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In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies:
Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of
molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the
current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we
sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21
Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses
were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome
divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer
sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated
that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage
indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML
phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides,
positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior
probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three
subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the
adaptation and evolution of Amaryllidaceae.

1. Introduction

Amaryllidaceae belong to Asparagales and is a worldwide
distributed family of monocotyledons [1]. Early APG II
(Angiosperm Phylogeny Group II) classification believed
that Amaryllidaceae could be merged with the genera
Allium and Agapanthus based on phylogeny, or it could
be divided into a single division [2]. According to the prin-
ciple of merging small families, the latest revised version of
APG IV [1] exhibited major changes, which divided Amar-
yllidaceae into three subfamilies: Allioideae (e.g., Allium

spp.), Agapanthoideae (e.g., American bluebells), and Amar-
yllidoideae (e.g., daffodils and amaryllises). Meanwhile, the
phylogenetic relationships among the three subfamilies have
been extensively investigated [3–13], and three sister lineages
were supported, often presenting Amaryllidoideae and
Allioideae as sister lineages, with Agapanthoideae as sister
to both.

Currently, more than 1,800 species have been recorded
in Amaryllidaceae [14]; among them, the subfamily Allioi-
deae occupies 13 genera and more than 900 species [15],
which are widely distributed in the Northern Hemisphere
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and include many economically important crops, such as
garlic, leek, onion, and shallot [16, 17]. The subfamily Amar-
yllidoideae also has approximately 900 species, which
include many famous ornamental plants, such as Crinum
asiaticum, Clivia miniata, and Hippeastrum rutilum [10,
18]. Agapanthoideae is a small subfamily of Amaryllidaceae,
and only approximately 10 species have been reported,
which are also famous ornamental cultivars and are widely
cultivated worldwide. For the significant edible, medicinal,
and ornamental values of species in Amaryllidaceae,
research on these species has never stopped, which also
provides valuable information for us to perform further
research.

Beyond the phylogenetic studies conducted on the three
subfamilies of Amaryllidaceae, genome and transcriptome
data were also used to perform evolutionary and adaptive
analyses on Amaryllidaceae species in recent years [11–13,
19–21]. Complete plastome sequences, which have a highly
conserved genome structure and gene content and a low
substitution rate, offer effective approaches for investigating
the phylogeny, species divergence, and adaptive evolution of
plant species [12, 22–26]. In particular, the substitution rates
of the plastome are several times lower in the inverted repeat
(IR) than SSC (small single-copy) regions [11, 23, 27–29].
We found that species from Allioideae exhibit lower GC
content than relatives and lost some genes (e.g., rps2).
Further studies suggested that 27 genes of Amaryllidaceae
species possess positively selected sites (e.g., matK, petD,
and rbcL), and 10 of them are owned by Allioideae species
[12]. Of course, some Amaryllidoideae and Agapanthoideae
plastome sequences have been released [30, 31]. However,
most of the public chloroplast genomes are annotated with
different methods, which will result in more or less annota-
tion errors, and most previous studies have focused on
Allioideae. No studies have investigated the difference in
plastome structure and adaptive evolution among the three
subfamilies.

In this study, a total of 36 chloroplast genomes were
collected and reannotated using a uniform approach, includ-
ing 21 Allioideae species (18 of which were sequenced and
assembled here), one Agapanthoideae species, and 14 Amar-
yllidoideae species. Comparative plastome analyses were
performed, and our objectives were to (1) gain insights into
the plastome structure features of Amaryllidaceae; (2) inves-
tigate the genome variation among the three subfamilies; (3)
reconstruct the phylogenetic relationships of Amaryllidaceae
species; and (4) explore adaptive evolution based on selective
analysis. Our studies will contribute to a comprehensive
understanding of plastome evolution in Amaryllidaceae.

2. Materials and Methods

2.1. Taxon Sampling. In this study, we collected 41 plastid
genomes representing three subfamilies of Amaryllidaceae
and an outgroup of Asparagaceae. Among them, there were
21 Allioideae species, 1 Agapanthoideae species, 14 Amaryl-
lidoideae species, and 5 Asparagaceae species. (GenBank
accessions: Supplementary Table 2). Among all 41 plastomes,
we assembled 18 plastomes, and fresh leaves were collected

from the wild and then desiccated and stored in silica
gel (Supplementary Table S1). Total genomic DNA was
extracted from silica-dried leaves with a modified CTAB
method with the default parameters [32]. Voucher speci-
mens were deposited in the Sichuan University Herbarium
(SZ). In addition, we downloaded 38 ITS sequences of
Amaryllidaceae and Asparagaceae species from GenBank
(GenBank accessions: Supplementary Table 3).

2.2. Plastome Genome Sequencing, Assembling, and
Annotation. Total genomic DNA was sent to Novogene
Technologies, Inc. (Beijing, China) for genome library con-
struction and sequencing. The sequencing library was gener-
ated using the NEB Next® Ultra™ DNA Library Prep Kit for
Illumina (NEB, United States) according to the manufactur-
er’s recommendations, and index codes were added to each
sample. Sequencing was executed using an Illumina Nova-
Seq 2500 sequencer (Illumina, San Diego, CA, United
States). Then, the plastomes were de novo assembled by
NOVOPlasty v2.7.1 [33] with clean data. To minimize the
impact of distant starting seed sequences on the plastomes,
we used a consistent seed sequence (A. cepa, GenBank No.
KF769495) within species as a reference sequence. The bases
or sequences that could not be confirmed were modified by
designing primers for PCR amplification and performing
first-generation sequencing. Gene annotations and IR region
searches were undertaken using PGA software [34]. Three
chloroplast genomes (A. cepa, A. sativum, and A. chinense)
were set as reference sequences, and the results were
adjusted manually in GENEIOUS R11 [35] based on com-
parisons with homologous genes of other species’ plastomes.
Circular plastome maps were drawn using the online pro-
gram OGDRAW [36].

