.

The immune response is another generally enriched category
of modifier genes. Several members of the nimrod family of
immunoglobulins (NimB2, NimC1, and NimC3) were identified by
GWA. All are implicated in the innate immune response, with
NimC1 and NimC3 in particular having roles in phagocytosis
(Somogyi et al. 2010). In response to insecticides, LRR regulates
the immune response through NF-kappaB, whose activation is an

Fig. 2. Glucose levels are significantly affected by genetic background.
Glucose levels were measured in 3 samples for each of 185 strains at 2
weeks of age after a 12-h fast. Adult flies were collected within 2–3 days
after eclosion from the pupal case and aged an additional 9–11 days
prior to fasting (11–14 days posteclosion). Flies were collected after the
overnight fast at 12–15 days posteclosion. Mean glucose concentrations
are indicated, with error bars indicating standard deviation. DGRP
strains along the X-axis are ordered from lowest to highest average
glucose concentration. P-values were calculated using 1-way ANOVA
incorporating all individual measurements comparing DGRP strain with
glucose concentration (P < 2E-16).
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early protective event in the progression and pathology of diabe-
tes (Di Prisco et al. 2013; Irvin et al. 2018). Two lysozyme enzymes
with links to bacterial defense (LysX and CG7798) highlight the
role of oxidative stress and redox homeostasis in the innate im-
mune response (FlyBase Curators 2008). As Sirt1 has roles in reg-
ulating the response to oxidative stress, we looked for other
genes with similar functions (Brunet et al. 2004). Besides DUOX
(Anh et al. 2011), CG42331 encodes a peroxidase that appears to
be strongly enriched in the pupal fat body, and cyp28a5 encodes
an oxidoreductase that, similar to LRR, is involved in the response
to insecticides (FlyBase Curators et al. 2004; Gaudet et al. 2011;
Graveley et al. 2011). It is now believed that Type I and Type II dia-
betics both suffer at least to some degree from autoimmunity (de
Candia et al. 2019). Exploring the direct and indirect connections
of Sirt1 to the immune response and oxidative stress directly is
an interesting avenue for future direction.

Physical interaction network
We generated a network of physical interactions among the 161
candidate genes identified above. These were identified and visu-
alized using Cytoscape software with the GeneMania plugin
(Shannon et al. 2003; Montojo et al. 2010). The products of 37/161
candidate genes were found to physically interact with at least
one other candidate gene product with no more than one bridg-
ing node represented by a noncandidate gene (Fig. 3a). This high
degree of interaction suggests that the modifiers identified in this
screen are indeed functioning through shared processes.

Focusing then on the 37 genes involved in physical interac-
tions, we identified several broad functional categories that could
influence glucose homeostasis in the fly. The most obvious cate-
gory are enzymes that catalyze steps in basic metabolic pathways
(N¼ 7). This includes NAD kinases (CG6145 and CG33156) and

NADH dehydrogenase (ND-PDSW) (Gaudet et al. 2011). Other met-
abolic candidate modifiers include MFS3 and CTPsyn (Zhou et al.
2019). Mtmr6 encodes a phosphatidylinositol phosphatase, a key
enzyme in insulin signaling (Gaudet et al. 2011). Also interesting
is the gene LRP1, which is orthologous to human LDL receptor re-
lated protein 1. In additional to its role in lipid homeostasis, LRP1
has also been implicated in Alzheimer’s disease, for which meta-
bolic disease and obesity are risk factors (Kang et al. 2000; Anstey
et al. 2011).

Curiously, several of the genes highlighted in this analysis also
happen to localize specifically to the mitochondria (N¼ 4). Roe1
and porin are both transporters involved in the import of mole-
cules into the mitochondria (Komarov et al. 2004; Jana Alonso
et al. 2005; FlyBase Curators 2008; Gaudet et al. 2011). The NADH
dehydrogenases ND-PDSW and NDUFS3 both function in the mi-
tochondria as well as part of Complex I in the electron transport
chain (Jana Alonso et al. 2005). Closer examination of the top
GWA candidates reveals additional mitochondrial localization
candidates including the amino acyl tRNA synthetase GlyRS, the
membrane bound regulator of protein kinase A (pkaap) and the
translation elongation factor mEFTu1 (Gaudet et al. 2011; Lu et al.
2015). In adult metabolic homeostasis, central carbon metabo-
lism is generally used to fuel the electron transport chain in the
mitochondria and generate ATP for the cell (Barry and Thummel
2016). Altering the activity of this essential downstream pathway
could have a clear impact on glucose utilization and disease pro-
gression in diabetes.

