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A B S TRACT Precise evaluation of permeability of biological tissues is often pre-
vented by imprecise knowledge of operative forces. This problem has been
approached by analysis of fluxes of isotopic species applied to opposite surfaces
of a membrane. A simple and rather general flux ratio equation has been de-
rived which may permit evaluation of membrane permeability, even without
knowledge of forces, or of the nature of active transport processes. Permeability
as thus defined should be insensitive to coupled flows, either of other species or
of metabolism. In appropriate circumstances application of the equation may
permit evaluation of the contributions of the various processes to the transport
of the examined species. Composite series membranes would be expected to
obey the unmodified general equation. Heterogeneous parallel pathways would
alter the relation in a predictable manner. The effect of isotope interaction is
specifically incorporated. The formulation is applied to consideration of ener-
getics of active transport.

INTRODUCTION

Despite extensive use of isotopic tracers in the study of permeability and trans-
port processes, disagreement persists concerning the applicability and in-
terpretation of such studies in biological systems (13, 19, 21). To some extent
this disagreement reflects the different terminology and concepts of physical
and biological methodology; to some extent it is a consequence of the incom-
plete state of the theory of isotope flux applicable to systems of membranes.
For these reasons, as well as the desirability of providing a formal treatment
amenable to further development, it is desirable to reinvestigate the theory of
isotope flow.

A reexamination of the Ussing flux ratio equation has recently been pub-
lished by Hoshiko and Lindley, who provide a derivation on the basis of
phenomenological equations of irreversible thermodynamics (8). Certain of
the underlying assumptions are interpreted in terms of a frictional model,
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and the formulation is applied to some biological problems of interest. In
their derivation Hoshiko and Lindley assume an inverse proportionality
between concentration and resistance to flow of test species. Consideration is
limited to permeation via identical pathways. It is further assumed that there
is no interaction between isotopes in the membrane; analysis of phenomena
such as "exchange diffusion" and "file diffusion" is left for later formulation
of specific kinetic models.

The present treatment approaches these problems from a somewhat more
general viewpoint, aiming at formulations which should be applicable in a
variety of biological systems. No assumptions are made concerning the con-
centration dependence of the resistance terms.

The treatment is applied first to a homogeneous array of parallel elements;
forces considered to be acting on test species are electrochemical potential
gradients, and coupling to flows of other species (e.g., "solvent drag" (1))
and metabolism ("active transport"). Consideration of the related thermo-
dynamic and kinetic properties of isotopic species permits derivation of
integrated equations applicable to the intact membrane treated as a whole.
For this case, the treatment leads to a simple and rather general flux ratio
equation, permitting evaluation of membrane permeability, even without
precise knowledge of the operative forces. Deviations from "normal" ratios
predictable from electrochemical potential differences are specifically ac-
counted for on the basis of coupled flows.

In biological systems, however, flows are often likely to be influenced by
isotope interaction (8, 19) and the existence of heterogeneous parallel path-
ways (27). When these additional complexities are incorporated in the treat-
ment they lead to further modifications of the flux ratio equation. Such

effects must, of course, be taken into account in attempts to characterize the
mechanism of permeation and the energetics of transport in biological mem-
branes.

GLOSSARY

c concentration i = 4, n for flow of other

tich~ ~ substances
c average concentration

A In c J, local flow of metabolism
f flux ratio Jr over-all rate of metabolic reaction,
F Faraday's number e.g., oxygen uptake
J net flow of test species per unit J

area of membrane in the x- K --
direction AC2

J flow of species i R.
i = 1 for abundant test substance R,
i = 2, 3 for tracer species of test P pressure

substance rii local phenomenological coefficient
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R integral phenomenological coeffi-

cient, roo dx
Ax

R 1 (ro00 - rik) dx

R RTlnf
J

R gas constant
T temperature (K)

e partial molar volume

X o - r
X° APco.j-o
z ionic charge
-y activity coefficient

° standard chemical potential; 
electrochemical potential

pi cilc

ip electrical potential
w permeability coefficient
o' isotope permeability coefficient

A. Flow through a Homogeneous Array

For sufficiently slow processes it is generally assumed that the electrochemical
potential is everywhere definable and that forces and flows are linearly re-
lated at every point in a membrane (3, 12). We consider first an array of
parallel pathways, identical with respect to the factors influencing transport.
Considering the x-axis to be perpendicular to the membrane, the driving
force acting on a substance is given by the gradient of its electrochemical
potential, -(dii/dx). In general, following Kirkwood (12), we may, for
isothermal systems, express this force as a function of all the flows:

- (dA,/dx) = rijJj,
i-i=

(1)

where i may refer either to an ion or to an uncharged molecule. The flows
Ji include not only those of all species passing through the membrane, as,
for example, water, but also the movement of mobile membrane components.
The sum may also contain terms riJ,, representing the direct contribution
of metabolism to oriented solute flux.