2.3. Sequence Basic Information and Sequence Divergence.
Basic information statistics for all chloroplast sequences
were performed using GENEIOUS R11, including the length
and GC content of the genome sequences and the number of
CDSs and genes in each category. Based on A. listera as a ref-
erence, mVISTA [37] was used to construct and visualize the
whole-genome alignment of 36 plastomes.

2.4. Contraction and Expansion of IRs and Repeat Element
Analysis. The program IRscope (https://irscope.shinyapps
.io/irapp/) [38] was used to compare the boundaries between
the IR and SC regions of the 36 species and then correct
them manually. The Perl script MISA [39] was used to count
the plastid SSRs, and the repetition thresholds were set as
follows: mononucleotides 10 repeats, dinucleotides 5 repeats,
trinucleotide 4 repeats, and tetranucleotides, pentanucleo-
tides, and hexanucleotides have 3 repeats. We used the
online REPuter program [40] to identify repeat sequences,
including forward repeats, palindromic repeats, reverse
repeats, and complementary repeats. The parameters were
set as follows: (1) screen repeats with the sizes longer than
30 bp; (2) the sequence identity between two repeated
sequences exceeding 90%; and (3) hamming distance = 3.
All overlapping repeat sequences in the test results were
removed.
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2.5. Indices of Codon Usage. The protein-coding genes from
the 36 plastomes were extracted, and all overlapping genes
were removed for codon analysis. The final dataset included
65 consensus protein-coding genes for each species. Six
values were used to estimate the degree of codon preference:
relative synonymous codon usage (RSCU), codon adapta-
tion index (CAI), codon bias index (CBI), effective number
of codons (ENC), GC content of synonymous third codon
positions (GC3s), and frequency of optimal codons (Fop)
[41]. All the above values were calculated by the CodonW
v1.4.2 program [42], and the heat map of all RSCUs was
drawn using TBtools [43].

2.6. Phylogenetic Analyses. We reconstructed the phyloge-
netic relationships of Amaryllidaceae species based on the
two datasets (including a 41-taxon plastome dataset and a
separate dataset comprising 38 nuclear ITS sequences). For
plastomes, all shared single-copy genes (SCGs) were
extracted from the 41 taxa and then aligned using MAFFT
program [44]. We adjusted all alignments manually using
the GENEIOUS R11 software [34] and concatenated all of
them into plastid supermatrices using PhyloSuite software
[45]. For ITS, we aligned them using the MAFFT program
[44] and then adjusted manually using GENEIOUS R11
[34]. Maximum likelihood analyses (ML) of the two data-
sets were performed using the RAxML v7.2.8 [46] under
the GTRGAMMA model and 1000 bootstrap replicates.
Bayesian inference (BI) was performed on the two datasets
using the software MrBayes v3.2.7 [47] with the GTR+G sub-
stitution model. The Markov chain Monte Carlo (MCMC)
algorithm was run for 2 ∗ 107 generations, and one tree was
sampled every 1000 generations. The convergence of MCMC
was determined by calculating the average standard deviation
of split frequencies, and stationarity was considered to be
reached when it fell below 0.01 and ESS > 200. We dis-
carded the first 25% percent of the trees as burn-in and
used the remaining trees to generate the 50% majority-
rule consensus tree.

2.7. Positive Selected Pressure Analyses. The single-copy
CDSs of all 36 species were extracted and further aligned
using MUSCLE v3.6 software [48]. The DNA codon
sequence alignments were further trimmed by TRIMAL
v1.2 [49], and the final processing alignments were used
for the positive selection analyses. The optimized branch-
site model and Bayesian empirical Bayes (BEB) methods
[50–52] were used to perform the related analysis. To iden-
tify genes under positive selection among the three subfam-
ilies, the species of each subfamily was set as the foreground
branch and compared with the other two subfamilies
through the optimized branch-site model. The ratio (ω) of
the nonsynonymous substitution rate to the synonymous
substitution rate (Ka/Ks) was calculated using the PAML
v4.8 package with the branch-site model [51]. The likelihood
ratio test (LRT) was used to confirm the quality of the differ-
ent sets above [53]. The Bayesian Empirical Bayes (BEB)
method was used to statistically identify whether the selected
sites were under positive selection (posterior probabilities
≥ 95%). We classified these genes as follows: ω < 1, ω = 1,

and ω > 1 suggesting negative selection, neutral selection,
and positive selection, respectively [54]. The gene that was
positively selected and with a test p value < 0.05 was consid-
ered a positively selected gene (PSG) [40].

2.8. Ancestral Character-State Reconstructions. We con-
ducted reconstructions of two vegetative features, namely,
(i) bulb shape and (ii) leaf shape. All morphological feature
information comes from field observations, specimen stud-
ies, or literature information [55–60]. The details of the
above two characters are provided in Supplementary
Table 11. The RASP v4 software [61] was used to
reconstruct the ancestral traits of the leaf and bulb types.
Amaryllidaceae bulbs were divided into three types, namely,
(i) spherical, (ii) cylindrical, and (iii) ovoid, coded as A, B,
and C, respectively. And the leaves were divided into six
types, namely, (i) ribbon, (ii) wide bar, (iii)wide line, (iv)
oval, (v) bar, and (vi) lanceolate, coded as a-f, respectively
(Supplementary Table 11). The MCMC iterations were set
to 100 million and sampled every 10,000 iterations. The
first 50,000 iterations were set into burn-in.