Similar to our examination of top candidates, our physical inter-
action map highlighted the immune response (NimC1, NimC3,
NimB2, and LRR) and neuronal function. Tutl, dpr2, and DIP-eta, and
wb are all involved in synapse organization and axon guidance,
while Pax and rhea are involved in focal adhesion (Delon and Brown

Fig. 3. Immune responses, neuronal function, and basic metabolic processes are overrepresented in GWA candidate modifiers of hyperglycemia. a)
r4>Sirt1-RNAi modifier network, as plotted by the GeneMANIA plugin in Cytoscape (Shannon et al. 2003; Montojo et al. 2010). Significant candidate
modifiers are indicated in bold and darkened, with physical interactions indicated by connecting lines. Thicker lines indicate stronger evidence for the
interaction. Encircled genes share common pathways or functions. Interacting genes outside of the candidate modifier list are indicated by lighter
circles. b) Top 20 significant ontological categories as identified by GSEA. Categories are arranged from most significant on top to least significant along
the y-axis. P-values are indicated by a gradient, with red the lowest P-values and blue the highest P-values. Enrichment score (ES) for each category is
plotted along the x-axis. Gene number identified in each category is indicated by dot size.
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2009). The identification of genes important for cellular communi-
cation suggests that some of the modifiers identified in this study
have roles in tissues other than the fat body, such as the IPC and
APC neurons. This is an important avenue of future exploration.

Gene set enrichment analysis
In the second approach, we performed gene set enrichment
analysis (GSEA) analysis to identify gene ontology terms for
which associated variants are enriched. Unlike traditional GO
analysis, which relies upon a set of genes based on a P-value cut-
off, GSEA examines the entire gene set (Dyer et al. 2008). For each
defined GO category, GSEA determines whether the members of
that category are randomly distributed throughout the ranked
gene list provided or if they are enriched for the lower P-values
found at the top of that list. GO categories enriched at the top of
the list describe important functions of the gene set. GSEA identi-
fied 52 significantly associated gene sets (�3 genes) with positive
enrichment scores at a P-value of <0.05 (Supplementary Table 7,
Fig. 3b). The top 2 gene sets implicate neuronal function and
communication in the Sirt1i-associated hyperglycemia pheno-
type: calcium-activated potassium channel activity (GO: 0015269,
P¼ 1.1E-3) and maintenance of presynaptic active zone structure
(GO: 0048790, P¼ 1.2E-3). Similar categories can be found through
the list of significantly associated gene sets, including dendrite
morphogenesis (GO: 0048813, P ¼ 0.049), which represents the
largest group of genes at N¼ 119 and contains 2 of the top GWA
candidates (slit and fruitless). Coupled with the neuronal genes
identified in our physical interaction network, this suggests that
function in the neuroendocrine cells could play a big role in glu-
cose homeostasis in the fat body.

Also enriched are taste receptor activity (GO: 0008527,
P ¼ 0.013) and sensory reception of taste (GO: 0050909, P ¼ 0.018).
These categories highlight feeding and diet as a possible source
of variation in glucose. As expected, we also see evidence of gen-
eral metabolic processes. Some, like alpha, alpha-trehalase activ-
ity (GO:0004555, P ¼ 0.043) and phosphatidylinositol transporter
activity (GO:0008526, P ¼ 0.013) have direct links to glucose me-
tabolism and insulin signaling. Others, such as oxysterol binding
(GO:0008142, P ¼ 0.026), glutamate biosynthetic process (GO:000
6537, P ¼ 0.043), and isoprenoid biosynthetic process (GO:000
8299, P ¼ 0.048) function more peripherally to carbon metabolism

and are likely influencing hyperglycemia by their general
contribution to physiological homeostasis.