For the present purpose it is convenient to rewrite equation (1), expressing
flows of test species as functions of their driving forces and coupled flows.
(Here the subscript 0 refers to total test substance, 1 to abundant isotope,
and 2 and 3 to tracer isotopes of test substance.) Then

r J (dx + ro J)

= 1 dy +d E rj )

22 \ dx j=4

J2 = -I(d+ E r2iJi
r33 k dx i-4

(2a)

(2b)

(2c)

(2d)
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It was assumed here that the flows of abundant and tracer species do not

influence each other. The influence of isotope interaction will be considered

in Section B.
Equations (2a, b, c, d) are related, as the isotopes are assumed identical in

all thermodynamic and kinetic properties. Then, for total test substance,

di_ d In c d In 3 dzFp
d= RT d-+ RT d + d + dp, (3a)

dX dx dx dx dx

and for one of the tracer species,

d#2R d In c d In % dz F dp
dx= RT - + RT d + d + d (3b )

where y = Y2, z = z2, and v = 2 . Hence, denoting-c by p2,

d#2 _ d! RT d ln p2 (4a)
dx dx dx

Similarly, for species 3,

d/23 d iiR T d In _ (4b)
dx dx dx

We limit consideration to systems in which no isotope separation is brought

about by the coupled processes. If the specific activities are constant through-

out the membrane the ratio of the flows of isotopes must then be identical

with the ratio of their concentrations, whatever the other flows; further, the

driving forces - (d/dx), - (dl/dx), -(d~ 2/dx), - (dtA3/dx) are equal. Thus

d+i + r2jJj

J roo Ad = p2, (5)
J r22 dl2 - rojJj+ E roj J

dx 4

Ja
and similarly for J .

As equations (5) must hold for all values of Jj, it follows that

r2, = ri = roj (6)

and

r22p2 = r3o3p = roo (7)

Introducing (4), (6), and (7) into (2) the flow equations for total and tracer
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species become

ro= 1 (d + EroiJi) (8a)

Pj 2 d/s E d In p2~
J 2 = -P d- + ri J +RT dx nP (8b)

J= a - d i + rojJj + RT d ln p (8c)

Here the tracer flows are expressed as functions of specific activity and vari-
ables determining total flow of test substance.

The relation of the total flow and the difference of the electrochemical
potential across the membrane, X, is obtained by integration of equation
(2a).

x=-fo dd = JR + E roiJ dx, (9)
0 4

where the integral resistance is defined by

Az

roodx = R (10)

(x = 0 at the outer surface of the membrane; x = Ax at the inner surface of
the membrane). Here we assume that J is constant throughout the membrane
in the steady state, and that both surfaces of the membrane are at equilibrium
with adjacent solutions. It is assumed also that .t is continuous throughout
the membrane. It is permissible that there be a finite number of discon-

dii
tinuities of dx' as would be the case in a biological membrane, which would

be expected to be characterized by discontinuities of local resistances and
metabolic flows. We limit consideration to systems in which the test species
is present on both sides of the membrane, so that X is always finite.

Often flow is characterized by a permeability coefficient rather than by a
resistance. The permeability coefficient co, conveniently defined as

w - (la)
cX4,....-o)

is related to R by

w= (11b)
ER'~Ac

where c is the average concentration of test substance, defined as Alnc (10).
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w is the permeability coefficient that would be measured if all flows other
than that of test substance could be stopped without altering the properties
of the membrane.

For non-electrolytes, or in the absence of an electrical field, equation (1 la)
is equivalent to that given previously (10); i.e.,

J
RTAc

(We ignore the small influence of a possible pressure gradient. For considera-
tions in non-ideal solutions see reference 11.)

From equation (9), determination of R, and thus w, requires knowledge of
both the driving force and the contribution of coupled flows. In biological
studies this information is often unavailable.