3. Results

3.1. Chloroplast Features of Species. The plastomes of the
three subfamilies (Allioideae, Agapanthoideae, and Amaryl-
lidoideae) were all single circular molecules with a typical
quadripartite structure (Figure 1). The plastome size of the
21 Allioideae species was found to be 152748-155373 bp,
which in Agapanthoideae was 157055 bp and in 14 Amaryl-
lidoideae species was 157241 bp to 160099 bp. Plastome
lengths of LSC in Allioideae were from 82166 bp (A. fascicu-
latum) to 83358 bp (A. cyathophorum) and in SSC were
varied from 17660 bp (A. listera) to 18770 bp (A. funckiifo-
lium), which in Agapanthoideae were 85203 bp (LSC) and
18114 bp (SSC) and in Amaryllidoideae were 85656-
86584 bp (LSC) and 16435-18542 bp (SSC). The GC con-
tents of plastomes in Allioideae, Agapanthoideae, and
Amaryllidoideae were 36.8-37.1%, 37.5%, and 37.7-38.0%,
respectively. The gene number of the three subfamilies was
ranged from 131 to 137. The detailed statistical information
of the plastome sequence is summarized in Table 1.

3.2. Contraction and Expansion of IRs and Sequence
Divergence. We found that the chloroplast genomes of
Amaryllidaceae plants were relatively conserved on the IR
boundary but that there was diversity in the location of the
four regions of the chloroplast genome of different subfam-
ilies and different species. From Figure S1, we found that
in the chloroplast genomes of all species in the three
subfamilies, the junction line between the LSC region and
the IRa region (LR line) generally traversed the rpl22 gene
or the intergenic region between the rpl22 gene and the
rps19 gene. The junction line between the IRa and the SSC
(RS line) was located in the region of the ycf_like gene in
the genomes of all subfamily species (except Narcissus
poeticus), but the position on the pseudogene was different.
In addition, we also found that there were a certain
number of species in the three subfamilies that existed
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overlapping regions between the ycf1_like gene and the ndhF
gene, and the length of the overlap region was as high as
85 bp in Allium fetisowii. The junction line between the
SSC and IRb (SR line) traversed the coding region of the
ycf1 gene, but the coordinate positions were different. The
junction line between the IRb and LSC (RL line) of three

subfamilies was located in the intergenic region between
the rps19 gene and the psbA gene but had different
coordinate positions (Supplementary Figure S1). We used
mVISTA to visualize the chloroplast genome sequence
diversity of the 36 species. The results showed that species
between different subfamilies had obvious differences both
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Figure 1: Plastid genome map of A. listera.
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in the coding region and noncoding region of the chloroplast
genome (Supplementary Figure S2). When comparing the
chloroplast genomes of different species in the same
subfamily, we found that there was a high degree of
similarity between the whole sequences.

3.3. Repeat Element Analysis and Codon Usage. SSRs were
detected in the three subfamilies (Supplementary Table S4).
There were 1377 simple sequence repeats (SSRs) detected

in 21 Allioideae species, and the most abundant type was
mononucleotide repeats (65.6%), with other repeat types as
follows: dinucleotides (17.1%), tetranucleotides (12.8%), tri-
nucleotides (2.8%), pentanucleotides (1.0%) and hexanucleo-
tides (0.7%). The above result was similar to the ratio of each
component in the 717 SSRs detected in Amaryllidoideae,
which only had three types of repeats in Agapanthoideae.
For the 2144 SSRs detected in these 36 species, we performed
relevant statistics on the types and numbers of their base

Table 1: Summary of the basic parameters from 36 Amaryllidaceae species plastid genomes.

Species
Total length

LSC
length

SSC
length

IR
length

Gene
number

Protein
cording

rRNAs tRNAs
Coding region

Non-coding
region

Length
(bp)

GC%
Length
(bp)

GC%
Length
(bp)

GC%

Agapanthus coddii 157055 37.5 85203 18114 26869 133 87 8 38 79029 37.9 78026 37.1

Allium cyathophorum 154174 36.8 83358 17882 26467 131 86 8 37 79383 37.3 74791 36.3

Allium fasciculatum 152931 37.1 82166 17837 26464 132 85 8 38 78936 37.5 73995 36.7

Allium fetisowii 154018 36.9 83202 17942 26437 132 86 8 38 79302 37.3 74716 36.5

Allium funckiifolium 155373 37.1 82813 18770 26895 132 87 8 37 79557 37.6 75816 36.6

Allium listera 153955 37.0 83259 17660 26518 132 87 8 37 79125 37.5 74830 36.5

Allium macranthum 152748 37.1 82541 17993 26107 132 86 8 38 78621 37.6 74127 36.6

Allium mairei 152913 36.9 82232 18141 26270 132 86 8 38 78915 37.3 73998 36.5

Allium monanthum 154730 37.0 83834 18008 26444 132 86 8 38 79308 37.5 75422 36.5

Allium mongolicum 153667 36.8 82644 18043 26490 132 87 8 38 79593 37.2 74074 36.4

Allium nanodes 153526 37.0 82519 17975 26516 132 87 8 37 79113 37.5 74413 36.5

Allium neriniflorum 154280 37.0 83130 18192 26479 132 86 8 38 79536 37.4 74744 36.6

Allium nutans 153456 36.9 82532 17952 26486 132 86 8 38 79237 37.3 74219 36.5

Allium ovalifolium 153713 37.0 82806 17933 26487 132 87 8 37 79179 37.5 74534 36.5

