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Abstract 
Introduction  Coma is a deep state of unconsciousness 
that can be caused by a variety of clinical conditions. 
Traditional tests for coma outcome prediction are based 
mainly on a set of clinical observations. Recently, certain 
event-related potentials (ERPs), which are transient 
electroencephalogram (EEG) responses to auditory, 
visual or tactile stimuli, have been introduced as useful 
predictors of a positive coma outcome (ie, emergence). 
However, such tests require the skills of clinical 
neurophysiologists, who are not commonly available in 
many clinical settings. Additionally, none of the current 
standard clinical approaches have sufficient predictive 
accuracies to provide definitive prognoses.
Objective  The objective of this study is to develop 
improved machine learning procedures based on EEG/ERP 
for determining emergence from coma.
Methods and analysis  Data will be collected from 50 
participants in coma. EEG/ERP data will be recorded for 
24 consecutive hours at a maximum of five time points 
spanning 30 days from the date of recruitment to track 
participants’ progression. The study employs paradigms 
designed to elicit brainstem potentials, middle-latency 
responses, N100, mismatch negativity, P300 and N400. 
In the case of patient emergence, data are recorded on 
that occasion to form an additional basis for comparison. 
A relevant data set will be developed from the testing of 
20 healthy controls, each spanning a 15-hour recording 
period in order to formulate a baseline. Collected data will 
be used to develop an automated procedure for analysis 
and detection of various ERP components that are salient 
to prognosis. Salient features extracted from the ERP and 
resting-state EEG will be identified and combined to give 
an accurate indicator of prognosis.
Ethics and dissemination  This study is approved by 
the Hamilton Integrated Research Ethics Board (project 
number 4840). Results will be disseminated through peer-
reviewed journal articles and presentations at scientific 
conferences.
Trial registration number  NCT03826407.

Introduction
Background and rationale
Coma is a state of prolonged unconscious-
ness with no eye opening that can be caused 
by a wide range of clinical conditions, such 

as traumatic brain injury, cardiac arrest, 
stroke, brain tumour, and  drug or alcohol 
intoxication.1 Coma state typically lasts for a 
few weeks, and transitions into either unre-
sponsive wakefulness syndrome (also known 
as vegetative state) or minimally conscious 
state, and is generally the result of diffuse 
and bihemispheric lesions of the cortex or 
white matter, bilateral thalamic damage, or 
focal lesions of the paramedian tegmentum.2 
During coma, patients are shown to be 
unaware of both self and external surround-
ings and unable to respond meaningfully to 
external stimuli. The prediction of functional 
outcome after coma is of considerable impor-
tance for the patients, their relatives, medical 
care and public health. Another important 
aspect to consider is that the outcome of 
coma is related to the aetiology independent 
of the physical signs, depth of coma or length 
of coma.3 In a meta-analysis estimated with 
the data of 548 comatose and low responsive 
patients, the prognosis was worst for patients 

Strengths and limitations of this study

►► This study will be the first to record 24-hour contin-
uous electroencephalogram/event-related potential 
(EEG/ERP) data in comatose patients across multiple 
progression points, allowing longitudinal tracking of 
patient changes to provide evidence for prognosing 
outcome with unprecedented accuracy.

►► A complete hierarchical investigation targeting dif-
ferent levels of sensory, cognitive and language pro-
cessing will be assessed for predicting emergence 
and positive coma outcome by using electroenceph-
alography techniques.

►► Application of modern machine learning approach-
es to large continuous EEG/ERP data sets has vast 
potential in both automating and improving the pre-
diction of coma outcome.

►► A limitation of this study is its heterogeneous patient 
sample due to varying admission and recruitment 
rates for different aetiologies.
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with anoxia or metabolic encephalopathy and best for 
trauma or brain surgery.4 

The current method for determining coma prognosis 
is the Glasgow Coma Scale (GCS),5 which is easy to apply 
but yields coarse or even misleading results as it is mainly 
based on a set of clinical observations. In brief, the GCS 
includes three parts: eye opening, verbal response and 
best motor response, with increasing scores as behavioural 
responses improve. The Glasgow Coma Scale-Pupils 
(GCS-P)6 is an extended version of GCS and includes an 
additional scoring of a patient’s pupillary responses as an 
indication of injury severity.