EVALUATION OF PERMEABILITY FROM NET FLOW AND ONE TRACER FLOW

Whenever p varies with x, the tracer flow will not be equal to pJ, but will
differ from this value because of isotope exchange (19). From equations (8),

J - P2 J = RT d 2 (12a)
ro dx

and

J - p RTJ = dp (12b)
roo dx

Equations (12) show that, while the tracer flows and J depend on all the
rojJj, the flow of tracer relative to total test substance depends only on
the gradient of p and the resistance roo .

Assuming specific activity at the surfaces equal to that in the contiguous
solutions, we may call the specific activity po at x = 0 (Outside) and p at
x = Ax (Inside). Integration of equations (12) then gives, with equation (10),

J, r0 dx JR J2 - P21 J (13a)
RT RT J 2 - P2 0 J

and

JR lnJ - ParJ 
R T J- P3o J

If tracer 2 was added only to the outside compartment, and the volume of
the inside compartment is sufficiently large, P21 O. Equation (13a) then
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simplifies to:

J2

JR in P20 (14)
In J 2 (14)-- J

P2o

Therefore, in the absence of isotope interaction, determination of one tracer
flux and net flow determines also the resistance to net flow, R. The resistance
R can thus be determined without knowledge either of the driving force or of
the nature of coupled flows. The permeability coefficient w is then given by
equation (lIb).

NET FLUX FROM TWO TRACER FLUXES

Equations (13a) and (13b) relate the three flows J, J 2, J3

J - -J J -- p31 J(15

J2 - P20 J J3 - Pao J

If each tracer is added to only one compartment and p _ P3o ' 0, equation
(15) reduces to:

J J2 + is (16)
P20 Pa3

In terms of the accepted terminology defined by Ussing and Teorell (22, 24),

2 is the influx, - the outflux, and J the net flux. Thus equation (16) is
p20 P3s
the widely used relation:

Net flux = influx - outflux

For the derivation of J from the tracer flows it is not essential, however,
to employ infinite sinks, though measurements are, of course, most accurate
in this case. Denoting pi - po by Ap, equation (15) gives:

J(P 21 P30 - P2o0P3) = J3AP2 - J2 Ap 3 ,

or

P3j (pa P2 J _ 2 (17)J2

A-P3 -AP2 P (17)AP

THE FLUX RATIO

influx
Ussing's flux ratio, outflux (24), denoted here by f, can be expressed as a
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function of the net flux and the integral resistance, by use of equations (16)
and (13a). Assuming infinite sinks,

-J2 J2

Inf = In 2- = In P0 = JR (18a)
J3 J2 RT
P31 P20

or, equivalently,

Inf RT (18b)

Alternatively the flux ratio can be written as a function of the electro-
chemical potential difference and coupled flows, using equations (9) and
(18 a):

( - (JRT J (19)
f = exp. 0 44 (19)

RT

This equation, analogous to the flux ratio equation of Ussing (24), incor-
porates the influence of active transport. From the derivation given above
it is clear that the equation applies to a wide variety of systems. It was as-
sumed, however, that flows of abundant and tracer isotopes are independent,
and that permeation is by way of identical pathways.

B. The Influence of Isotope Interaction

In many biological situations of interest flows of abundant and tracer species
are not independent, but coupled (8, 19). Under these circumstances the
flux ratio is no longer normal (i.e., exp. (X/RT)), even in the absence of ac-
tive transport or coupled flows of other species. "Abnormal" flux ratios have
been adduced as evidence for such mechanisms as "porous flow," "single-
file diffusion," and "exchange diffusion" (1, 7, 16, 27).

For purposes of general development, and in order to provide criteria which
must be satisfied by appropriate models, it is useful to describe such coupled
flows phenomenologically. The flow equations will therefore be rewritten
to incorporate the interdependence of flows of abundant and tracer species.
Development of the modified flow equations then leads to a generalized
form of the flux ratio equation, explicitly incorporating the influence of iso-
tope interaction.

As previously, equation (2a) applies to total flow of test species, i.e.,

- = roo J + roj Jj (20a)
dx j-4
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For the isotopic components, however, we now have:

- rll J + r12 J2 + r 3 Js + rl J, (20b 
dx j-4

-d2 J r22 J2 + r23 J3 + E r2i Jj, (20c)
dx Y-4

and

-d#= r3l J1 + r2 J2 ± raa J 3 + r Jr (20d)

Here the non-zero risk's (i # k; i, k = 1, 2, 3) allow specifically for the influ-
ence of isotope interaction.

