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Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The
ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing
more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at
acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre).
Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and
the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of
wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in
light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE
for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and the waterborne protozoan parasitesCryptosporidium andGiardia.The review highlights the benefits and challenges ofWBE
and the future of this tool for community-wide infectious disease surveillance.
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Introduction

Waterborne diseases are a major threat to public health glob-
ally. Worldwide, it is estimated that ~ 80% of wastewater is
released to the environment without sufficient treatment (UN
2017) and at least 2 billion people use a drinking water source
contaminated with faeces (WHO 2019). Waterborne diseases
are thought to be responsible for between 1.6 and 12 million
deaths annually (Gleick 2002; Troeger et al. 2018; Xagoraraki
and O’Brien 2020). Although the burden is the highest in
developing countries, outbreaks of disease still occur in

developed countries and the global burden is estimated at 12
billion US dollars per year (Alhamlan et al. 2015).Waterborne
pathogens include bacteria (e.g. Escherichia coli, Salmonella
spp., Campylobacter spp., Vibrio cholerae), viruses (e.g.
n o r ov i r u s , a d enov i r u s , p o l i o v i r u s ) , p r o t o z o a
(Cryptosporidium spp. and Giardia spp.) and helminths (e.g.
Ascaris spp. and Trichuris spp.).

Clinical surveillance and monitoring of waterborne patho-
gens are essential tools for detecting and preventing further
spread and to minimise the extent of an outbreak. However,
clinical testing is usually limited to individuals who are ill
enough to seek treatment and testing, resulting in
underreporting of disease prevalence (Cacciò and Chalmers
2016) and providing a lag indicator for a community outbreak.
Similarly, screening for pathogens directly to verify water
safety in source and treated waters used for drinking is prob-
lematic due to the low pathogen concentrations that are con-
sidered acceptable, requiring the analysis of large volumes of
water. For instance, acceptable viral pathogen concentrations
in treated drinking water range from one infectious virion per
500 kl to 5 ml (Regli et al. 1991; Schijven and Hassanizadeh
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2000; Schijven et al. 2006; Moore et al. 2010). Such concen-
trations are beyond what is practicably detectable. One solu-
tion is to monitor pathogens where they are present at higher
concentrations in source waters and make assumptions about
pathogen reduction. However, in relatively clean source wa-
ters that place little or no reliance on treatment barriers, the
acceptable source water concentrations can still be way below
the practicable limits of detection, which are in the range one
infectious pathogen per l to 1 kl, depending on the pathogen,
assay type and quality of the water. Indeed, most of the stan-
dard approaches to pathogen monitoring for both clinical dis-
ease and water testing are costly, often pathogen-specific, fre-
quently rely on passive monitoring, are only practicable and
affordable at inadequately low frequencies, are subject to
biases, and vary widely from country to country depending
on the resources and funding available (Ramírez-Castillo et al.
2015; Sims and Kasprzyk-Hordern 2020).

Improved monitoring systems that can detect multiple water-
borne diseases across broad communities in a cost-effectiveman-
ner, preferably in real-time, are therefore urgently required. In
this regard, wastewater-based epidemiology (WBE), as an early
warning system for a variety of waterborne infectious diseases,
has received much recent attention. Initially used for monitoring
poliovirus prevalence (Pöyry et al. 1988; Berchenko et al. 2017),
community-wide drug abuse (Castiglioni et al. 2006) and other
chemical pollutants (Choi et al. 2018), WBE relates broadly to
the analysis wastewater for the presence of nucleic acids or other
biomarkers excreted in faeces and urine to provide comprehen-
sive community health information (Mao et al. 2020a). The
methods will also detect pathogens secreted in saliva, sputum,
mucus, vomitus and phlegm—all of which are often captured in
wastewater (Deere et al. 2020). Thus, WBE is equivalent to
obtaining and analysing a large community-based composite
sample of faeces, saliva, vomitus, sputum, urine, shed skin and
other material shed during personal cleansing, washing, bathing
and excreting, providing a sensitive means of monitoring tempo-
ral changes in pathogen concentrations and diversity within a
community (Xagoraraki andO’Brien 2020). A further advantage
of sampling wastewater directly is that pathogen numbers are
higher in wastewater compared with the receiving environments
into which wastewaters are discharged.

The emergence in 2020 of the severe acute respiratory syn-
drome Coronavirus 2 (SARS-CoV-2), which causes viral
pneumonia, Coronavirus Disease 2019 (COVID-19), has
heightened the focus onWBE as a surveillance tool to provide
early detection of disease in the community, particularly due
to the time lag between the development of symptoms, clinical
diagnosis and any action required by health authorities to con-
tain the disease cluster. Although SARS-CoV-2 typically
causes respiratory symptoms, and is shed in nasal, buccal,
oesophageal and respiratory discharges into wastewater, it
can also result in gastrointestinal symptoms and/or viral shed-
ding in faeces (Wu et al. 2020a, 2020b; Xu et al. 2020), with a

meta-analysis of COVID-19 studies finding that 17.6% of
COVID-19 patients had gastrointestinal symptoms and
48.1% of COVID-19 patients had SARS-CoV-2 RNA detect-
ed in their faeces (Cheung et al. 2020). Thus, monitoring the
presence of SARS-CoV-2 RNA in wastewater is becoming
widely used to track changes in COVID-19 case numbers in
communities (e.g. Ahmed et al. 2020a; Bar-Or et al. 2020;
Kocamemi et al. 2020; La Rosa et al. 2020a; Medema et al.
2020; Nemudryi et al. 2020; Peccia et al. 2020; Randazzo
et al. 2020a, 2020b; Wu et al. 2020a; Wurtzer et al. 2020a,
2020b) (Table 1).