Neurophysiological methods have proven of some use,7 
with primary somatosensory responses in the 30 ms range 
and brainstem auditory evoked potentials (BAEPs) exhib-
iting high prognostic value of poor outcome in patients 
with GCS scores of 3.8 9 Although short-latency evoked 
potentials have been useful at determining unfavour-
able outcome in coma survivors, they only estimate the 
integrity of ascending pathways.10 Therefore, they are 
less helpful in prognostic coma recovery. More recently, 
long-latency event-related potentials (ERPs) have also 
been introduced as useful predictors of a positive coma 
outcome.11 12

The most common ERP paradigm employed for coma 
prognosis is traditionally known as the ‘passive oddball 
paradigm’.13 14 Classically it includes two tones—one 
occurring frequently (standard) and the other occur-
ring less frequently (deviant).15 16 The series of standard 
tones is interspersed with deviant tones (eg, differing in 
duration, intensity or frequency). Each might elicit two 
different long-latency ERP waveforms: the standard tone 
generates a classic auditory sequence consisting of the 
N1/P2 complex, while the deviant tone elicits the N1 and 
the mismatch negativity (MMN).15 17 The presence of the 
N1 and the MMN (often elicited at about 100 ms and 150 
ms poststimulus, respectively) provides evidence of audi-
tory cortical function that in the MMN case may require 
being in a state of consciousness but not necessarily 
awareness.18 19 The N1 is an obligatory sensory response 
evoked by each tone (ie, both standard and deviant) and 
highlights the encoding of acoustic input in the auditory 
cortex. The MMN is an automatic response to deviants 
and highlights preserved automatic sensory memory 
processes and what is often called preattentive cognitive 
processes.15 These electrophysiological responses are elic-
ited without requiring the subject’s active involvement. 
Clinical studies on coma patients demonstrate that the 
presence of the MMN component has a good correla-
tion with coma awakening.13 14 The reported results show 
that more than 90% of patients who were considered as 
non-awake showed no MMN (ie, a high specificity), and 
more than 90% of patients in whom MMN was detected 
returned to consciousness (ie, a high positive predictive 
value). But only about 30% of patients who had regained 
consciousness showed MMN (ie, a low sensitivity). Assess-
ment of the MMN recorded on a single occasion typically 
is based on the average of ERP signals time locked to each 

tone recorded over a long recording time period (typically 
on the order of 30 min),13 20 in order to increase the effec-
tive signal to noise ratio to a suitable level. This longer 
averaging process can ‘smear out’ or obscure important, 
clinically relevant events such as short-duration increases 
in the level of consciousness. This can occur due to latency 
variations (or ‘jitter’) in the individual trial responses that 
comprise the final average. Also, we have demonstrated 
that the MMN waxes and wanes when assessed longitu-
dinally across extended time periods (24 hours).18 We 
postulate that this ‘cycling’ of presence/absence is likely 
the predominant reason for the low sensitivity of the 
MMN reported in clinical studies.

In addition to MMN, the P300 component has also been 
reported as a reliable predictor of awakening.4 13 This 
component, also elicited by using oddball paradigms, has 
been related to higher  level process such as attention, 
expectancy, novelty detection, stimulus salience, target 
recognition, memory and so on.12 13 20 In particular, the 
use of ‘novel’ stimuli (thoroughly unrelated to ongoing 
stimulus sequence such as a dog barking or a telephone 
ringing) and the subject’s own name (SON) has been 
demonstrated to increase the chances of recording a 
response from comatose patients.13 21 22 In comparison 
with MMN, novelty P300 has shown as large a specificity 
(84.6%) but a much higher sensitivity (70.8% for novelty 
P300 vs 41.6% for MMN).13 21 Results suggest that novel 
stimuli activate much larger neuronal networks than 
the deviants,16 the signal to noise ratio is much higher 
for large novelty P300s than for MMNs, and therefore 
the use of novelty P300 might increase the prognostic 
value of MMN alone. Interestingly, the N400 component, 
well known as an ERP index of semantic processing, has 
also been reported in coma patients,23 24 particularly in 
those with intact temporal cortex.25 Although the integrity 
of language comprehension seems to be unlikely during 
coma, these previous studies have shown that assessing 
higher cognitive levels should not be disregarded.