Another interesting group of GO categories highlighted by GSEA
are RNA processing functions. rRNA (uridine-20-O-)-methyltransfer-
ase activity (GO:0008650, P¼ 2.4E-3) is the fourth most associated
category as ranked by P-value, and others such as snoRNA binding
(GO:0030515, P ¼ 0.014) reiterating this function. The presence of
RNA processing categories is of particular interest because 3 of the
top candidate genes by GWA are splicing factors (bru1, fand, and
snRNP-U1-70k) (Park et al. 2004; Oas et al. 2014; Spletter et al. 2015).
While it is unclear how rRNA or mRNA processing may directly or
indirectly influence glucose homeostasis in particular, the identifi-
cation of this process through several different methods of analysis
is striking and worth further exploration.

Functional analysis of candidate modifier genes
To confirm the roles of our candidate genes in regulating glucose
homeostasis, we elected to test the impact of loss of modifier ex-
pression for 16 of the most significant candidates for which we
were able to obtain transgenic RNAi lines (Table 1). We crossed
the RNAi strains targeting each of these modifiers into the
r4>Sirt1-RNAi line, aged the resulting progeny for 2–3 weeks, and
measured glucose in fasted males. We also measured protein lev-
els as a control. Knockdown of modifier genes did not signifi-
cantly alter protein levels as compared to a genetically matched
control (Supplementary Fig. 8). Knockdown of the genes CG4168,
CG5888, and uif resulted in suppression of the hyperglycemia
phenotype, with a significant decrease in glucose content per fly
compared to controls expressing r4>Sirt1-RNAi (Fig. 4). Loss of
the other candidates did not significantly impact glucose content
compared to controls (Fig. 4). All 3 candidate suppressors are
predicted to be expressed at low levels in the fat body
(Supplementary Table 8), although the expression of these genes
as previously measured in wild-type males does not correlate
with glucose levels in the corresponding r4>Sirt1-RNAi/DGRP
strains (Supplementary Fig. 9, a–c). However, reduced expression
for CG4168 and uif was confirmed in the r4>Sirt1-RNAi back-
ground for the respective RNAi strains. Ultimately, this confirma-
tion of reduced expression combined with the phenotypic change
supports the hypothesis of CG4168 and uif as modifier genes
(Supplementary Fig. 10, a and b). We were unable to confirm re-
duced expression for CG5888 (Supplementary Fig. 10c).

Table 1. Top tested candidate modifiers of R4>sir2i associated hyperglycemia.

P-score FlyBaseID Gene name Human ortholog(s) Function

2.80E-07 FBgn0028523 CG5888 LRRC26 and LRRC52 Voltage-gated potassium channel
1.43E-06 FBgn0261799 dsx-c73A — Ribosome-associated, elongation factor GTPase
2.09E-06 FBgn0031879 Uif ELAPOR1 Notch signaling
2.35E-06 FBgn0262018 CadN2 Multiple Cadherin genes Cell adhesion, axon guidance
2.64E-06 FBgn0033990 CG10265 — Unknown
3.06E-06 FBgn0027348 Bgm ACSBG1 and ACSBG2 Long-chain fatty acid ligase
6.09E-06 FBgn0028888 CG4168 IGFALS Serum IGF-binding protein
6.25E-06 FBgn0016978 snRNP-U1-70K SNRNP70 Spliceosome component
6.25E-06 FBgn0264922 smt3 SUMO1 through 4 ONLY Drosophila SUMO protein
6.80E-06 FBgn0038606 CG15803 MPDZ C-terminal binding protein
7.09E-06 FBgn0031573 CG3407 Various ZFN transcription factors Zinc finger nuclease transcription factor
7.41E-06 FBgn0085382 CG34353 IGLON5, LSAMP, and NEGR1 Cell adhesion, axon guidance
7.94E-06 FBgn0014877 Roe1 GRPEL1 Mitochondrial PAM complex
8.29E-06 FBgn0264489 CG43897 BRD4, LDB3, PDLIM1, etc Actin/cytoskeletal organization
8.29E-06 FBgn0044048 Ilp5 INS, INS-IGF2 Insulin signaling
9.21E-06 FBgn0266452 CTPsyn CTPS1 and CTPS2 CTP synthase