The protozoan parasites, Cryptosporidium and Giardia, are
also important enteric pathogens of public health concern and
major waterborne pathogens. Between 2011 and 2016,
Cryptosporidium and Giardia were responsible for all reported
waterborne outbreaks due to protozoa (n = 381) worldwide
(Efstratiou et al. 2017). Cryptosporidium is the second most im-
portant cause of moderate to severe diarrhoea and mortality in
children under 5 years of age in developing countries and both
symptomatic and asymptomatic cryptosporidial infections in chil-
dren are associated with malnutrition and stunted growth (Khalil
et al. 2018). Oocysts are shed in faeces in high numbers (up to 109

per stool); the median infectious doses reported are in the range
approximately 1–125 oocysts, depending on species, with a con-
sensus probability of infection per ingested oocyst recommended
of 20%; and the oocysts can remain infectious in the environment
for more than 6 months under cool, dark, moist conditions
(DuPont et al. 1995; Chappell et al. 2006; Shirley et al. 2012;
WHO 2016). The global prevalence ofCryptosporidium has been
estimated at 7.6%, with an average prevalence of 4.3% in devel-
oped countries and 10.4% in developing countries (with preva-
lences as high as 69.6% in some countries) (Dong et al. 2020).
There is evidence that due to under-reporting, the true number of
cases in the community may be as much as 500 times higher than
the numbers estimated based on routine clinical stool isolates (Hall
et al. 2006). Currently, 43Cryptosporidium species are considered
valid (Bolland et al. 2020; Holubová et al. 2020; Ježková et al.
2020),with themajority of human infections caused byC. hominis
and C. parvum, although > 20 species and genotypes have been
reported in humans (Feng et al. 2018; Zahedi and Ryan 2020).

Giardiasis is the most common enteric protozoan parasitic
infection worldwide, with an estimated 280 million people
infected annually. The species that infects humans, Giardia
duodenalis, is a species complex consisting of eight assem-
blages (A-H), with assemblages A and B the dominant assem-
blages in humans and assemblages C-H in animals, although
sporadic cases of assemblages C, D, E and F have been re-
ported in humans (Ryan and Zahedi 2019).Giardia infections
can be asymptomatic or result in diarrhoea that can become
chronic and has also been associated with irritable bowel syn-
drome, chronic fatigue and joint pain (Coffey et al. 2020). In
infants and children, infections can result in failure to thrive
and malnutrition (Dunn and Juergens 2020). In developing
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countries, up to 33% of individuals have been infected and up
to 8% in developed countries (Cacció and Sprong 2014; Dunn
and Juergens 2020). As with Cryptosporidium, cysts are shed
in the faeces in high numbers (up to 1010 cysts per day) with a
median infectious dose of approximately 25 cysts (Rendtorff
1954, 1979).

Both parasites are prevalent in wastewater (Hamilton et al.
2018; Zahedi et al. 2018; Adeyemo et al. 2019; Razzolini et al.
2020) (Tables 2 and 3), with concentrations in wastewater as
high as 60,000 Cryptosporidium oocysts and 100,000 Giardia
cysts L−1(Hamilton et al. 2018), and Cryptosporidium oocysts
are resistant to chemical disinfection (Campbell et al. 1995).
Urban wastewater discharge is known to play an important role
in pathogen transmission. For example, the largest cryptosporid-
iosis outbreak to date in 1993 inMilwaukee, USA, which affect-
ed over 400,000 individuals, was due to drinking water becom-
ing contaminated with wastewater as a result of extreme weather
and water treatment failure (MacKenzie et al. 1994). This review
will focus on the surveillance and detection of Cryptosporidium,
Giardia and SARS-CoV2 in wastewater and the benefits and
challenges of WBE for public health.

Occurrence of SARS-CoV-2 in wastewater

Very limited data is available on the occurrence of the closely
related SARS-CoV-1 in wastewater (Peiris et al. 2003; Wang
et al. 2005a; Gundy et al. 2009; Wigginton et al. 2015), but
connections with wastewater were identified in a 2003 out-
break in Hong Kong linked to a faulty sewage system (Peiris
et al. 2003). Since the first report of SARS-CoV-2 in human
waste (Holshue et al. 2020), the presence of SARS-CoV-2 in
wastewater has drawn substantial attention, and globally an
increasing number of studies have detected SARS-CoV-2 in
untreated and/or treated urban wastewater and wastewater
treatment plants (WWTPs) to track the spatial and temporal
dynamics of the virus and the removal of efficiency of waste-
water treatment processes (Table 1) and the potential public
health risks associated with SARS-CoV-2 in wastewater
(Michael-Kordatou et al. 2020). Prevalence rates ranging from
11 to 100% at a concentration up to 4.6 × 107 genome
copies/L in untreated (raw influent), and 0 to 100% at a con-
centration up to 105 genome copies/L in treated (final effluent)
wastewater have been reported (Table 1).