Typically, detection of all the highlighted components is 
based on visual inspection of the averaged ERPs by skilled 
neurophysiologists, a process that is expensive, slow and 
not always feasible in practice. Therefore, automatic and 
accurate detection of ERP components over a short time 
is necessary to provide the most salient clinical informa-
tion on the current state and prognosis of the patient. 
The present study is primarily centred around creating a 
machine learning (ML) paradigm to analyse the electro-
encephalogram (EEG)/ERPs in order to provide prog-
nosis for patients in coma. ML (also known as data mining 
or pattern recognition) methods have been previously 
used in several EEG applications, including the analysis 
of EEG signals for epilepsy,26 in evaluating residual func-
tional deficits following concussion,27 28 in predicting 
the effect of selective serotonin reuptake inhibitor for 
treating major depressive disorder and in  investigating 
the effect of clozapine treatments for schizophrenia.29 30 
Additionally, earlier work by the authors has shown ML to 
be effective at aiding the prediction of coma outcome.18
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Overview and objectives
Prediction of coma outcome is an important aspect of 
critical healthcare, since it provides families and their 
healthcare team with information to guide discussions 
around goals of care and prolonged life-sustaining ther-
apies. Our primary objective is to apply modern tech-
niques in ML to analyse the patient’s EEG and develop 
a simple and inexpensive point of care system that can 
significantly improve the accuracy of coma prognosis. We 
subsequently refer to the resulting product as the Coma 
Prognosis System (CPS). The intent of the project is to 
develop a low-cost, easy-to-use prototype CPS device that 
is ready for clinical trials. Previous work has used ML in 
investigating cognitive processing in other disorders of 
consciousness.31–33 We intend to extend previous work to 
target coma prognosis using a comprehensive investiga-
tion into different ERPs indexing a wide scope of cogni-
tive function as well as resting-state  (RS) EEG. We will 
leverage and augment previous work18 34 35 of the authors 
to facilitate the adoption of the work by the critical care 
community.

Methods
Study setting
The study will take place at the Hamilton General 
Hospital, a tertiary/quaternary care centre serving people 
neurologically injured in an area around Hamilton with 
a population of 2.6 million. The three specific sites are 
the following: intensive care unit, neurological step-down 
unit and coronary care unit.

Eligibility criteria
Inclusion criteria

►► Patients admitted to the intensive care unit, neuro-
logical step-down unit or coronary care unit at 
Hamilton General Hospital who are in coma with 
GCS score of 3–8, between day 4 and day  9 of 
admission.

►► ≥18 years of age.

Exclusion criteria
►► Severe liver failure (ie, Child-Pugh class C).
►► Severe renal failure (ie, urea ≥40 mg/dL).
►► Previous open-head injury.
►► Known primary and secondary central nervous system 

malignancy (ie, tumour).
►► Known hearing impairment.
►► Previous intracranial pathology requiring neurosur-

gical interventions in the past 72 hours.
►► Patients who are actively being sedated in a medi-

cally induced coma.
►► Patients who are otherwise deemed medically unsuit-

able for this study by the attending intensivists (eg, 
severe anatomical injury preventing electrode 
application, medical instability requiring frequent 
interventions).

Patient and public involvement
Patients and the general public were not involved in the 
design of the present study. Results will be disseminated 
after completion of the project through public talks, 
scientific conferences and scientific publications.

Outcomes
Primary outcome measures
Change in multiple electrophysiological measures across specified 
time points during coma
ERPs and RS periods will be assessed at the specified 
intervals as a difference between successive time points. 
The ERP measures will be used to assess different levels of 
conscious processing and presence of signs of a conscious 
state predictive of subsequent emergence. Also, resting 
EEG measures will be obtained at regular intervals. EEG/
ERP data will be recorded for 24 consecutive hours at a 
maximum of five time points spanning 30 days from the 
date of recruitment to track the participants’ progression.

Correlation between behavioural and electrophysiological 
measures after coma emergence
In the case of patient emergence, the full electrophysio-
logical test procedures will be recorded to correlate with 
traditional behavioural measures. The electrophysiolog-
ical measures obtained at this time point (emergence) 
will be compared with the same measures obtained at the 
five different time points (outcome 1) to detect both clin-
ically relevant change and possible prognostic markers 
obtained at an earlier test point.

Sensitivity and specificity changes in prognostic capabilities of 
electrophysiological measures
Analyses will compare the electrophysiological measures as 
outcome predictors with traditional behaviourally based 
tools.

Secondary outcome measures
The study will also collect aetiology, demographics and 
medical history from the patient’s health record, in addi-
tion to concurrent physiological assessment during the 
study period.