Candidate modifier genes identified via GWA (P < 1E-5), RNAi available.
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Considering that a top GSEA category include genes involved

in RNA processing functions, it is possible that the change in phe-

notype upon reduction in expression of modifier genes might be

due to changes in Sirt1 RNAi efficiency or Sirt1 expression. To rule

this out, we examined Sirt1 expression upon expression of each

candidate suppressor RNAi construct in the r4>Sirt1-RNAi back-

ground. Sirt1 expression was not increased, or indeed signifi-

cantly changed, upon reduced expression of any of the candidate

suppressor genes (Supplementary Fig. 10d). This indicates that

the improved phenotype is probably not due to a change in the

efficiency of Sirt1 RNAi. These results demonstrate that a subset

of the top GWA candidate modifiers are capable of modifying the

hyperglycemia phenotypes associated with the r4>Sirt1-RNAi

model of diabetes.

Discussion
Identifying and characterizing the genetic factors influencing the

severity of diabetes is critical to early diagnosis. Prevention is still

the best strategy available, and providing patients at high risk for

complications with knowledge of that risk could prevent the

worst symptoms from manifesting. It could even enable interven-

tion before the progression of disease is irreversible.

In this study, we identified and analyzed a number of candi-
date modifiers of hyperglycemia in a previously characterized
model of diabetes, Sirt1 loss of function. We used the DGRP as an
unbiased source of natural genetic variation for this screen. This
is the first time a genetic model of metabolic dysfunction has
been put to this use, as previous screens have either focused on
dietary stress as a source of metabolic disease or on the impact of
genotype on metabolic parameters under nonstressed conditions
(Mackay et al. 2012; Ivanov et al. 2015; Nelson et al. 2016; Jehrke
et al. 2018; Everman et al. 2019). We observed very little overlap in
modifier candidates between our observations and these studies.
This is consistent with previous work demonstrating that even
when the observed phenotypes are similar or nearly identical, the
overlap in modifiers is often small in different models of disease
(Palu et al. 2019). One exception is a screen for the response to
starvation resistance performed by Everman et al. in 2018. They
identified CG15803, a transporter of unknown function that was
also identified in our studies (Everman and Morgan 2018). While
our preliminary analysis suggests that expression of this gene is
not required in the fat body, it is also possible that expression of
CG15803 was not significantly or sufficiently reduced by expres-
sion of the RNAi construct to influence the phenotype. Further
validation of the efficiency of the RNAi in this study is necessary
to confirm this conclusion. Alternatively, CG15803 could have a
role in another physiologically relevant tissue such as the IPCs or
APCs. Indeed, CG15803 appears to be most highly expressed in
the head and CNS (Graveley et al. 2011). This is an interesting ave-
nue of future exploration.

We did observe overlap in general gene categories with previ-
ous studies, even when direct overlaps were few. This was found
to be true for modifiers of neuronal function. In a broad explora-
tion of genetic variation in the nutrient response that looked at
triglycerides, starvation resistance, mass, and glucose, NimB3
was identified as a candidate modifier (Nelson et al. 2016). While
NimB3 was not identified in this screen, we did find NimB2,
NimC1, and NimC3. Fife, which also has roles in synapse organiza-
tion, was identified in this study and one for starvation resistance
(Mackay et al. 2012). As mentioned above, both the IPCs and APCs
are neuroendocrine cells found in or near the brain (G�eminard
et al. 2006). Maintenance of neuronal function would be critical to
hormonal balance as a result. Furthermore, it is broadly acknowl-
edged that metabolic homeostasis is also dependent upon feed-
ing rate, over which the central nervous system has some sway
(Owusu-Ansah and Perrimon 2014). The identification of neuro-
nal genes in each analysis suggests that regulation of particular
neuronal pathways and cells is critical to the maintenance of
physiological homeostasis.

Given the prevalence of neuronal and sensory perception
genes in the analysis, a concern could be raised for the role feed-
ing rate could be playing in the variation of glucose across the
DGRP. While all flies were collected under identical conditions
and were maintained on the same diet, it is nonetheless possible
that some may simply be eating more due to differences in the
sensing of satiation or to differences in perception of taste. These
differences in perception and consumption can have detectable
impacts on metabolic phenotypes (May et al. 2019). To assess this,
we compared glucose with male feeding rate in a previous analy-
sis (Supplementary Table 4) (Garlapow et al. 2015). We saw no
correlation whatsoever, indicating that while nutrient sensing
may play a role in the response to r4>Sirt1-RNAi-induced hyper-
glycemia, it is not the driving factor in the variation observed in
this screen (Supplementary Fig. 11).