Occurrence of protozoans in wastewater

The protozoan parasites, Cryptosporidium and Giardia, are
among themost common parasites reported inwastewaterworld-
wide and are significant contributors to the global waterborne
disease burden (Zahedi et al. 2018) (Tables 2 and 3). The occur-
rence and distribution of Cryptosporidium oocysts and Giardia

cysts in untreated wastewater generally correlates to the infection
and excretion rates in the population served, which may also be
influenced by the contribution of infected domestic or wild ani-
mals to the Cryptosporidium and Giardia load in the raw waste-
water (Castro-Hermida et al. 2008; Deere and Khan 2016). To
date, studies conducted globally have reported more than 20
species/genotypes ofCryptosporidium andG. duodenalis assem-
blages A, B, C, E and G in wastewater, with prevalence rates of
11.4 to 100% and 18.8 to 100% for Cryptosporidium and
Giardia spp., respectively, and often at concentrations over 10
oocysts/L and 100 cysts/L for Cryptosporidium and Giardia,
respectively (Tables 2 and 3).

Several studies across the world have reportedC. hominis (the
predominant species in humans) among the most prevalent
Cryptosporidium species detected in wastewater; e.g. Australia
(King et al. 2015a; Zahedi et al. 2018), Brazil and Peru (Ulloa-
Stanojlović et al. 2016; Martins et al. 2019), China (Feng et al.
2009; Li et al. 2012; Huang et al. 2017), Japan (Hashimoto et al.
2006; Hirata and Hashimoto 2006), Switzerland and Germany
(Ward et al. 2002), the USA (Xiao et al. 2001; Zhou et al. 2003)
and Tunisia (Ben Ayed et al. 2012) (Table 2).While in Europe, a
number of studies have reported that C. parvum is the dominant
species in wastewater (Hänninen et al. 2005; Spanakos et al.
2015; Imre et al. 2017; Ramo et al. 2017). In other countries such
as China, Iran, Tunisia and theUSA, livestock-associated species
such as C. andersoni and C. xiaoi dominate in wastewater sam-
ples (Xiao et al. 2001; Liu et al. 2011; Ben Ayed et al. 2012;
Hatam-Nahavandi et al. 2016; Ma et al. 2019) (Table 2).

Compared to other assemblages of G. duodenalis, assem-
blages A and B have been predominantly reported in waste-
water globally, while assemblage C (Yamashiro et al. 2019), E
(Castro-Hermida et al. 2011; Ben Ayed et al. 2012; Hatam-
Nahavandi et al. 2017) and G (Huang et al. 2017; Ma et al.
2019) have been reported sporadically (Table 3).

Current protozoan and SARS-CoV-2
detection/surveillance systems in wastewater

SARS-CoV-2 is most commonly detected using quantitative
reverse transcription polymerase chain reaction (RT-qPCR)
assays for the detection of SARS-CoV-2 RNA. To date, more
than 17 RT-qPCR assays have been developed for the detec-
tion of SARS-CoV-2 in clinical samples including the CDC-
recommended 3 gene segments of SARS- CoV-2 RNA (N1,
N2 and N3) (CDC 2020) and the envelope protein (E) gene
(E_Sarbeco, target) (Corman et al. 2020). Some of these as-
says have been used to detect SARS-CoV-2 in wastewater
samples from a wide range of countries including Australia
(Ahmed et al. 2020a), Chile (Ampuero et al. 2020), Germany
(Westhaus et al. 2020), Israel (Bar-Or et al. 2020), India
(Kumar et al. 2020), Italy (La Rosa et al. 2020a), Japan
(Hata et al. 2020), France (Wurtzer et al. 2020a, 2020b), the
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Netherlands (Medema et al. 2020), Spain (Randazzo et al.
2020a, 2020b), Turkey (Kocamemi et al. 2020) and the
USA (Green et al. 2020; Nemudryi et al. 2020; Wu et al.
2020a). While qRT-PCR is the most reliable method to detect
SARS-CoV-2, a variety of serological tests (ELISAs, lateral
flow assays etc) have also been developed, which provide
additional important information on the kinetics of the im-
mune response and detection of asymptomatic infections and
have the advantage that virus proteins are more stable than
RNA (La Marca et al. 2020). Antibody-based methods have
been applied for the detection of SARS-CoV-2 protein in
wastewater using immunoblotting and immune-linked PCR
(Neualt et al. 2020).