Participant timeline
Patients who meet the eligibility criteria will be invited 
to participate in the study through their substitute deci-
sion maker. Informed consent will be obtained from the 
substitute decision maker either in person or by phone. 
The initial assessment will take place immediately after 
the consent. Subsequent assessments will be repeated 
four times within a 30-day period, which makes a total 
number of five assessments. Patients’ GCS score will be 
monitored by the nursing staff at least once on a daily 
basis until they emerge from the coma (as confirmed by 
an attending physician) or at the end of their 30-day study 
duration. In cases of discontinued life  support, testing 
will be conducted until declaration of death.

The date of the initial assessment will be denoted as day 
0, and the subsequent assessments will take place on day 
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3, day 10, day 20 and day 30, unless there is a persistent 
change in the GCS-P scores that is greater or equal to 2 
points in either direction. If there is a change ≥2 points 
that persists over two consecutive GCS-P assessments, an 
EEG assessment will take place immediately as a substitute 
for the next scheduled assessment. Any remaining assess-
ments will occur as per the predetermined schedule, 
unless the change in GCS-P score occurs again. If the 
patient emerges from the coma prior to the end of the 
30-day study duration, the remaining prescheduled EEG 
assessment(s) will be cancelled and replaced with one 
2-hour EEG session. We selected these time intervals to 
maximise the number of data points being captured while 
extending the time window to 1 month. Patients in coma 
tend to recover less than a month after injury.3 Moreover, 
the initial date of testing is typically several days after 
admission, and  this provides us with a time restriction 
before a patient is likely to emerge. Thus, we designed 
the time windows to have a more testing initially before 
tapering off in frequency to cover the fifth test at the end 
of the 30-day interval.

Recruitment
Fifty patients will be recruited for the present study over 
the course of 2 years. Primarily, the study staff will iden-
tify potential patients from the hospital’s database. Since 
approximately 5% of patients present to the emergency 
department with an altered mental state and 1% of the 
admissions are due to coma,36 we predict a similar propor-
tion of comatose patients in the emergency department at 
the Hamilton General Hospital. Based on the inclusion/
exclusion criteria, we estimate two patient recruitments 
per month. Prior to the commencement of the study, the 
study team will present the study information, especially 
the eligibility criteria, to the nursing staff and other front-
line healthcare providers. These personnel will, in turn, 
serve as the secondary source for recruitment. Informa-
tion pamphlets about the study will also be made available 
at the three primary recruitment sites at the Hamilton 
General Hospital. The healthy control participants will 
be recruited through advertisements.

Data collection, management and analysis
For ERP and RS acquisition, continuous EEG data 
will be recorded for 24 hours at the patient’s bedside 
(bandpass=0.01–100 Hz and sampled at 512 Hz) using 
a 64-channel Biosemi ActiveTwo system (Biosemi, 
Amsterdam, The Netherlands). Electrodes will be placed 
on the scalp according to the standard 10/20 positioning 
using a 64-electrode cap. Vertical and horizontal elec-
tro-oculogram signals will be monitored by electrodes 
placed above and over the outer canthus of the left eye. 
References will be recorded bilaterally from the mastoids 
and at the nose for offline rereferencing. In the case of 
a skull fracture or any obstruction to the placement of a 
regular cap, a customised cap will be used with a reduced 
number of electrodes. Similarly, data from healthy 
controls will be recorded using a 64-channel EEG cap. 

BAEPs and middle  latency auditory evoked potentials 
(MLAEPs) will be recorded using the same equipment 
but using different acquisition settings. Detailed settings 
for the two paradigms are discussed below.

All stimuli will be delivered through inserted earphones 
(Etymotic ER-1) using the Presentation software (Neuro-
behavioral Systems). A battery of auditory paradigms 
developed to assess levels of sensory, cognitive and 
linguistic processing is used to predict emergence from 
coma. We consider this as a complete hierarchical inves-
tigation that includes all levels of information processing, 
taking into account short-latency evoked potentials 
(BAEPs, MLAEPs) that help to estimate the integrity 
of ascending auditory pathways, but also cognitive and 
late-latency ERP components such as the MMN, P300 
and N400. Procedures will include computer-delivered 
aural instructions for all patients regardless of disorder 
of consciousness (DOC) category, recognising the possi-
bility of verbal command comprehension (periodically 
or constantly). A brief description of each paradigm is 
presented in the following sections.