Allium ovalifolium var.
cordifolium

153511 37.0 82451 18020 26520 132 87 8 37 79116 37.5 74395 36.5

Allium ovalifolium var.
leuconeurum

153024 37.0 82261 17817 26473 132 87 8 37 78690 37.5 74334 36.5

Allium polyrhizum 152984 36.9 82437 17955 26296 132 86 8 38 79026 37.3 73958 36.5

Allium prattii 153516 37.0 82571 17971 26487 132 87 8 37 79158 37.4 74358 36.6

Allium przewalskianum 153509 36.9 82301 17718 26745 135 88 8 39 79926 37.2 73583 36.6

Allium ramosum 154034 36.9 83089 17907 26519 135 87 8 37 78966 37.4 75068 36.4

Allium tuberosum 154056 36.9 83067 17959 26515 131 88 8 39 78846 37.4 75210 36.4

Allium victorialis 154272 37.0 83322 17880 26535 132 87 8 37 79110 37.5 75162 36.5

Clivia miniata 158114 38.0 86203 18335 26788 133 87 8 38 79455 38.4 78659 37.6

Hippeastrum rutilum 158357 37.9 86450 18273 26817 133 87 8 38 79470 38.2 78887 37.6

Hippeastrum vittatum 158082 37.9 86165 18285 26816 133 87 8 38 79401 38.4 78681 37.4

Leucojum aestivum 157241 37.9 85656 18181 26702 133 86 8 38 79236 38.3 78005 37.5

Lycoris anhuiensis 158490 37.8 86464 18498 26764 135 87 8 38 79578 38.3 78912 37.3

Lycoris aurea 158690 37.7 86584 18542 26782 132 86 8 38 79239 38.3 79451 37.1

Lycoris chinensis 158484 37.8 86458 18498 26764 135 87 8 38 79578 38.3 78906 37.3

Lycoris longituba 158633 37.8 86461 18372 26900 136 85 8 38 78441 38.3 80192 37.3

Lycoris radiata 158436 37.7 86582 18234 26810 137 85 8 38 78873 38.2 79563 37.2

Lycoris sanguinea 158761 37.7 86528 18431 26901 137 86 8 38 79146 38.3 79615 37.1

Lycoris sprengeri 158747 37.7 86484 18479 26892 137 86 8 38 79137 38.3 79610 37.1

Lycoris squamigera 158459 37.8 86430 18501 26764 133 87 8 38 79554 38.2 78905 37.4

Narcissus poeticus 160099 37.8 86444 16435 28610 137 86 8 38 81995 38.4 78104 37.2

Narcissus tazetta 159376 38.0 85940 16452 28492 133 86 8 38 81261 38.4 78115 37.6
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combinations (Figure 2). Forward, palindromic, reverse,
and complementary repeats in 36 plastomes were also
detected (Supplementary Table S5). Among 21 Allioideae
species, we detected 661 repeats 30-90 bp long, and the
number of forward repeats (362) was higher than that of
palindromic repeats (268), reverse repeats (20), and comple-
ment repeats (2). The four types of repeat ratios detected in
Amaryllidoideae and Agapanthoideae were similar to the
appeal results (Figure 3(a)). We divided all the repeats into
four intervals according to length: 30-45 bp, 45-60 bp, 60-
75 bp, and >75 bp. Among them, most of the repeats in
Allioideae were 30-45 bp long (84.6%), followed by 45-60 bp
(12.6%), 60-75 bp (1.4%), and >75 bp (1.4%) (Supplementary
Table S6). The detected results in Amaryllidoideae and
Agapanthoideae were consistent with those in Allioideae
(Figure 3(b)).

We detected the CDS of the 36 plastomes separately, and
six values were used to estimate the degree of preference for
codons. The results of the RSCU values for all codons are
shown in heat maps (Figure 4), which showed that most of
the codon usage preferences remained at a consistent level
in the three subfamilies, approximately half of the codons
were used more frequently (RSCU > 1), and only two
codons (ATG and TGG) had no bias (RSCU = 1). After sta-
tistical analysis, the other five parameters were displayed
with box plots (Figure 5). We found that these five parame-
ters had significant differences in the three subfamilies and
Allioideae had the lowest correlation value among the five
parameters, followed by Agapanthoideae and Amaryllidoi-
deae (Supplementary Table S7).

3.4. Phylogenetic Relationships. We referred to the tree built
with the chloroplast data as the CP tree. The CP trees
reconstructed using the above two methods (ML and BI)

were topologically consistent with each other (Figure 6),
and there was little difference in well-supported branches
in terms of bootstrap support values of ML (BS) or posterior
probabilities of BI (PP). There was strong support for the
monophyly of each family which was revealed based on
shared SCG data (Figure 6). Amaryllidoideae was supported
to be the sister of Allioideae, and Agapanthus coddii from
Agapanthoideae had strong support to be sister to Allioideae
and Amaryllidoideae (Figure 6). The ITS tree (Figure 7 and
Supplementary Figure 3) was roughly comparable to the
CP tree regarding subfamilies and intergeneric relationships
but was weakly supported regarding interspecies and had
some inconsistencies.