Prior to detection, studies have used a variety of viral con-
centration methods including ultrafiltration, polyethylene gly-
col (PEG) precipitation, filtration with an electronegative
membrane and centrifugation (Lu et al. 2020) (Table 1). To
enable accurate measurements of SARS-CoV-2 in wastewa-
ter, it is important to determine the recovery efficiencies of
these methods. A recent study compared the efficiency of
different viral concentrationmethods fromWWTPs usingmu-
rine hepatitis virus as a human coronavirus (CoV) surrogate
(Ahmed et al. 2020b, 2020c). Of these, the highest mean re-
covery (65.7%) was achieved using an adsorption-extraction
method, supplemented with MgCl2, followed by an
adsorption-extraction method without MgCl2 (60.5%). Mean
recovery efficiencies for PEG precipitation (44%) and ultra-
filtration (Amicon® Ultra-15 – 28%, Centricon Plus-70 -
56%) were lower (Ahmed et al. 2020b). Concentration of both
liquid and solid fractions of wastewater samples (due to viral
particle adsorption to organic matter) and avoiding acidifica-
tion of samples was identified as important for viral recovery
(Ahmed et al. 2020b).

Standard detection methods for Cryptosporidium and
Giardia in wastewater involve concentration (using filtration
or flocculation) and purification of the oo(cysts) (usually
using immuno magnetic separation—IMS), followed by
immunofluorescent microscopy and enumeration, based
on Method EPA 1693/2014 (USEPA 2014). The recov-
ery efficiency from wastewater varies widely and ranges
from 5.5% to as high as 100% with mean recoveries of
62% (Cryptosporidium) and 45% (Giardia) (Gennaccaro
2003; Quintero-Betancourt et al. 2003; Robertson et al.
2006; Nasser et al. 2012; Nasser 2016; Yamashiro et al.
2019). However, a major limitation of standard
microscopy-based detection methods is that they do
not provide information on the species/assemblages.
Vital dyes have been used to determine viability but
are problematic and subject to overestimation of oo(-
cyst) viability (Sammarro Silva and Sabogal-Paz 2020).
As a consequence, more recent studies have employed
molecular detection methods for genetic characterisation,
or cell culture infectivity assays.

Relatively few studies have genetically characterised
Cryptosporidium and Giardia in wastewater (Tables 2 and
3) and most studies have utilised Sanger sequencing of PCR
amplicons with only two studies using next-generation se-
quencing (NGS) of amplicons (Zahedi et al. 2018, 2019). A
custom microarray targeting a range of viral, bacterial and
protozoan pathogens has also been tested against DNAobtain-
ed from whole genome amplification (WGA) of RNA and
DNA from wastewater and animal faeces, which detected
Giardia but not Cryptosporidium (Li et al. 2015).

A wide diversity of Cryptosporidium and Giardia species
and assemblages have been detected in wastewater with many
studies reporting C. hominis as well as C. parvum, C. muris,
C. meleagridis and G. duodenalis assemblages A and B
among the most prevalent (King et al. 2015a; Taran-
Benshoshan et al. 2015; Ulloa-Stanojlović et al. 2016;
Huang et al. 2017; Ramo et al. 2017; Zahedi et al. 2018;
Yamashiro et al. 2019) (Tables 2 and 3). In addition, a few
studies have utilised subtyping tools to further investigate
Cryptosporidium gp60 subtypes in wastewater (Feng et al.
2009; Ben-Ayed et al. 2012; Li et al. 2012; Ma et al. 2016;
Huang et al. 2017; Jiang et al. 2020). Amongst C. hominis
subtype families identified in wastewater to date, subtype fam-
ily Ib was the most predominant subtype family reported
(83% of studies that used subtyping), followed by subtype
families Ia (66%), Id and Ie (50% each) and If (33%). For
C. parvum, only three studies have used subtyping tools,
and C. parvum subtype families IIa (Tunisia and USA), IIc
(Tunisia) and IId (China) were reported (Zhou et al. 2003; Ben
Ayed et al. 2012; Li et al. 2012; Huang et al. 2017). In addi-
tion, subtyping of C. meleagridis, C. viatorum and
C. ubiquitum in wastewater samples at the gp60 locus have
identified subtypes IIIbA22G1R1c, XvaA6 and two distinct
subtype families XIIg and XIIh, respectively (Ma et al. 2016;
Huang et al. 2017) (Table 2).

Fate/survival/removal of protozoans
and SARS-CoV-2 in wastewater

After being shed into nasal, buccal, oesophageal, respiratory
and faecal discharges into wastewater, pathogens are exposed
to the wastewater environment for hours to days before they
reach WWTPs. The fate and survival of pathogens in waste-
water systems depend on a variety factors, including waste-
water characteristics, the presence of biofilms, temperature,
pH, average in-sewer travel time, per-capita water use, and
the processes used to treat and disinfect the wastewater
(Curtis 2003; Cao et al. 2020; Hart and Halden 2020;
Mandal et al. 2020). Wastewater treatment usually involves
a combination of physical (sedimentation, filtration, inactiva-
tion by solar or UV radiation), biological (activated sludge,
algae) and chemical (coagulation-flocculation, inactivation by
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oxidants such as chlorine) processes for pathogen removal
from wastewater, with some of the process occurring concur-
rently (Bhatt et al. 2020; Fu et al. 2010; Nasser et al. 2012).