Brainstem auditory evoked potentials
BAEPs will be recorded monaurally using constructed 
chirps, which have been shown to generate larger neural 
responses compared with standard clicks.37 38 Five inten-
sity levels will be tested.38 BAEPs will also be recorded 
using clicks at three stimulation rates.39 The signal will 
be bandpass-filtered (100–3000 Hz) and recorded differ-
entially by using an electrode placed on Fz and Cz, in 
addition to an electrode on the ipsilateral mastoid (M1 or 
M2), while the electrode Fpz will be used as ground. The 
BAEPs will be obtained by averaging noise-free signals. 
This recording will span 5 min. Absolute amplitudes and 
latencies of the most salient response peak-waves I, III 
and V and interpeak intervals will be analysed.

Middle latency auditory evoked potentials
MLAEPs will be triggered by monaural clicks with a stim-
ulus rate of 11.3/s. Stimuli intensities and scalp record-
ings will be similar to the BAEPs, except that the EEG 
will be bandpass-filtered between 10 kHz and 3 kHz. This 
recording will span 5 min. Latencies and amplitudes of 
Pa, Na and Pb waves will be analysed. This recording will 
span 5 min.

MMN paradigm
Tone and deviant sound features for this task were chosen 
according to a previous study,40 and 2400 tones at a regular 
450 ms SOA will be recorded. The sequence will comprise 
82% standard tones (50 ms, 1000 Hz, 80 dB sound pressure 
level (SPL)) and three types of deviant tones (6% each): a 
duration deviant (125 ms), a frequency deviant (1200 Hz) 
and an intensity deviant (90 dB SPL). The paradigm will last 
25 min.

P300 active paradigm
To investigate a patient’s ability to follow instructions, we 
adapted the previous MMN paradigm by adding a task of 
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identifying standard tones from deviant tones. The number 
of stimuli was reduced to 492 standard tones and 108 
deviant tones (36 per deviant type). Interstimulus interval 
(ISI) was extended to 1000 ms. Patients will be asked to 
imagine moving one of their feet every time they hear a 
sound other than the frequent (standard) tone. Instruc-
tions will be played through the earphones automatically 
before each instance of the paradigm. The paradigm will 
last 10 min.

Oddball mismatch
This paradigm combines an oddball task of standard and 
deviant tones with the SON as previously tested in comatose 
patients13 21 and additional novel sounds. Stimuli consist 
of standard (80%) and deviant (11%) tones, a familiar 
novel sound (SON; 3%), unfamiliar novel sounds that 
carried no linguistic content (eg, a dog bark, a doorbell; 
3%) and non-salient other words (NSOW; 3%). A different 
unfamiliar novel sound will be delivered every time (60 
in total) in order to maintain its novelty. NSOW stimuli 
will be matched to the SON stimuli in terms of syllable 
number. For instance, John (SON) would be matched with 
boat (NSOW). Tones will be digitally generated sine waves 
of 800 Hz, with a standard tone duration of 75 ms and a 
deviant tone duration of 30 ms. The familiar novel (SON) 
will be synthesised by using the ReadSpeaker software (​
www.​readspeaker.​com), simulating a female native speaker 
of American English in a neutral voice. Stimuli will be 
presented pseudorandomly (no deviant or novel stimulus 
will be preceded by less than two standard tones) in one 
block of 2000 items with a stimulus onset asynchrony (SOA) 

for the tones being 800 ms and 1220 ms for the novels. The 
paradigm will span a total of 25 min.

N400 paradigm
This task is an adaptation of a previous terminal-word 
semantic violation paradigm41 and consists of 120 sentences 
recorded from natural speech. All sentences are digital 
recordings of a speaker of Canadian English reading in 
a neutral voice. Sixty sentences will have a semantically 
congruent terminal word (eg, He drinks his coffee with cream 
and sugar) and 60 sentences will have an incongruent 
terminal word (eg, The pizza is too hot to sing). ERPs will be 
recorded to the onset of the terminal word. Sentences will 
be presented using an ISI of 4 s. The paradigm will last 
20 min.

Resting state
The EEG in RS conditions will be recorded (ie, when no 
ERP paradigm is being performed). RS intervals of 10 min 
will be interspersed with the previously  mentioned para-
digms. Additionally, EEG will be recorded between the 
main study blocks (see below), yielding large RS recordings 
that vary in length across sessions and patients.