3.5. Selective Pressure Analysis. Based on the above results,
we conducted a further positive selection analysis on the
three subfamilies. Sixty-five protein-coding genes were ini-
tially considered for the positive selection analysis, and 60
of them were eventually selected after filtering (Supplemen-
tary Table S8). All genes detected with positive selection sites
are listed in Table 2. For Allioideae species, all p values were
insignificant in each gene range. However, 11 protein-coding
genes (atp8, atpF, accD, rps3, rps18, rpl16, petA, petG, psbE,
psbJ, and ndhK) were found with significant posterior
probabilities in the BEB test, which means existing sites
had positive selection (Table 3). In Amaryllidoideae and
Agapanthoideae, there were 15 (atpB, atpE, ndhD, ndhH,
ndhI, ndhJ, petB, psbF, rpl22, rpl33, rps3, rps8, rps14, rps16,
and ccsA) and 12 (ndhF, ndhH, petL, psbD, rpl20, rpl22,
rpoA, rpoC2, rps3, rps4, rps8, and clpP) similar genes,
respectively (Supplementary Tables S9, S10). Among these
protein-coding genes, most had only one positive selective
site (ndhK, petG, atpF, etc.); some of them have more than
one positive selective site, such as petA (seven sites) and
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Figure 3: Analysis of repeat sequences in the 36 Amaryllidaceae plastid genomes. (a) Numbers of four repeat types. (b) Number of four
types of repeats divided by length.
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atpB (nine sites) in Allioideae, rpl20 (four sites) and rpoA
(seven sites) in Agapanthoideae, and rpl22 (two sites) and
ndhD (three sites) in Amaryllidoideae.

3.6. Ancestral Character-State Reconstructions. Specific
information and numbering for the two traits of

Amaryllidaceae species is presented in Supplementary
Table 11, and the traits reconstruction were presented in
Figure 8. For bulbs, the results from RASP proposed one
possible evolutionary route for Amaryllidaceae bulbs. The
most recent common ancestor (MRCA) of Amaryllidaceae
probably had spherical, ovoid, and cylindrical bulbs at the
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same time in different habitats, and the MRCA of Allioideae
and Amaryllidoideae differentiated into cylindrical bulbs
and ovoid bulbs. For leaves, in the possible evolutionary
route for Amaryllidaceae leaves proposed by RASP, the
MRCA of them may have appeared phenotype with many
scales. This may also have been the case in the ancestors of
the Allioideae and in the ancestors of the Allioideae and
Amaryllidoideae. Within the Amaryllidoideae species, their
MRCA may only have a ribbon leaf type and then
differentiate into various leaf types, including ribbons, bars,
and lanceolates. The information for pivotal nodes 1-4 that
represent important ancestors of three subfamilies is
marked in Figure 8 with numbers in black font.

4. Discussion

Currently, plastome data have been used to evaluate genetic
variation in different orders, such as Pilostyles, Salvia, Legu-
minosae, and Dipsacales [45, 62–64]. The plastome sizes of
all tested species varied from 152748 to 160099 bp, which
was consistent with the length of most angiosperms [65]. It
is striking that the plastome length of Amaryllidoideae and
Agapanthoideae species was significantly longer than that
of Allioideae species. Further statistics and comparison
revealed that the difference in plastome length mainly results

from the noncoding region length variation of LSC and SSC
regions (Table 1), which is shorter in Allioideae species than
in Amaryllidoideae and Agapanthoideae species. The results
were in line with the widespread conservation that is charac-
teristic of plastid genes (coding regions), especially
photosynthesis-related genes [66], and has been reported
in other plants [67]. Additionally, Amaryllidoideae species
had the highest GC content not only in the whole chloro-
plast genome but also in the coding region and the noncod-
ing region, followed by Agapanthoideae and Allioideae. Two
reasons may explain this phenomenon: the selection of
translation efficiency may result in a lack of G and C in
the plastome [68, 69], and neutral mutation processes such
as AT-biased gene conversion and AT-mutation pressure
may cause lower GC content [70–72]. Similar results have
been reported in other Allioideae species [11].

Large repeat sequences play an important role in
sequence divergence and promote plastome rearrangement
[73–75]. Here, we detected 1,199 long repeat sequences in
the three subfamilies and found that the number of long
repeat types was similar. Further analyses showed that most
of the repeats are 30-45 bp, and the palindromic and forward
types accounting for the largest proportion were similar to
many other plastomes [76–78]. SSRs are considered to be
potential resources in evolutionary studies and are effective
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in species discrimination and population genetic analyses
exploring the biogeography of allied taxa [79–84]. From
the SSR results, we found that some repeat types were specif-
ically owned by Amaryllidoideae species, such as ATT,
TTCT, CGAAA, and TTTCG, and some were possessed in
Allioideae species, for example, TTA, ATTT, CGAT, and
TAAA (Figure 2). These special SSRs can be used for the
identification and classification of species within the Amar-
yllidaceae. Many SSRs have been detected and used for
species identity and delimitation (e.g., Lycoris, Psidium,
and Asparagus) [85–87]. Therefore, we believe that the
repeat sequences detected in this study will provide useful
information for studies of Amaryllidaceae in the future.

Codon usage is closely related to gene expression and
natural selection pressure [88, 89]. From the results, we
found that the phenomenon existed in all three subfamilies
that 30 codons were used frequently (RSCU > 1) and all
biased codons ended with a purine A or T. Codons that have
a higher AT content are usually used in the plastomes, and
the trend of using A/T in the third position of the codon is
more obvious than using G/C [24, 90, 91]. Codons that
encode leucine had the highest number, and the order of
codon bias was TTA>CTT>TTG>CTA>CTC>CTG,
which was consistent with the results found in other plants,

such as Ligusticum and Geraniaceae [78, 92]. The codon
GCA was found to be less used in Amaryllidoideae species
than in the other two subfamilies, while TCC was more used
in Amaryllidoideae species (Figure 4). From Figure 5, we
found that five parameters involved in codon usage bias
were lowest in Allioideae species, while Amaryllidoideae
species had the highest values followed by Agapanthoideae
(Figure 5). The calculated values revealed that the diverse
codon usage patterns of different species may also be helpful
for species identification and classification [93, 94].