In general, secondary wastewater treatment is capable of
removing an average of 1-log10 (90%) of viruses, although
removal levels are highly variable and additional treatment
such as chlorination is required to reduce virus levels to safe
levels for release to the environment (McLellan et al. 2020).
Relatively, little is known about the fate of SARS-COV-2 in
WWTPs. In one study, the time from stool emission to the
arrival at the WWTP for SARS-CoV-2 was estimated at 6–8 h
(Rimoldi et al. 2020) and it has previously been reported that
SARS-CoV-1 can remain infectious in wastewater for up to
14 days (at 4 °C) (Wang et al. 2005a). Coronaviruses are
enveloped viruses, which means that the virus genome and
associated proteins are covered by a lipid membrane taken
from the host cell during virus reproduction (Casanova et al.
2009; Schoeman and Fielding 2019). In contrast, enteric vi-
ruses such as noroviruses and enteroviruses are non-
enveloped, and their genome is encapsulated by a protein coat.
These structural differences alter their behaviour, with
enveloped viruses more readily binding to particulates in
wastewater compared with non-enveloped viruses, which are
not particle associated (Ye et al. 2016). Enveloped viruses are
considered to be more fragile compared with non-enveloped
viruses because the presence of compounds such as solvents
and detergents in wastewater can damage the virus envelope,
rendering them non-infectious (Gundy et al. 2009).
Wastewater temperature varies seasonally and it has been es-
timated that at 20 °C, at least 25% of SARS-COV-2 virus
RNA in wastewater should persist even with an in-sewer tran-
sit time of 10 h and low virus stability (Hart and Halden 2020).
Chlorination is the most commonly used disinfection tech-
nique in WWTPs and previous studies have shown that
SARS-CoV-1 is more sensitive to disinfection than
Escherichia coli, with complete inactivation at a dose of
10 mg/L chlorine or 20 mg/L chlorine dioxide (Wang et al.
2005b). A study in Italy detected SARS-CoV-2 RNA in raw,
but not in tertiary treated wastewaters and none of the positive
samples contained infectious virus (Rimoldi et al. 2020),
which is similar to a study in Spain (Randazzo et al. 2020b).
A study in Paris identified SARS-CoV-2 RNA in raw (23/23)
and treated (6/8) wastewater, but there was a 100-fold reduc-
tion in viral load in treated water compared to raw water
(Wurtzer et al. 2020b).

The removal of Cryptosporidium and Giardia (oo)cysts at
WWTPs can be highly variable and often dependent on the
temperature and type of wastewater treatment processes used
(Emelko 2003; Nasser et al. 2012; 2016; King et al. 2017;
Hamilton et al. 2018; Schmitz et al. 2018). Seasonality and
inflow also affect removal (King et al. 2017), and many stud-
ies have reported variable removal of both Cryptosporidium
and Giardia from WWTPs, particularly activated sludge

(Nasser et al. 2012; 2016). Giardia Log10 reduction values
(LRV) removal efficiencies of 0.5–4.0 (Taran-Benshoshan
et al. 2015; Soller et al. 2017; Hamilton et al. 2018;
Yamashiro et al. 2019) and Cryptosporidium LRVs ranging
from 0.21 to 3.08 (King et al. 2017; Soller et al. 2017;
Hamilton et al. 2018) have been reported from various
WWTPs. WWTPs that used Bardenpho processes (similar to
activated sludge but incorporates additional aerobic (oxic) and
anoxic stages) have been reported to have had significantly
greater LRVs for Cryptosporidium and Giardia thanWWTPs
using activated sludge or other methods (Schmitz et al. 2018).

Few studies have measured the extent of protozoan inacti-
vation that may be occurring across treatment processes. An
integrated Cryptosporidium assay that determines oocyst den-
sity, infectivity and genotype has been developed (Swaffer
et al. 2014; King et al. 2015a, 2017) and applied to wastewater
(King et al. 2015b, 2017). Using this assay, King et al. (2017)
showed thatCryptosporidium oocyst infectivity in wastewater
in two states in Australia were stable throughout the year but
that removals across secondary treatment processes were sea-
sonal and highly variable (King et al. 2017). Interestingly, the
infectivity of oocysts that were not removed in the effluent
was higher compared to inlet samples for some WWTPs
analysed, possibly due to the preferential removal of
damaged/non-infectious oocysts. Another study reported that
while activated sludge removed ~ 80% of oocysts, the remain-
ing oocysts were still infectious in mice (Villacorta-Martínez
de Maturana et al. 1992), which highlights the importance of
incorporating routine infectivity testing in wastewater (King
et al. 2017). Ultrafiltration (Cryptosporidium: 4.4–6.0 LRV;
Giardia: 4.7–7.4 LRV) and UV disinfection combined with
advanced oxidation (∼ 6.0 LRV for bothCryptosporidium and
Giardia) were reported as the most efficient methods for re-
moval and disinfection of Cryptosporidium and Giardia
(oo)cysts in WWTPs (Soller et al. 2017). Future studies on
environmental conditions including temperature and pH and
other wastewater treatment processes and disinfection studies
are necessary to better understand the removal of a range of
pathogens from WWTPs (Bhatt et al. 2020).