Patient recordings will span a full day (24 hours). A 
day’s testing will be composed of two types of assessment 
blocks: A blocks and B blocks. Blocks of type A contain a 
full GCS-P6, BAEPs and MLAEPs, with an approximated 
total time of 20 min. Blocks of type B contain RS and ERP 
paradigms in the following order: RS, MMN, RS, N400, 
RS, oddball paradigm, RS, P300 (figure 1). The total time 
for a single iteration of a B block is 2 hours. An assessment 

Figure 1  Protocol design starting at recruitment and consenting and including the sequence of a maximum of five 24-hour 
electroencephalogram sessions. BAEPs, brainstem auditory evoked potentials; GCS, Glasgow Coma Scale; GCS-P, Glasgow 
Coma Scale-Pupils; MLAEPs, middle latency auditory evoked potentials; MMN, mismatch negativity; RS, resting-state. 

www.readspeaker.com
www.readspeaker.com
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will incorporate the following blocks in order: A, B, B, B, B, 
A, B, B, B, B, A with a total time of 17 hours (see figure 1). 
Sufficient time is left to facilitate flexibility around clin-
ical staff’s schedule and to allocate time for reapplication 
of the EEG equipment if necessary. RS will be recorded 
during all instances where EEG is set up, but no block is 
in effect. In the case of a positive outcome, a patient will 
proceed through a single assessment consisting of a single 
block A followed by a single block B. Given the contin-
uous loop of paradigms, we argue that counterbalancing 
will not be pertinent to the results of this study. Prior 
pilot work has shown no evidence of carry-over effects 
in the current sequence, likely due to the 10 min resting 
state between any two paradigms. Moreover, we argue 
that if there is an observable carry-over effect, it would 
be beneficial in detecting cognitive function in comatose 
patients. The decision to use static ordering is to simplify 
the application of a tool that will be running for 24 hours 
with possible interruptions.

Data from healthy controls will be recorded in a manner 
similar to the outlined design above. Controls will be run 
through a single assessment spanning 15 hours starting 
with the BAEP and MLAEP paradigms and followed by 
six B blocks. Sufficient breaks will be provided as between 
blocks. Although it could be stated that this control group 
may not be optimal, we argue that for the purposes of 
the present study—to develop a clinical tool capable of 
predicting a patient’s outcome—a comparison with a 
typical healthy, conscious response is the most appro-
priate. In a basic research study examining the nature of 
consciousness, comparison of anaesthetised patients with 
those in a comatose state would be appropriate (see ref 42); 
however, this is not the objective of the present project.

Data preprocessing of ERPs will be conducted using 
Brain Vision Analyzer V.2.1 (Brain Products). All record-
ings will be visually inspected and epochs containing 
artefacts (eg, muscle activity, movements) removed. Indi-
vidual task recordings will be filtered offline with a band-
pass of 0.1–30 Hz. Ocular artefacts will be corrected by 
using the ocular independent component analysis (ICA) 
transformation. Recordings will be segmented and base-
line-corrected into epochs depending on the component 
of interest in each task: for epochs containing the MMN 
(in MMN paradigm), 100 ms prestimulus to 600 ms post-
stimulus; for the P300 (in oddball mismatch and P300 active 
paradigms) and the N400 (in N400 paradigm), 100 ms 
prestimulus to 1000 ms poststimulus.

One of the primary outcomes is to assess correlations 
of measures of coma emergence between behavioural 
and electrophysiological data. Emergence will be assessed 
behaviourally by the GCS5 and the Glasgow Outcome 
Scale (GOS).43 The GOS globally rates the functional 
outcome for patient status into one of five categories: 
dead, vegetative state, severe disability, moderate disability 
or good recovery. The GOS result will be confirmed by an 
attending physician. The study will also collect aetiology, 
demographics and medical history. Premorbid and base-
line data will be collected at the first assessment. Patients’ 

progress information will be collected throughout the 
study period.

Statistical analyses and ML
The ultimate goal of the study is the creation of an auto-
mated prototype for coma prognosis. As ML is a data-
driven approach, the full application and viability of 
the created model(s) are expected to improve over the 
course of the present study due to more training data 
being available. Several interim analysis stages are to take 
place after successful recording of data from 10 patients, 
forming five main analysis points, the last of which takes 
place after the termination of data collection.