Appropriate and multiple gene combinations are par-
ticularly important and efficient for accurate phylogenetic
estimation. Nuclear ribosomal DNA genes (e.g., ITS and
ETS), many cpDNA fragments (e.g., rps16, matK, and
trnL–trnF), and chloroplast genomes have been used to
infer the phylogeny of plants [12, 13, 17, 95, 96]. In this
study, ML analysis and Bayesian inference were performed
with two datasets (chloroplast SCGs and nrDNA ITS) to
explore and reconstruct the phylogenetic relationships of
Amaryllidaceae species. Our plastome analyses inferred
well-supported relationships among the subfamily Amarylli-
daceae (Figures 6 and 7). The monophyly and sisterhood of
the three subfamilies was reconfirmed [12, 17, 97]. According
to previous ITS-based studies, the Allium (Allioideae) species
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were divided into three evolutionary lineages (clade 1, clade
2, and clade 3) [17]. Here, our plastome phylogenomic anal-
ysis based on the SCGs provided strong support for the
monophyly of Allium (Allioideae) and other Amaryllidaceae
families (Figures 6 and 7, Supplementary Figure 3), which
was in agreement with previous studies [12, 13, 17, 96, 98].
Besides, we further detected new species relationships within
the three evolutionary lineages with high support values,
including Allium fasciculatum in the first clade and Allium
funckiifolium, Allium listera, Allium ovalifolium var. cordifo-
lium, and Allium ovalifolium var. leuconeurum on the second
clade. Previous studies performed the phylogenetic analysis
of Amaryllidoideae using limited ITS or matK sequences
and detected weaker support in phylogenetic relationships
[99, 100]. Our plastome analysis based on SCGs revealed
well-supported generic relationships inside Amaryllidoideae.
Relationships among the five genera of Amaryllidoideae are
well supported and generally in line with the previous studies
[95, 97, 99–102]. Our ITS tree (Figure 7 and Supplementary
Figure 3) provided strongly supported relationships among
subfamilies of Amaryllidaceae and were highly consistent
with the CP trees (Figure 6). However, the bootstrap support
values of the ML tree among some genera and species were
significantly lower than the posterior probability values of
the BI tree. This may result from the use of different statistical
inference methods. Relevant studies have shown that the BI
method is more efficient, the node support rate in the BI
method analysis results is higher than the corresponding
results in other algorithms, and for closely related species

sequences, the BI method works better [103–105]. All of
the above results may indicate that the species relationships
of Amaryllidaceae are complex. Although we detected
some new species relationships and provided high support,
relationships among species of Amaryllidaceae are still not
well resolved (especially for species in Lycoris and in the
third clade of Allioideae). In general, our plastome phylo-
genetic analysis reconstructed a well-supported tree for
Amaryllidaceae and contributed to a better understanding
of the Amaryllidaceae phylogeny. More extensive geographic
information and genomic samples for further investigation
are required in the future.

We conducted further selective pressure analysis on the
three subfamilies. The 60 screened protein-coding genes of
each subfamily were used to estimate the selective pressures,
which may have evolved evolution to adapt to changing
environmental conditions. Several genes were found to have
significant posterior probabilities for codon sites under the
BEB test in each of the three subfamilies, although the posi-
tive selection was insignificant in all genes (p value > 0.05),
which may suggest they were under purifying selection
(Table 3 and Supplementary Table S8 and S9). This result
reflects the typical evolutionary conservation of plant plastid
genes [106, 107]. Previous research has shown that codon
sites with higher posterior probability can be regarded as
positively selected sites, which means that genes possessing
positively selected sites may be evolved under positive selec-
tion pressure [50]. Based on the above research results, it is
worth noting that there are seven genes with positive

Table 2: List of 38 plastid coding genes with positive selection sites detected in three subfamilies.

Category Group Allioideae Amaryllidoideae Agapanthoideae

Self-replication

Large subunit of ribosome (LSU) rpl16
rpl22 rpl20

rpl33 rpl22

Small subunit of ribosome (SSU)
rps3
rps18

rps3
rps3
rps4
rps8

rps8

rps14

rps16

DNA-dependent RNA polymerase
rpoA

rpoC2

Photosynthesis

Photosystem II
psbE

psbF psbD
psbJ

Subunits of NADH-dehydrogenase ndhK

ndhD

ndhF
ndhH

ndhH

ndhI

ndhJ

Subunits of cytochrome b/f complex
petA

petB prtL
petG

Subunits of ATP synthase
atp8 atpB

atpF atpE

Other genes

Subunit of acetyl-CoA-carboxylase accD

C-type cytochrome synthesis gene ccsA

ATP-dependent protease subunit p gene claP
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Table 3: The potential positive selection test based on the branch-site model in Allioideae.

Gene
name

Null hypothesis Alternative hypothesis Significance test

lnL df
Omega
(w = 1) lnL df

Omega
(w > 1) BEB p value

petA -1979.00 74 1 -1978.91 75 9.50
30, T, 0.525; 43, G, 0.518; 92, L, 0.567; 138, Q,