Benefits of wastewater-based epidemiology

Normally, disease outbreaks are detected and their progres-
sion monitored by the clinical testing of symptomatic individ-
uals. However, particularly in the case of enteric pathogens,
outbreaks can be missed or disease incidence under-reported
because there is a reliance on infected people presenting for
medical care, and for medical practitioners to request clinical
testing to confirm infection and to report results (Cacciò and
Chalmers 2016). In the case of the COVID-19 pandemic,
many countries adopted large-scale screening of people with
flu-like symptoms to identify COVID-19 cases and assist with

4176 Parasitol Res (2021) 120:4167–4188
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disease containment, overwhelming the testing capacity of
many public health systems and also causing global shortages
of testing reagents. As pathogens such as viruses (e.g. SARS-
CoV-2) and protozoa (Cryptosporidium andGiardia) are shed
through faeces into wastewater, continuous and systematic
monitoring of WWTPs can clearly benefit public health by
providing early warning signs and information about temporal
and spatial spread of infection in different localities at a pop-
ulation level (Kitajima et al. 2020).

Several WBE studies have reported the occurrence of local
community transmission of SARS-CoV-2 before the first no-
tified autochthonous SARS-CoV-2 cases (La Rosa et al.
2020a; Medema et al. 2020; Randazzo et al. 2020a, 2020b).
Had this testing been in place at the time, it would have pro-
vided public health officials with more time to coordinate and
implement actions to slow the spread of disease. A study in the
UK reported that clinical testing underestimated the preva-
lence of COVID-19 and that large reductions in SARS-
CoV-2 RNA in wastewater coincided with lockdowns
(Martin et al. 2020).

Similarly, analyses of wastewater in Australia for
Cryptosporidium identified a large increase in oocyst numbers
relating to an outbreak of cryptosporidioisis, prior to it being
reported by public health officials (King et al. 2017). WBE
has also been used in several studies to show that the commu-
nity level prevalence of Giardia is underestimated
(Jakubowski et al. 1991; Oda et al. 2005; Nasser et al. 2012).

The lag time between symptoms developing and clinical
testing varies depending on a number of factors including
willingness of individuals to present for testing, workloads
in testing facilities etc., but is usually 3–9 days after symptom
onset. One study in the US reported that WBE for SARS-
CoV-2 foreshadowed new clinical case reports by 2–4 days
(Nemudryi et al. 2020) and another that viral titre trends in
wastewater appeared 4–10 days earlier in wastewater than in
clinical data (Wu et al. 2020b). In addition to this lag time,
clinical testing for SARS-CoV-2 underestimates the true scale
of the pandemic, as another US study estimated that only 32%
of SARS-CoV-2-infected individuals sought medical care
(Silverman et al. 2020). WBE overcomes this by capturing
data from all individuals in the community. WBE can also
detect asymptomatic community infections and rapidly iden-
tify emerging clusters which can then be used to alert public
health officials about emerging undetected transmission
events (Tang et al. 2020).

In addition, WBE can be used to monitor the effectiveness
of public health interventions. For example, a study in Cuba
detected poliovirus in 100% of wastewater samples prior to an
immunization campaign, but 15 weeks after the campaign, no
virus was detected (Más Lago et al. 2003). Similarly, WBE
could be used to monitor the ongoing effectiveness of public
health campaigns to reduce COVID-19 by tracking increases
or decreases in disease burden, or to detect the re-emergence

of disease in communities that have no active COVID-19
cases. Carefully designed spatial sampling and nationwide
WBE monitoring could be used to identify and monitor sen-
sitive locations, such as aged care facilities, or to generate
maps of disease clusters and show patterns of disease and
identify which public health interventions are more effective
than others (Daughton 2020). Communities with high num-
bers of a particular pathogen identified could be targeted for
more focussed testing and in the longer term to identify and
mitigate causes, e.g. socioeconomic status, age demographics,
etc. (Sims and Kasprzyk-Hordern 2020).

Sequencing and phylogenetic analysis of pathogens in
wastewater allows for comparisons between regions and de-
tection of sources of infection and transmission dynamics.
This is very much in its infancy for SARS-CoV-2 in waste-
water, but is actively being used in identifying and tracing
sources of COVID-19 as part infection control strategies
(Rockett et al. 2020). Such an approach may be particularly
useful in settings with low disease incidence when the source
of new infection clusters is being tracked (Eden et al. 2020). A
comprehensive study usingWGS assessed the geographic and
temporal distribution of SARS-CoV-2 lineages across Europe
(Alm 2020) and this approach was used in the Netherlands to
identify separate introductions tomink farms (Oreshkova et al.
2020). A study in England used WBE to detect virus variants
that were particularly prevalent in the UK and also identified
the increasing dominance of the Spike protein G614 variant
usingWhole Genome sequencing (WGS) (Martin et al. 2020).
Similarly, phylogenetic analyses of a SARS-CoV-2 genome
from a WWTP in Bozeman, Montana (USA), showed that it
was more closely related to isolates from California and
Australia than the Wuhan WA1 linage (Nemudryi et al.
2020). Surveillance using WGS has also been used to show
that infections in California have been due to multiple intro-
ductions from interstate and international sources (Deng et al.
2020).