Fig. 4. Loss of candidate gene expression suppresses hyperglycemia in
the r4>Sirt1-RNAi model. RNAi against candidate modifiers was
expressed under the control of r4-GAL4 in the r4>Sirt1-RNAi model.
Glucose level for each sample was normalized to the levels in a
genetically matched control line crossed into the R4-Sirt1 line. Average
r4>Sirt1-RNAi control glucose levels after normalization are indicated by
a dotted line at 1.0, with standard deviation highlighted by the gray box.
Whole fly glucose concentration was quantified for N ¼ 4–5 samples per
strain, each consisting of 5 flies and individually plotted along the y-axis.
Knockdown of CG4168, CG5888, or uif significantly reduces glucose
concentrations in the r4>Sirt1-RNAi model of hyperglycemia compared
to controls (blue). Loss of CTPSyn does not significantly alter glucose
levels, but a trending decrease in glucose levels were observed in several
independent RNAi strains (light blue, data not shown). Loss of smt3, ilp5,
snRNP-U1-70k, CG10265, CG15803, Roe, CG34353, CadN2, CG43897,
CG3407, dsxc73A, or bgm do not produce a significant effect (dark gray).
P-values were calculated using 1-way ANOVA followed by Dunnett’s
multiple testing correction. *P < 0.05, ***P < 0.001.
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As Sirt1 utilizes NAD as a cofactor during its enzymatic reac-
tion, altering the balance of NAD in the cell through differential
regulation of these enzymes could further impact the activity of
other pathways that require NAD as an electron carrier, or exac-
erbate the phenotypes associated with Sirt1 loss-of function
(Nogueiras et al. 2012). It is therefore interesting that we identified
enzymes involved in NAD(P) metabolism as candidate modifiers,
along with other genes related to the regulation of redox
homeostasis and oxidative stress. While these are primarily mito-
chondrial enzymes rather than cytosolic enzymes, it is well-
established that disruption of NADþ/NADH ratios in the various
cellular compartments can influence the same in other compart-
ments (Cantó et al. 2015). The same can be said for general redox
homeostasis (Willems et al. 2015). Many of these enzymes are
also critical portions of the innate immune response. While it has
long been known that Type I diabetes is an autoimmune disorder,
it has recently been acknowledged that Type II diabetics also
display symptoms of autoimmunity (de Candia et al. 2019).
Furthermore, insulin resistance has frequently been associated
with inflammation, and the presence of macrophages in the adi-
pose tissue is a hallmark of obesity and diabetes (Wu and
Ballantyne 2020). Modifiers associated with innate immunity
serve therefore as validation to the study as a whole, and exami-
nation of these genes and their function in the context of the
Sirt1 loss-of-function model will be an intriguing focus of future
research.

An important component of this study is the validation of top
candidate modifiers using RNAi-mediated knockdown of gene ex-
pression. We obtained strains expression transgenic RNAi con-
structs targeting 16 of the most significant candidates (Table 1).
We found that constructs targeting CG4168, CG5888, and uif spe-
cifically in the fat body resulted in significant suppression of hy-
perglycemia (Fig. 4). These 3 genes are therefore our top
candidate suppressor modifiers. While expression of these genes
in wild-type adult DGRP males does not correlate with glucose
levels in the corresponding r4>Sirt1-RNAi/DGRP strains
(Supplementary Fig. 9) (Huang et al. 2015), we were able to con-
firm reduction in expression for 2 of these genes (CG4168 and uif),
supporting them as suppressor modifiers with functions in the
fat body (Supplementary Fig. 10, a and b. The lack of correlation
can be explained by the change in DGRP genotype (wild-type vs
r4>Sirt1-RNAi) and tissue of interest (whole fly vs fat body). A
transcriptional study more specifically focused on the disease
model would likely produce more associated candidate modifiers,
and could be a fascinating direction for future exploration.