Examining equation (20b), considerations of kinetic indistinguishability
require that for given values of dj,4/dx and

E rJj,
j-4

J must depend not on the individual values of J2 and J3, but only on their
sum, J2 + J3. Hence r2 = r13 , and must be independent of the ratio of
concentrations, (C2/C3). Similarly, from equations (20c) and (20d), r2l =
r23, and r31 = r32 

Further, since equations (20b), (20c), (20d) relate conjugate forces and
flows of the dissipation function of the examined process, the Onsager re-
ciprocal relation applies; i.e., rik = rki. Taken in conjunction with the con-
clusions of the preceding paragraph it is seen that all rik's are equal (i k;
i, k = 1, 2, 3).

Remembering that J = J1 + J2 + J3, equation (20c) can now be re-
written:

d (r22 -- rik)J2 + rik J + r 2 J (21a)

Similarly, from equation (20d),

- d3 = (r33 - rik)J3 + rik J + r3j Jj (21b)
dx i-4

As previously, we assume that no isotope separation occurs. Then again,
for constant specific activity pi throughout the membrane, Ji = pJ and
d /dx = di/dx. Hence, from equations (20a) and (21a),

rooJ + E roiJ = (r22 - r)J2 + rkJ + 7r2Ji ,
j-4 j-4
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J2 too - ri, A (roi -r 2 ) J (22)
f ro -2~ =4 P2, 22)
J r22 - rik (r22-rik) J

and analogously for J/J. (It is easily shown that with species 2 and 3
present only in tracer amounts the denominators of equations (22) can never
equal zero.) Since these equations must hold for all values of the independent
variables it follows that

ro = r2j = rai, (23)

0- rik = P, (24a)
r22 - ik

and

roo - rik P (24b )
r33 - rik

The sign of rik may be misleading and should be kept in mind. Where
there is mutual drag between the isotope flows, rik is negative; where flow of
species i diminishes flow of species k, rit is positive. We shall refer to the case
in which rik < 0 as positive coupling and to that in which rk > 0 as negative
coupling.

Exchange diffusion via a mobile carrier has been suggested as a mechanism
of negative coupling (16). While this is a plausible mechanism in the systems
investigated, the phenomenon and the model should not be identified.
Similarly, "single file" passage is not justifiably inferred merely from the
demonstration of positive coupling, as has been pointed out by Hodgkin
and Keynes (7). The clearest example of positive coupling of isotope flows,
movement of water through pores, is certainly not an instance of single file
passage.

As in Section A, the total flow of examined species can be related to its
electrochemical potential difference across the membrane. Integrating
equation (20a), we again obtain equation (9),

X = JR + I rojJjdx

EVALUATION OF EXCHANGE RESISTANCE FROM NET FLOW AND ONE TRACER

FLOW

As above, when p varies with x the tracer flow will exceed pJ by the value of
isotope exchange. Now, however, the resistance to exchange flow will be
modified by isotope interaction. Subtracting equation (21a) from equation
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(20a), and introducing equations (4a) and (23),

dii dli d in P2
-d+d = (roo - rik)J - (r22 - rTk)J2 = RT d dx dx dx

Dividing by r22 - rik, and introducing the value of P2 from equation (24a),
we obtain

- P2 J = RT d 2 (25a)
ro -- ik dx

Similarly,

Ja3-P J = RT dps (25b)
oo - ik dx

Integrating in the steady state, as in Section A, we now have

fix

J f (roo - rik) dx
- P2 J

RT = J2 - P2J

and similarly for species 3. Thus, in the presence of isotope interaction,
measurement of isotope flows no longer gives R, the resistance to net flow of
test substance, but rather

Az

, (rO - rik) dx.

We shall denote this quantity R', and refer to it as exchange resistance. Then

JR/ J
- P J

= In A2-P20 J (26a)
RT - J2 - Po J

and

JRI J8-- pJ
KT n J3 - P30 J(26b)

Similarly, the isotope permeability wx can be defined, in analogy to equa-
tion (I la), by

Xz J2 (27a)
c2 X2(J,J, 4........ -o )

For non-electrolytes or in the absence of an electrical field it can readily be
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shown that, with an infinite sink and Ac = 0

cX RZ (27b)

It is to be noted that wx is not equal to the permeability w. For negative
coupling coZ is larger than co, for positive coupling smaller (but always >0,
from general thermodynamic considerations).