Subtyping of Cryptosporidium from wastewater in China
has been used to identify differences in the transmission dy-
namics of C. hominis from different cities (Li et al. 2012). In
the same way, molecular analyses have been used to identify
that hospitals are important contributors of Cryptosporidium
and Giardia to urban wastewater (Jiang et al. 2020).
Molecular typing of Cryptosporidium in wastewater has also
been used to identify the contribution of abattoirs to wastewa-
ter as species from livestock such as C. andersoni (Zhou et al.
2003; Ben Ayed et al. 2012) and species from poultry
(C. galli, C. baileyi and C. meleagridis) (Huang et al. 2017;
Ramo et al. 2017; Zahedi et al. 2018) are more frequently
detected in cities with large abattoirs. WBE has identified
the persistence of the C. hominis IbA10G2 subtype, which
was responsible for the 1993 Milwaukee outbreak (Zhou
et al. 1993). A study conducted 7 years after the outbreak
identified that despite the complexity of Cryptosporidium in
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wastewater, the IbA10G2 subtype was still the predominant
subtype indicating its persistence even in the absence of an-
other outbreak (Zhou et al. 1993). WBE has also been used to
show that anthroponotic and not zoonotic transmission of
Giardia dominates in cities in China due to the absence of
detection of animal-specific Giardia assemblages and even
when potentially zoonotic assemblages (A) were detected,
subtyping identified sub-assemblage AII, which is mainly
found in humans (Li et al. 2012). Due to the diversity of
pathogens from different sources in wastewater, NGS has ad-
vantages over conventional Sanger sequencing in identifying
the extent of diversity and also detecting low abundance spe-
cies that may not otherwise be detected by conventional se-
quencing. For example, NGS has been shown to detect a larg-
er diversity of Cryptosporidium species and subtypes in
Australian wastewater compared to Sanger and identified
striking differences between states, reflecting differing contri-
butions from humans, livestock, wildlife and birds and abat-
toirs to wastewater (Zahedi et al. 2018).

Challenges, risks and future prospects

Despite the obvious benefits of WBE, many challenges re-
main. Concentrations of pathogens in wastewater can vary
seasonally and daily, depending on a wide variety of factors
including the disease prevalence and age and health status in
communities, the rate at which the pathogens are shed into the
wastewater in nasal, buccal, oesophageal, respiratory and fae-
cal discharges, climate and environmental factors including
rainfall, the relative proportions of industrial and domestic
effluent, water use and wastewater management practices in-
cluding sewer residence and holding times. The impacts of all
these factors need to be better understood to improve the pre-
dictive value of WBE.

It is particularly important to better understand how and in
what quantities pathogens are shed in the nasal, buccal, oe-
sophageal, respiratory and faecal discharges from infected in-
dividuals that might enter wastewater streams in order to mod-
el the number of infections in the community using the num-
bers of pathogen detected in wastewater. For example, defe-
cation frequency is the highest in the morning (Heaton et al.
1992) and therefore the timing of sampling is important, as
morning samples are likely to contain higher numbers of
faecal-oral pathogens. In addition, pathogen shedding is fre-
quently sporadic. For instance, not all COVID-19 patients
shed virus in their faeces. A recent meta-analysis of ninety-
five studies reported that 43% (934/2149) of patients (includ-
ing asymptomatic patients) tested positive for SARS-CoV-2
in stool samples but the prevalence of positivity from faecal
samples varied widely across studies (van Doorn et al. 2020).
The viral load of SARS-CoV-2 in the faeces of patients also
varies widely depending on the infection course, with up to

108 copies per gram of faeces (Foladori et al. 2020; Lescure
et al. 2020; Pan et al. 2020;Wölfel et al. 2020). Similarly, both
Cryptosporidium and Giardia also exhibit sporadic (oo)cyst
shedding in faeces (Danciger and Lopez 1975; Chappell et al.
1996) and as with SARS-CoV-2, the (oo)cyst faecal load also
varies widely with up to 105–7 Cryptosporidium oocysts per
gram of faeces (Chappell et al. 1996).

It is also unclear how long the shedding continues in faeces
once other symptoms have resolved. For primarily upper re-
spiratory and nasopharyngeal pathogens, shedding from nasal,
buccal, oesophageal and respiratory discharges into wastewa-
ter are relevant as well as faecal inputs. Other pathogens, such
as norovirus, are often shed in vomitus (Kirby et al. 2016). As
regards SARS-CoV-2, initial studies report that faecal shed-
ding is relevant to wastewater samples since faecal samples
were positive between 1 and > 30 days (up to 7 weeks) post
onset of illness and the median survival of positive viral sig-
nals was significantly longer in faecal samples than that in
oropharyngeal swabs (Amirian 2020; Wang et al. 2020).
With Cryptosporidium, oocyst shedding post cessation of di-
arrhoea is very variable and can extend for up to 60 days
(Jokipii and Jokipii 1986; Stehr-Green et al. 1987) and for
up to 6 months with Giardia (Hanevik et al. 2007).

Efficient recovery and concentration of pathogens from
WWTPs prior to identification is central to reliable detection.
Currently, there are differences in the types and volumes of
samples analysed and differences in the concentration and
processing procedures and detection methods used between
studies. In order to make WBE studies more comparable, a
standard approach for WBE including robust sample design
and quality assurance protocols is essential (Ahmed et al.
2020d; Farkas et al. 2020). Studies to develop a simple, effec-
tive primary concentration method that can be used for the
concentration of viral, bacterial and eukaryotic pathogens are
also vital. Central to this is the ability to determine recovery
efficiencies for the different pathogens monitored as without
this, accurate quantitation and determination of the numbers
of pathogens present in WWTPs is not possible. Whatever
methods are developed for real-time WBE detection in the
future, they need to be fully quantitative to allow for compar-
ison across communities. If detection methods are nucleic acid
based, then standardised extraction and PCR-based diagnostic
methods should be used.