We also noted a consistent, though not significant, decrease in
glucose for 2 independent RNAi constructs targeting CTPSyn, sug-
gesting that this gene warrants further study (Fig. 4, data not
shown). It was also highlighted in the physical interaction network
(Fig. 3). CTPSyn functions in pathways critically dependent upon
central carbon metabolism, and its inclusion supports a role for sec-
ondary metabolic pathways as a sink for increased circulating glu-
cose. The remainder of the genes had no significant or consistent
impact on hyperglycemia in the model of Sirt1 loss of function
(Fig. 4). None of the tested modifiers acted as enhancers of the phe-
notype: loss of modifier expression did not lead to increased glucose
levels for any of the tested genes. This could be because hyperglyce-
mia is already quite strong in the Sirt1 loss-of-function model, or be-
cause we simply did not hit on any enhancing modifiers. Of greater
concern is the lack of any response for 13 of the 16 tested candi-
dates. One explanation may be found in the large number of known
neuronal genes identified in this analysis. This modifier RNAi
screen specifically focused on the expression of the RNAi against

the candidate genes in the fat body, where expression of Sirt1 is also
reduced. If, however, the function of a modifier gene is primarily
concentrated in the IPCs, as with ilp5, reducing its expression in the
fat body would have little effect on the disease phenotypes in ques-
tion. We will examine the role of modifier genes not only in the
fat body but in the IPCs, APCs, and other physiologically relevant
tissues in future work.

Of immediate interest is of course the mechanism of action
for the 2 suppressor genes that were confirmed by RNAi in the fat
body. The third suppressor, CG5888, could not be confirmed as
we were unable to detect a change in expression of this gene in
the fat body upon expression of the corresponding RNAi con-
struct. Further work will therefore be required to determine if
CG5888, the top GWA candidate (P¼ 2.80E-07), is capable of modi-
fying hyperglycemia in the r4>Sirt1-RNAi model, and if so, in
which tissues it is acting.

Uninflatable (uif) encodes a single pass transmembrane protein
found on the apical membrane of epithelial cells and has been
found to enable Notch signaling (Loub�ery et al. 2014). It has also
been found to exacerbate disease in a Drosophila model of muscu-
lar dystrophy (Kucherenko et al. 2011), and its closest human
ortholog ELAPOR1 is a regulator of apoptosis and autophagy
(Deng et al. 2010). Both of these processes are commonly dis-
rupted through inappropriate activation in metabolic disease,
and might provide some explanation for the impact of uif on
Sirt1i-associated phenotypes (Bugliani et al. 2019).

Perhaps the most intriguing finding is CG4168 as the modifier
with the strongest impact on Sirt1i-associated hyperglycemia.
The protein encoded by CG4168 is of unknown function, but its
closest human ortholog (IGFALS) encodes a serum protein that
binds to insulin-like growth factors (IGF) in circulation (Boisclair
et al. 1996). In mammals, association with IGFALS increases the
half-life of insulin-like growth factors in the serum as well as
their retention in circulation. While studies of IGFALS in mam-
mals has not shown a role for it in regulating insulin signaling,
the Drosophila ilp peptides are used for both IGF and insulin sig-
naling activation (G�eminard et al. 2006). It is possible that secre-
tion of the factor encoded by CG4168 from the fat body could
increase ilp retention in circulation, whereas its loss could result
in faster clearance of ilps from circulation. Under conditions that
promote insulin resistance, such as the loss of Sirt1, it is possible
that reduced ilp levels in the hemolymph could slow or prevent
insulin resistance and hyperglycemia. Further exploration of the
mechanisms behind the action of CG4168 could reveal important
insights into circulating insulin-binding factors and their role in
diabetes.

In conclusion, we have identified a number of pathways and
processes involved in the degree of hyperglycemia in a genetic
model of diabetes. Examination of the candidate genes and path-
ways described above in this model as well as other models of
metabolic dysfunction will shed new light on the mechanism by
which insulin resistance and related complications disease onset,
progression, and severity. Furthermore, the candidates identified
as suppressors could serve as promising targets for therapeutics
in diabetes and related metabolic disorders.

Data availability
Strains and stocks are available upon request, as is code for
GSEA. Genomic sequence for the DGRP is available at http://dgrp.
gnets.ncsu.edu/. Supplemental material is available at FigShare
(https://doi.org/10.6084/m9.figshare.16587326).
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