NET FLUX FROM TWO TRACER FLUXES

From equations (26a) and (26b), with P2T = Po = 0, one again obtains
equation (16). Thus the relation

Net flux = influx - outflux

remains valid, as expected, despite isotope interaction.

THE FLUX RATIO

Combination of equations (26a) and (16) gives the flux ratio, expressed as
in Section A as a function of the net flow and a resistance term.

-J2 J2

Inf = n 20 = n Po = R (28)
J3 aA RT

P3r P20

This equation, formally identical with equation (18a), predicts a proportion-

ality between J and RT In f just as in the absence of isotope interaction.

The proportionality factor, however, now is given not by R, the resistance to

net flow, but by RZ, the resistance to exchange flow.
Introducing equation (9) into equation (28) we obtain

f = exp. ) (29)

Here the factors promoting deviation from the normal flux ratio, exp. (X/

R T), are clearly seen: coupling with flows of other species and/or metabolism

(active transport), and isotope interaction (27).

C. Comparison with "Permeability Coefficients" Derived from Flows of Single

Isotopic Species

As mentioned above, although R' reflects the influence of isotope interaction,
it nevertheless represents an intrinsic characteristic of the membrane in a
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given experimental situation. Membrane permeability has often, however,
been evaluated in terms of coefficients derived from the flow of single isotopic
species (15, 27). The permeability coefficient K is measured with isotope added
to one compartment, and is defined by

K - 2 (5) (30)
Ac2

K is related to R, but the relation is simple only when the sole factor pro-
moting isotope flux is the gradient of specific activity.

From equation (2 5a), when net flux is zero, isotope flow is given by

-1 dp2J = 1RT
rwo -rik dx

Integration and introduction of the definition of R' give

-J 2 RT

AP2 Rs

With co = c, (= ) and infinite sink, K is then given simply by

K -J2 -2 R_ (31)
Ac2 EAp2 ER'

Further, by equations (10) and (1 b), K = R Tw, but only in the absence of
coupled flows, and only in the absence of isotope interaction.

In the presence of a net flow the isotope flow J 2 will be more complex.
This situation is often treated by the consideration of two permeability coeffi-
cients Ko-, and K-,o

From equation (28), when p21 = 0 and Ac = 0,

J2

In P20 JR
J2 _ RT

P20

Then

J2 J

P20 I - exp. J

J2 J

and [ - - - exp . (- JR')] (32)
Cp~o g[1- expT --T)]
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Expanding the exponential into a series and simplifying, one obtains

RTK 1
Rs 1 )JR ( I jR 3 (33)

_ 2! sRxT + 3! (JRT} _33

On the other hand, if P20 = 0, Kr-o is given by

-J 2 J
K0 c [exp. (JR) I] (34)

Simplifying as above,

+ 2!JJ +T I jx + 3! (35)

Thus, in general, both Ko,. and K,,o may be expected to depend on all the
factors influencing transport.

Flux measured in the direction opposite to active transport has often been
regarded as passive (14, 25, 27). This is so only in a special case, that of two
completely independent pathways, one active, the other a "passive leak."
If, furthermore, the back flux in the active pathway is negligible as com-
pared with the leak, K.,o measures the permeability of the passive pathway.
It cannot be assumed a priori, however, that this is the pattern of flows in a
given biological membrane.

D. Composite Membranes

The above formulations are applicable both to an array of identical parallel
elements and to composite membranes in series, provided only that the elec-
trochemical potential be everywhere continuous. Heterogeneous membranes,
composed of parallel arrays in which different factors influence flows, necessi-
tate modification of the treatment. Since flux ratios have been commonly
employed in the analysis of mechanisms and energetics of transport processes
(6, 17, 20, 27, 28) it is pertinent to examine the influence of heterogeneity
on the observed flux ratio.

For simplicity, consideration will be limited to a heterogeneous mem-
brane consisting of two discrete parallel arrays, a and , each array being
composed of identical elements. Designating net flux in array a per cm2 of
membrane by J and influx by J2 ,/P2 0 the outflux is given by J2/po20 - J,
(equation 16).
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Then the flux ratio

J2 a

P20

J2 _ j.