Understanding the detection limits of WBE is also an area
that requires more study (i.e. what numbers of cases need to be
positive in a community before they can be confidently de-
tected at a WWTP). Modelling suggests that for SARS-CoV-
2, detection in community wastewater of one positive case per
100 to 2,000,000 non-infected people is theoretically feasible
(Hart and Halden 2020; Kitajima et al. 2020). A study in Japan
reported that SARS-CoV-2 RNA could be detected in
WWTPs when the number of total confirmed cases was as
low as 1 in 100,000 people but that detection frequency
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increased and became more reliable once cases were at 10 in
100,000 people or higher (Hata et al. 2020). The detection
limits for other pathogens remain unknown.

While some studies have reported that the prevalence in
wastewater correlated well with the reported COVID-19 com-
munity prevalence (Ahmed et al. 2020a; Medema et al. 2020;
Wurtzer et al. 2020a, 2020b), another study reported that
SARS-CoV-2 concentrations in wastewater were orders of
magnitude greater than the number of confirmed clinical cases
(Wu et al. 2020a). The impact of confounding variables such
as the rate of asymptomatic cases and the variation in numbers
of individuals that present for testing as well as the testing and
quantitation methods used are also variables that require fur-
ther study to provide more robust data in this area. Another
challenge associated with WBE is estimating the population
size of individual WWTP catchments and the contribution of
tourists or commuters in smaller communities (Sims and
Kasprzyk-Hordern 2020). Ethical considerations, including
privacy and the stigmatisation of ethnic and vulnerable popu-
lations, are also issues that will need to be managed. Analyses
based on populations over > 10,000 are thought to provide
anonymity; however, reporting the emergence and/or spread
of disease in small populations or sub-populations by WBE
must be done with care and needs to be sensitive to different
social, ethnic and economic circumstances (Sims and
Kasprzyk-Hordern 2020).

Although RT-PCR is the most widely used method for
detecting SARS-CoV-2, it can be expensive, time-
consuming and requires skilled technicians, and is therefore
not conducive to real-time WBE. A variety of point-of-care
(POC) options are being explored including paper-based de-
vices (e.g. those that use inexpensive isothermal nucleic acid
amplification on a paper material) (Mao et al. 2020b).
However, available data indicates that current isothermal am-
plification of SARS-CoV-2 lacks the required sensitivity and
throughput and still requires sample concentration prior to
analyses. CRISPR (clustered regularly interspaced short pal-
indromic repeats)-based isothermal RNA detection assays has
been developed to help overcome some of these issues but are
expensive and the sensitivity remains to be fully evaluated
(Broughton et al. 2020; Huang et al. 2020). Small-scale lab-
on-a chip biosensor devices which use a bio-recognition ele-
ment (e.g., antibodies, aptamer, peptides, protein, etc.) that
can generate physicochemical signals (optical, electrochemi-
cal, etc.) are increasingly being developed for pathogen detec-
tion (Ryan et al. 2017; Cesewski and Johnson 2020), includ-
ing Cryptosporidium (Luka et al. 2019) and SARS-CoV-2
(Funari et al. 2020; Mavrikou et al. 2020; Qiu et al. 2020;
Seo et al. 2020). Biosensors have the potential for rapid and
real-time WBE and have been applied to wastewater (Yang
et al. 2017), but still present many technical challenges includ-
ing sensitivity, specificity and detection limit (Ryan et al.
2017; Cesewski and Johnson 2020; Mao et al. 2020c).

Moreover, as discussed above, we need to better under-
stand the infectiousness, half-life and survival of various path-
ogens in wastewater as well as the travel time to the treatment
facility, water use per capita and the effectiveness of various
WWTP processes and disinfection technologies (chlorine,
UV, ozone etc) on the removal of a wide range of pathogens
to better inform computational models (Ahmed et al. 2020a,
2020d; Hart and Halden 2020; Mandal et al. 2020).

Conclusions

WBE has the potential to be a powerful and effective early
warning tool for community-wide monitoring of public
health. However, improved assays for pathogen concentra-
tion, detection, quantitation and infectivity are needed for con-
tinuous and systematic monitoring of WWTPs. WBE also
needs to be integrated with clinical testing, case reporting
and public health campaigns, including coordination of testing
methods, so that data generated fromWBE and clinical testing
is comparable. Recently, a global COVID-19 WBE
Collaborat ive project has been launched (www.
covid19wbec.org/) in collaboration with the Sewage
Analysis CORe group Europe (SCORE) network and the
Global Water Pathogen Project to coordinate methodological
research and reporting on WBE. Based on this precedent,
similar collaboration in relation to the monitoring of protozo-
an and other pathogens in wastewater is highly desirable.
Molecular sequencing and typing of pathogens in wastewater
holds great promise for identifying sources of infection and
determining transmission dynamics.
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