0.567; 177, H, 0.569; 216, R, 0.527; and 238, V, 0.543
0.68

petN -142.28 74 1 -142.28 75 1.00 1.00

atpI -415.76 74 1 -415.76 75 1.00 1.00

rpl33 -454.52 74 1 -454.52 75 1.00 1.00

rps11 -957.14 74 1 -957.14 75 1.00 1.00

rps3 -1693.51 74 1 -1693.51 75 1.00 112, L, 0.552 and 125, H, 0.545 1.00

psbH -418.26 74 1 -418.26 75 1.00 0.99

rpl20 -922.89 74 1 -922.89 75 1.00 1.00

rpl14 -822.07 74 1 -822.07 75 1.00 1.00

ycf3 -1124.46 74 1 -1124.46 75 1.35 0.97

psbI -221.02 74 1 -221.02 75 1.00 1.00

atpH -457.92 74 1 -457.92 75 1.00 1.00

psaA -4212.68 74 1 -4212.68 75 1.00 1.00

rpoA -2506.15 74 1 -2506.15 75 1.00 1.00

ndhA -3318.09 74 1 -3318.09 75 1.00 1.00

clpP -1136.93 74 1 -1136.93 75 1.00 1.00

psbT -190.01 74 1 -190.01 75 1.00 1.00

ndhK -1585.54 74 1 -1585.30 75 8.93 209, T, 0.778; 0.49

ndhI -1379.34 74 1 -1379.34 75 1.00 1.00

rps18 -598.66 74 1 -598.66 75 1.00 27, R, 0.628 and 94, T, 0.620 1.00

ndhG -1467.01 74 1 -1467.01 75 1.00 1.00

psbA -2040.58 74 1 -2040.58 75 1.00 1.00

psbN -229.94 74 1 -229.94 75 1.00 1.00

petG -191.33 74 1 -191.21 75 1.00 5, F, 0.511 0.62

ndhH -3117.69 74 1 -3117.69 75 1.00 1.00

petL -164.26 74 1 -164.26 75 1.00 1.00

rps4 -1222.64 74 1 -1222.64 75 1.00 1.00

ycf4 -1157.74 74 1 -1157.74 75 1.00 1.00

rps16 -527.45 74 1 -527.45 75 1.00 1.00

rbcL -3127.75 74 1 -3127.75 75 1.00 1.00

atpA -3270.90 74 1 -3270.90 75 1.00 1.00

atpB -3017.52 74 1 -3017.48 75 1 6, T, 0.577 and 7, T, 0.591 0.78

ndhJ -977.72 74 1 -977.72 75 1 1

rpoC2 -10713.05 74 1 -10713.05 75 1 0.99

atpF -1010.66 74 1 -1010.66 75 17.1 62, Y, 0.821 0.23

psaJ -256.94 74 1 -256.94 75 1 1

rpl36 -238.98 74 1 -238.98 75 2.95 1.00

rpoC1 -4660.89 74 1 -4660.89 75 1.00 0.98

ndhD -4280.68 74 1 -4280.68 75 1.00 1.00

psbB -3140.03 74 1 -3140.03 75 1.00 1.00

petD -969.28 74 1 -969.28 75 1.00 1.00

psbF -195.99 74 1 -195.99 75 2.12 1.00

rps14 -602.61 74 1 -602.61 75 1.00 1.00

rps8 -889.08 74 1 -889.08 75 1.00 1.00

psbC -2691.25 74 1 -2691.25 75 1.00 1.00

ndhE -747.66 74 1 -747.66 75 1.07 0.99
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selection sites related to photosynthesis in Allioideae, and
eight and four similar genes were detected in Amaryllidoi-
deae and Agapanthoideae.

Through further analysis, we found that these genes are
associated with photosystem II subunits, subunits of
NADH-dehydrogenase, subunits of the cytochrome b/f
complex, and subunits of ATP synthase (Table 2). Photosys-
tem II is the site of photosynthetic light reaction in plants,
where integral membrane protein complexes use light
energy to produce high-energy carriers ATP and NADPH
[108–110]. Subunits of ATP synthase, subunits of NADH-
dehydrogenase, and subunits of the cytochrome b/f complex
are necessary for the generation of ATP in the electron
transport chain [108, 111–113]. The genes mentioned above
are all necessary for photosynthesis and participate in
important physiological processes of plants [114]. These
PSGs related to photosynthesis have been found in all three
subfamilies, which may be closely related to the widespread
distribution of Amaryllidaceae species on Earth [1]. Species
of the three subfamilies are distributed in various environ-
ments, such as low temperature areas [58], temperate humid
forest areas [15], hot arid and semiarid areas [115], and
tropical grassland climate areas [116], and requirements
for sufficient light for photosynthesis might have exerted
strong selective forces on these genes, and in turn, these
positively selected genes might contribute to species of the
three subfamilies adapting various environment better. This
phenomenon was also found in Siraitia and Urophysa
genera [20, 117].

In addition, we also detected a series of genes related to
self-replication in each subfamily. Plastid protein synthesis
plays an essential role in plant development [118, 119].
Among the genes with positive selection sites, the rpoA gene
has the most positive selection sites in Agapanthoideae, sug-
gesting that the rpoA gene may play a pivotal role in the
adaptive evolution of Agapanthoideae species. Studies have

shown that plastid chromosomes encode four RNA poly-
merase genes, designated rpoA, rpoB, rpoC1, and rpoC2
[120]. Notably, half of them (rpoA and rpoC2) were detected
in selective pressure analysis within Agapanthoideae species.
Both have been reported in Annonaceae and Rehmannia
[121, 122]. The rpoA and rpoC2 genes encode subunits α
and β″ of plastid-encoded plastid RNA polymerase (PEP),
respectively, which is believed to be a vital protein responsi-
ble for most photosynthetic gene expression [123]. In addi-
tion, the RNA polymerase β″ encoded by rpoC2 may play
an important role in the regulation of developmental polli-
nation [117, 124]. The finding of these two genes under
selective pressure indicated that they might be essential for
growth and reproduction in Agapanthoideae. Gene claP
encodes clpP proteases containing a gene family with six
members (claP1-claP6) in Arabidopsis of the mustard family
Brassicaceae [125]. It was only found under positive selec-
tion pressure in Agapanthoideae. The gene is detected in
the chloroplast genome of all higher plants and is involved
in various biological processes, ranging from plant growth
changes to stress tolerance [125, 126]. It has been suggested
that the clpP gene is essential for plant cell viability [127,
128], and the rapid evolution of the claP gene in Aga-
panthoideae species may help to adapt to its environment
[129]. The accD gene related to the subunit of acetyl-CoA-
carboxylase was only found in Allioideae with one positive
selection site. Plastid accD is essential for plant leaf develop-
ment or viability and fitness and has deep effects on leaf lon-
gevity and seed yield [130, 131]. It has been reported that
accD gene shows an accelerated rate of evolution [65, 132,
133] and may be a useful marker for plastid evolution
[134–136]. Allioideae species have many types of leaf mor-
phology and physiological characteristics to adapt to differ-
ent environments [96], and the accD gene may play an
indispensable role in its adaptation process. We found the
ccsA gene with one positive selection site in Amaryllidoideae,

Table 3: Continued.