P20

Allowing for the possibility of isotope interaction, J, is given by

RT In f
Ra

(In the absence of isotope interaction Ra = R..) Then the influx,

Jza = ( fa ) J = (f ) RT In fa

and the outflux

J2 _ Ja = RT ( ) n f

The observed flux ratio for a system with two parallel arrays, a and ,, will

be given by
Influx. + influx

Outflux. + outfluxf

or

( n _ (n f ) n f(
f-1 RZ f-1 R-

f= (f )(36)1 Inf, +( Info

If we consider array a to constitute a passive leak without coupling of flows,
In fa = In f is given by X/RT, and f, by exp. (X/R ). If X -O 0, f, - 1,
and In f, - f, - 1. Denoting the ratio of resistances of the two arrays by n

( RZ ))

equation (36) then reduces to

n + f ln fe
f.-o = (37)

n + I In f,
fo- 1
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This equation, applicable to any heterogeneous two array parallel system in
which coupled flows exist in only one of the arrays, can be applied in par-
ticular to membranes capable of active transport. When such a membrane
is exposed to identical solutions, equation (37) predicts the flux ratio to be
observed under "short-circuit" conditions (i.e., A = 0) as a function of
fp = f, the flux ratio in the "active" pathway, and n, the ratio of the ex-
change resistances of the active and passive pathways. Representative curves
off as a function of f, and n are shown in Fig. 1. It is to be noted that only

IL '

%"S

50 00 150 e'0° 22.026
f ACTIVE

FIGURE 1. Effect of passive leak on observed flux ratio (short-circuited membrane).

when there is no passive leak (n = 0.00) is the observed flux ratio equal to
that in the active pathway; with increasing leak deviations become quite
appreciable. Large flux ratios indicate that leak must be relatively insig-
nificant (for example, with n > 0.5, f < 22 even with f, of 22,000).

It is useful also to consider the effect of parallel arrays on the apparent
exchange resistance, defined as

RX =RT lnf
J

(38)

where f is again the observed flux ratio and J the observed net flux. Since
over-all flux must represent the sum of the component fluxes, equation (28)
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gives

RTInf = E = RT In f,.
R· E E R:

Then

Inf'R" = E lnf, 'R

and

fl' = 7rf 1? (39)

Restricting ourselves as above to consideration of membranes with two paral-
lel arrays, a and 6, we have

f/ = f l -R (40)

Then

f = Ufp) 6

and

R' lnf (41)
R. n n fa + In f

Again considering the case in which array a represents a passive leak, array
13 an active pathway, and X = 0, we have fa = 1 and

R_ lnf-R in f (42)
R. In f,

Since f and fa are explicitly related by equation (37), R/R~ can be evaluated
as a function of n and f, as is shown in Fig. 2. Only in the absence of leak is

R' exactly equal to R' . In the presence of leak the ratio of the apparent ex-
change resistance to that in the active pathway depends not only on the rela-
tive resistances in the two pathways, but also on the flux ratio, the depend-
ence being non-linear.

E. Energetics of Active Transport Systems

Flux ratios have frequently been utilized as a means of analyzing the ener-
getics of active transport (2, 6, 17, 20, 23, 27, 28). Thus Ussing, treating the
frog skin as a battery, has attempted to evaluate the "electromotive force of
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the sodium transport system," ENs, responsible for active transport of sodium
from the outer to the inner surface of the tissue. One method employed equates
EN. with the counter-electromotive force necessary to reduce the flux ratio
of sodium to 1 (or J to zero). A second method assumes that "the electro-
motive force of the sodium pump affects the flux ratio of the sodium ion in
exactly the same way as an applied electromotive force would affect the
flux ratio of a passive ion" (28). With identical solutions on each side of the

Ro
np-Rp

I.0

0.9

0.8

0.7

RX 0.6

Ra 0.5

0.4

0.3

0.2

0.1

0.00
0.01

0.05

0.1

,-_

0.25

0.5

I- 

I I - ' I
5.0 10.0 15.0 20.0 25.0

f OBSERVED

FIGuRE 2. Effect of leak on observed exchange resistance (short-circuited membrane).

membrane and zero potential difference, EN, is then given by

Influx
EN,F = RT In = RT In f

Outfiux

As has been pointed out by Ussing, the experimental value for EN. may be
influenced by the method of evaluation, significant exchange diffusion, and
leakiness of the membrane (17, 26, 28). The treatment assumes, however,
that the frog skin behaves like a perfect battery, that is, that the flow of the
metabolic reaction responsible for sodium transport is indeed entirely coupled
to the flow of sodium. This has not been shown to be the case.