A two-step process will be carried out to detect the 
ERPs in each single case. First, in accordance with work 
demonstrating that visual inspection is still a field  stan-
dard,13 visual identification of the components for each 
of the recorded paradigms and blocks will be performed. 
Second, the presence of components will be objectively 
confirmed by conducting corrected one-tailed serial 
t-tests across time to find the intervals where the deviant 
or incongruent condition is significantly more negative 
(eg, MMN or N400 component) or positive (eg, P300 
component) than the standard or congruent condition.

The process described above will be used on all recorded 
paradigms and neurophysiological measures to create a 
hierarchical view on a patient’s cognitive ability during 
coma. The outlined analysis will be used to provide prelimi-
nary labels for training ML models. Comparative data from 
healthy controls will be analysed to (1) establish a common 
baseline response to each paradigm and (2) investigate ERP 
within-subject differences across time (different blocks). 
Similarly, RS EEG will be analysed across different blocks 
and groups (controls vs coma vs emerged) to statistical 
differences in the candidate features (described below).

The supervised ML process involves two fundamental 
phases: training and testing. In the training phase, we 
assume the availability of a large quantity of training data. 
The principle behind ML methods is to use mathematically 
structured processes to compare and thus classify patterns 
from previously unseen samples with patterns that occur 
in the training set, whose respective classes are known. A 
supervised learning process first involves extracting various 
candidate features from the measured EEG data. Candi-
date features include power spectral density and fractal 
dimension,44 45 along with other features relating to brain 
connectivity. These include phase-lag index, symbolic 
transfer entropy, directed phase-lag index and  Granger 
causality.42 46–49 Note that candidate features are computed 
from uniformly  sized blocks of RS EEG or from aver-
ages of stimulus-locked trials within a block of ERP data. 
Block size will be optimised in the cross-validation process. 
The feature extraction procedure is followed by a feature 
selection process,50 which identifies only the most rele-
vant of the candidate features. The features are selected 
by a (supervised) feature selection algorithm to optimally 
discriminate between the classes, as in ref 50. The next stage 
is classification, which may be described as a mathematical 
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function that maps distinct regions of the feature space 
into the respective classes. The last procedure in the 
training process is validation, which assesses performance 
of the resulting structure, often on an unseen subset of the 
training data. Validation is often used to empirically opti-
mise hyperparameters used in the utilised model and/or 
feature extraction procedures (eg, block size). Accepted 
methods of validation include leave one subject out and 
bootstrap validation.51 When executed properly, validation 
reduces the likelihood of potential pitfalls in the ML frame-
work. Lastly, the test, or operational phase, uses the trained 
ML model to assign a class to new, previously unseen data 
points.

The study plan is to determine the features that are most 
relevant to prognosis for emergence for both RS and EEG/
ERP data, guided by statistical results and pre-established 
work. These most relevant features can be used to provide 
clues in understanding the neurological mechanisms of 
coma and emergence from coma. Features extracted from 
single blocks, assessments and/or patients will be used to 
train a model to differentiate between patient outcomes 
(emergence vs no emergence). Identifying a formal corre-
spondence between the frequency of detected ERP elic-
itations, if any, and patient outcome is critical to extend 
the finding that ERPs wax and wane during coma.18 35 For 
model training, different classifiers will be used; notably, the 
local feature selection algorithm, which performs feature 
selection and classification, has been shown to yield prom-
ising results in a project precursor to the present study.34 
Other classifiers with demonstrated utility in EEG and other 
imaging techniques will also be examined for the present 
application (eg, random forests,52 Gaussian processes53 and 
support vector machines32 54).

In summary, our analysis plan for proceeding towards 
a prototype clinical model includes undertaking the 
following tasks: (1) statistical analysis and visual inspection 
of patient and control ERP data to establish labels for ML; 
(2) leverage results from (1) to extract and select an opti-
mised feature-set for ML; 3) training, validation and testing 
iterations towards an optimised classification model for 
coma outcome prediction; and (4) implementation of an 
integrated prototype system using the model from (3) for 
use in the clinical setting.

Ethics and dissemination
Consent
The substitute decision maker of the eligible patient 
will first be informed about the study by the healthcare 
providers within the immediate circle of care. If the 
substitute decision maker is interested, the trained study 
staff will explain the study in more detail and will obtain 
written consent from the substitute decision maker (or 
verbal consent if the consent is to be done by phone). 
The healthy control participants will provide their own 
consent.

Confidentiality
The patient’s data will not be shared with anyone except 
with the consent from the substitute decision maker or as 
required by law. All will be de-identified and assigned a 
patient number. A list linking the number with personal 
information will be kept in a secure place.
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