Gene
name

Null hypothesis Alternative hypothesis Significance test

lnL df
Omega
(w = 1) lnL df

Omega
(w > 1) BEB p value

ndhF -7474.14 74 1 -7474.14 75 1.00 1.00

rpl22 -1203.35 74 1 -1203.35 75 1.00 1.00

psaC -527.13 74 1 -527.13 75 1.00 1.00

rpoB -6907.35 74 1 -6907.35 75 1.00 1.00

ndhC -655.94 74 1 -655.94 75 1.00 1.00

psaB -4158.16 74 1 -4158.16 75 1.00 1.00

psbE -456.27 74 1 -456.27 75 1.00 11, A, 0.558 1.00

rpl16 -1062.20 74 1 -1062.20 75 1.00 127, R, 0.620 1.00

accD -3439.19 74 1 -3439.19 75 1.00 26, N, 0.661 1.00

psbJ -228.51 74 1 -228.47 75 1.51 25, I, 0.674 and 27, I, 0.660 0.79

ccsA -3188.17 74 1 -3188.17 75 1.00 1.00

psbD -2008.17 74 1 -2008.17 75 1.00 1.00

atpE -900.46 74 1 -900.46 75 1.00 1.00

petB -1237.44 74 1 -1237.44 75 1.00 1.00

Bold types are genes with positively selected sites. BEB: Bayesian empirical Bayes.
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which encodes a protein that is required for heme attach-
ment to C-type cytochrome and may be closely related to
photosynthesis [137, 138]. It is generally present in land
plants, while it is absent from the plastome of Physcomitrella
patens [139].

In previous studies, most of the genes mentioned above
have been reported under the pressure of positive selection
[11, 140–142]. Species in Amaryllidaceae are mostly charac-
terized by tunicate bulbs, rhizomes, or tubers and narrow
linear basal leaves, but in different environments, many
Amaryllidaceae species have evolved very different leaf
and rhizome morphologies [98, 143]. The bulb and leaf
are important taxonomic identifiers of Amaryllidaceae spe-
cies, and they are also vital evidence and tools for species
adaptation to various habitats [59, 60]. We reconstructed
the evolution of bulb traits in Amaryllidaceae. The results
show that their MRCA may have several types of bulblets,

and then, the bulb type diverged in three subfamilies
(Figure 8). Allium L. (Allioideae) is one of the largest genera
of monocotyledons and is distributed in a variety of habitats
including cliffs, shrubs, forests, and high-altitude grassy
slopes [1, 15] They usually embed their entire bulbs between
stone crevices and bush roots to hold themselves and absorb
water [96]. Allium (Allioideae) species are dominated by
slender cylindrical bulbs and usually have well-developed
root systems, which may help them anchor themselves more
easily (Figure 8). Through reconstructing the leaf traits, we
found that the leaves of Agapanthoideae and Amaryllidoi-
deae are generally differentiated into ribbons, while the leaves
of Allioideae are mainly differentiated into two types, bar-
shaped and oval. We found that all leaves that differentiated
into oval leaves belonged to sect. Anguinum (marked by red
shading), which were almost exclusively found in moist
understory habitats [15, 96]. We speculate that the wide
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Figure 8: The ancestral character-state reconstructions of 36 Amaryllidaceae species. (a) The ancestral character-state reconstructions based
on bulb types. (b) The ancestral character-state reconstructions based on leaf types.
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leaves may help Anguinum species utilize the weak light in
the forest and transpiration more efficiently and then per-
form better photosynthesis [144–146]. These characteristics
may be the key traits that will help them adapt to various
harsh environments, such as severe cold, drought, saline soil,
and high altitude, and enable them to produce and maintain
a high level of plant diversity [147–149]. We suggest that
these ecological characteristics of Amaryllidaceae reflect their
remarkable adaptability to various environments due to
diverse positive selection pressure on genes in the plastid,
while most PSGs detected may play critical roles in the adap-
tation of plants in the Amaryllidaceae during the evolution
process. Therefore, it is necessary to further investigate the
important role of positive selection in the plastid genes of
Amaryllidaceae species.

5. Conclusions

In this study, we investigated 36 complete chloroplast
genomes of three Amaryllidaceae subfamily species. All
chloroplast genomes exhibited a typical quadripartite struc-
ture and had highly similar genomic structures. SSRs, long
repeats, and genes with positive selective sites were identified
across the chloroplast genomes, which may be helpful for
species identification or classification and can also be used
as potential markers for phylogenetic investigations and
population genetics studies. The monophyly of the three
subfamilies was confirmed, and phylogenetic analysis
showed that they are sisters to each other. Positive selection
analysis identified some PSGs in each subfamily. These
results provide a better understanding of the chloroplast
genome characteristics in the three subfamilies, contributed
to a better understanding of the Amaryllidaceae phylogeny,
and afford more genomic information for further evolution-
ary investigations of Amaryllidaceae species.
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