Even without knowledge of the degree of coupling of sodium transport
and metabolism it is of interest to consider information which may be ac-
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quired by application of the above methods, without thereby implying a
battery model. Consideration will be limited to a membrane comprising a
passive leak p and an active pathway a, bathed on its two surfaces by iden-
tical solutions. We assume further no coupling of sodium flow with flows of
other species. Then

J = J+ J (43)

From equation (9)

X

and Ja, incorporating the metabolic contribution to transport, may be ex-
pressed as

J = (X -JR,) (9) (44)
R,

Here J, represents the experimentally determined rate of metabolism (e.g.
oxygen uptake) and -JRo,I/R the contribution of this process to transport.

Consider first the maximum difference of electrochemical potential which
can be produced by the active transport system, i.e. the value of X such that
J = 0; we shall call this quantity X° . Setting X = X°, we have

XJ X+ (J, Ror)'- 0

or

XO (Jr Ror),r-o

R. + 1 (45);+

(It should be noted that XI as thus defined cannot in general be assumed
equal to the value of X required to make J = 0 when the solutions bathing
the two surfaces do not contain equal concentrations of test substance. Only
experiment can establish the influence of chemical as against electrical forces
on a given biological transport process.1)

I For solutions and a variety of synthetic membranes it has been found that the same flow is produced
by thermodynamically equivalent concentration and electrical driving forces. Nevertheless such
equivalence must not be assumed a priori in biological membranes; experimental evidence concern-
ing this point would be of value. Lacking such evidence, it should be appreciated that the expressions
given here may define w (and R) uniquely only for the conditions of a given experiment.
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In the absence of a leak, equation (45) reduces to

X = (Jro,R),-o (46)

Consider now the same membrane when X = 0 (i.e., "short-circuited,"
since Ac = 0). Now J, = 0 and

j j= j (J, Ror)x=o (47)
Ra

The flux ratio for this system is given by

RT lnf = JR = -Jr0r)x (x ) (48)

Thus determination of f, reflecting the influence both of leak and of isotope
interaction, cannot in general precisely evaluate an energetic parameter of
the system. Furthermore, even in the absence of leak and isotope interaction
R T ln f is not equal to X, for with coupling of metabolism and sodium

transport (Jr).=o will not equal (J)x=o (29). Similarly, for the above reasons,
RTln 28 would not be

Ussing's RNa (equivalent in our terms to 7 J ' or) (28) should not be

regarded as the "internal resistance of the transport mechanism," even in
the absence of a leak.

F. Experimental Applications

For an array of identical pathways, in the absence of isotope interaction,
equation (19) applies. This equation has been partially tested by Meares and
Ussing, in a system incorporating the influence of solvent drag, but not that
of active transport (18). Using a cation exchange membrane, they have
studied flux ratios of sodium and chloride as a function of concentration dif-
ferences. Satisfactory agreement with theory was found over a range of 0.1
to 1.0 molar.

In the presence of isotope interaction equation (29) must be employed.
Deviations of flux ratios from the normal (exp. X/RT) have, of course, been
observed in a variety of systems (1, 7, 13, 16, 24). Since contributions of the
ro1Jj terms may alter the sign of the integral force, coupled flows of other
species or metabolism may modify both the magnitude and sign of In f, and
thus promote "uphill transport." Since R/R is greater than zero, isotope
interaction can alter only the magnitude of In f.

If flow is not coupled to that of other species, isotope interaction can be
evaluated from the flux ratio, providing the integral force is known. When
such is the case Rx/R is given simply by the ratio of RT n f and force (equa-
tion 29). For water flow across epithelial membranes R/R may be >>I
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(5, 13). Assuming water transport through the toad bladder to occur via an
array of identical elements values of RZ/R ranged from 102 to 134 (5).

For identical pathways in the absence of isotope interaction, equation
(18a) (or 18b) permits evaluation of R, the resistance, (or w, the permeability)

of the membrane. (In the more general case equation (38) gives RZ.) Be-

havior of R (or Rz) with change in experimental conditions is, of course, a
function of the nature of a membrane, and must be determined for each given
case. Few data are as yet available. In the cation exchange membrane studied
by Meares and Ussing R declines appreciably with increasing (18). For

lnf
potassium flux in giant nerve fibers, Jf increases significantly with increase

of force (7). For water flow, however, the data of Hays and Leaf in the toad

bladder show only relatively slight variation of Jf over a range of Ac of 60

to 170 milliosmols per liter (5). Garby has cited similar results as evidence
for a capillary mechanism (4). As shown above, equation (19) can be derived
from very general assumptions, and cannot therefore support any specific
model.

G. DISCUSSION

In the interests of precision, and in order to facilitate further theoretical de-
velopment, the formalism of irreversible thermodynamics has been employed
here. No specific models are implied thereby. Although the formulations re-
main to be tested experimentally, the broad validity of the assumptions sug-
gests that the treatment should be applicable in a variety of experimental cir-
cumstances.

It is not necessary to assume linearity of the integrated equations, since
they deal with a membrane as it stands in given experimental situations.
While substantial variations in forces and flows might in general alter the ri
and the R they should not alter the basic formal relations of J to the integral
force, nor the validity of the flux ratio equations.

It would appear that the chemical state of permeants need not be the same
in the membrane as in the external solutions. Association with members of
the same or other species should be permissible, as well as association with
moving components. The treatment is not limited to single phase membranes,
being applicable to composite series membranes, provided that there is con-
tinuity of the electrochemical potential at phase boundaries. While hetero-
geneous parallel pathways modify the basic equations the general formula-
tion should remain useful within the limits described.

We do assume that electrochemical potential is definable and continuous
at every point in a membrane. While this assumption is generally made with
respect to both synthetic and biological membranes, it is possible that this
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may not be the case in very thin membranes of biological interest. If not, a
basically different physical analysis may be necessary.

For a homogeneous array, in the absence of isotope interaction, equations
(18) define the resistance R, or the permeability w, in a given experimental
situation. It is to be noted that these parameters are determined without
knowledge of the integral force, whether resulting from electrochemical
potential differences or coupled flows. The parameters thus defined are in-
trinsic characteristics of the membrane, and would be expected to be insensi-
tive to coupled flows, either of other species or of metabolism.

In the presence of isotope interaction, although RT f again defines

an intrinsic parameter of the membrane, this quantity no longer represents
the resistance to net flow R, but rather the exchange resistance, R. In these
circumstances R cannot be determined without direct measurements of net
transport and integral forces. When this information is available R provides
in addition an evaluation of isotope interaction.

In view of the generality of the present treatment, inferences as to mecha-
nism are limited; the coefficients employed are purely phenomenological.
While the approach may permit demonstration of positive and negative
coupling, identification of such mechanisms as "bulk flow," "single-file diffu-
sion," or "exchange diffusion" must rest upon different evidence.

H. CONCLUSIONS

1. Net flux may be determined from measurement of two isotope fluxes,
both in the absence and presence of isotope interaction.

2. A relation between the flux ratio and the forces promoting transport
may be derived from assumptions of broad validity. In analogy with the
treatment of Ussing, for permeation by way of identical pathways, deviations
from normal flux ratios are attributable either to coupling of flows, or isotope
interaction. Coupled flows may influence both the magnitude and sign of
nf; isotope interaction influences only the magnitude.

3. For such a homogeneous array, in the absence of isotope interaction,
measurement of the net flow and flux ratio determines R, the resistance to
net flow (or , the permeability), without knowledge of either driving forces
or coupled flows. Permeability as thus defined is an intrinsic characteristic
of the membrane, which should be insensitive to coupled flows either of other
species or of metabolism.

4. With heterogeneity and/or isotope interaction R, the apparent ex-
change resistance derived from the net flow and flux ratio, is no longer equal
to R. It is, however, an intrinsic parameter of the membrane, in distinction
to permeability coefficients derived from a single isotopic flux.

5. Existence of heterogeneous parallel pathways modifies predictably
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both the observed flux ratio and the apparent exchange resistance. Only in
the absence of leak are the observed parameters equal to those in an active
pathway. With increasing leak deviations become quite appreciable; large
flux ratios indicate insignificant leak.

6. In a membrane for which R is known, measurement of a single isotope
flux suffices to determine the net flux.

7. Evaluation of the contribution of metabolism to transport processes is
dependent on the experimental setting. The maximum electrochemical
potential difference produced by active transport is related to the magnitude
of leak. The flux ratio of a short-circuited membrane is influenced by both
leak and isotope interaction.
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