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Background and Objectives. Uridine diphospho-glucuronosyltransferase 2B (UGT2B) is a family of genes involved in metabolizing
steroid hormones and several other xenobiotics. These UGT2B genes are highly polymorphic in nature and have distinct
polymorphisms associated with specific regions around the globe. Copy number variations (CNVs) status of UGT2B17 in Indian
population is not known and their disease associations have been inconclusive. It was therefore of interest to investigate the CNV
profile of UGT2B genes.Methods. We investigated the presence of CNVs in UGT2B genes in 31 members from eight Indian families
using Affymetrix Genome-Wide Human SNP Array 6.0 chip. Results. Our data revealed >50% of the study members carried CNVs
in UGT2B genes, of which 76% showed deletion polymorphism. CNVs were observedmore in UGT2B17 (76.4%) than in UGT2B15
(17.6%). Molecular network and pathway analysis found enrichment related to steroid metabolic process, carboxylesterase activity,
and sequence specificDNAbinding. Interpretation andConclusion.We report the presence ofUGT2B gene deletion and duplication
polymorphisms in Indian families. Network analysis indicates the substitutive role of other possible genes in the UGT activity. The
CNVs of UGT2B genes are very common in individuals indicating that the effect is neutral in causing any suspected diseases.

1. Introduction

CNVs are the presence of segments of DNA longer than 1 kb
with >90% sequence identity which differ in the number of
copies between the genomes of different individuals [1]. They
affect more nucleotides per genome than SNP variation [2]
and contribute significantly to variation among normal indi-
viduals, both in levels of gene expression and in phenotypes
of medical relevance [3, 4]. There are many genes and gene
families that show copy number differences in population.
Around 19 such loci have been identified in genome-wide
surveys; they are found to harbor both deletion and dupli-
cation alleles [5]. One of these is the uridine diphospho-
glucuronosyltransferase 2B (UGT 2B), which is a family of
genes, involved inmetabolizing steroid hormones and several
other xenobiotics. UGT 2B family of genes has high sequence
identity and similar enzymatic functions with UGT2B4,

UGT2B7, UGT2B10, UGT2B11, UGT2B15, UGT2B17, and
UGT2B28 [6]. In Chinese population, heterozygous deletion
polymorphism of UGT2B17 was higher (86%) than homozy-
gous deletion (73%) [2, 7]. These polymorphisms have also
been reported in samples covering American, European, and
African populations [8–12]. However, such polymorphisms
have not been reported from South Asia, particularly from
India. In addition, there are controversial reports regarding
the association ofUGT2B17 polymorphism with lung cancer,
osteoporosis, and prostate cancer [8, 12, 13]. It was therefore of
interest to investigate the polymorphic condition of UGT 2B
genes in the Indian families as family studies are more robust
to population stratification. Here, we report the presence
of UGT 2B gene deletion and duplication polymorphisms
and also the network analysis of the UGT 2B genes, which
predicts the involvement of other possible genes in the
uridine diphospho-glucuronosyltransferase activity.
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2. Materials and Methods

For this study, 31 normal members from randomly selected
eight families residing in Mysore (3), Mandya (1), Davangere
(3), and Bangalore (1) certified byAll India Institute of Speech
and Hearing (AIISH), Mysore, and National Institute of
Mental Health and Neuro Sciences (NIMHANS), Bangalore,
were selected.These families were subjected to power analysis
using standard parameters [14] by specifying an effect size
range of 1550–1750. Performing the 1-sample, 1-sided test
using the Type I error rate at 5% resulted in the power being
equal to 1. Based on this, we selected 1746 total samples for the
study. 5mL EDTA blood was collected from each member of
the family and genomic DNA was extracted using Promega
Wizard� Genomic DNA purification kit. The isolated DNA
was quantified by biophotometer and gel electrophoresis.The
study was conducted for a period of two years from 2009
to 2011. The institutional ethics review board approved this
research and informed consent was obtained from all sample
donors.

2.1. Genotyping. Genome-wide genotyping was performed
using an Affymetrix Genome-Wide Human SNP Array 6.0
chip, which has 1.8 million combined SNP and CNVmarkers
with the median intermarker distance of 680 bases. This chip
provides maximum panel power and the highest physical
coverage of the genome [15]. Genotyping quality was assessed
using Affymetrix Genotyping Console Software (AGCC).
Briefly, all SNPs that were called using Birdseed v2 algorithm
[16] had a Quality Control (QC) call rate of >97% across
members in families. All the members who passed SNP QC
procedures were entered into the CNV analysis. The CNV
calls were generated using the Canary algorithm. Contrast
QC across all samples was >2.5 as required to be >0.4.

2.2. Data Analysis. Genome-wide CNV study was carried
out using SVS Golden Helix Ver. 7.2 [17] and Affymetrix
Genotyping Console software as prescribed in their manuals
[18–20]. Eigenstrat method was used to avoid possibility of
spurious associations resulting from population stratifica-
tion. Bonferroni correctionwas employed formultiple testing
and the corrected data were then used for CNV testing.

2.3. Weighted Protein Interaction Network Analysis. We used
weighted protein network analysis in a first attempt to
identify steroid metabolic process associated modules and
their key constituents. Weighted protein network analysis
starts from the level of thousands of genes, identifies mod-
ules of physically interacting proteins, colocalized proteins,
coexpressed proteins, and proteins falling under the common
pathway, and relates these modules to clinical variables and
gene ontology information. We made use of tools such as
GeneMANIA, BIOGRID, and CYTOSCAPE developed for
network pathway studies to assess the functional conse-
quences of the network topology. GeneMANIA Protein net-
work association database, a FDR corrected hypergeometric
test, was used for enrichment in the UGT 2B network [21].

3. Results

Different age group members ranging within 13–73 years
were subjected to whole genome scan from eight families.
Nine of them were aged 13–16 years and were studying at
high school level; 5 of them were aged 16–25 years and had
completed graduation; 5 of them were aged 45–55 years and
were employees; 3 of them were aged 45–55 years and were
businessmen; 7 of them were aged 35–45 years and were
housewives; and 2 of them were aged 70–73 years and are
grandparents. None of these members had history of any
diseases (Table 1 and Figure 1).

CNV analysis of eight families revealed in the first family
1A-III-3 subject showing a 114 kb duplication polymorphism
and 1A-III-4 subject with a 114 kb deletion polymorphism.
Both of these subjects are identical twins. 1A-I-2 subject
of the same family showed only a deletion polymorphism
of 109 kb in UGT2B17. Segregation of 111 kb heterozygous
deletion genotype of UGT2B17 was seen in four subjects of
the second family (Table 1) (Figure 1(A)). Subject DF1A in
the third family had a duplication of 168 kb in UGT2B17
and UGT2B15 and deletion in UGT2B28 of 168 kb size which
belongs to the same gene family of UGTs. However, subjects
DF1F andDF1U of the same family show a 108 kb and a 105 kb
deletion of UGT2B28 only.

Subject 2DF4F in the fourth family had a deletion
of 216 kb in UGT2B17 and UGT2B15. However, subjects
2DF4A and 2DF4M of the same family showed 104 kb
and 100 kb deletion, respectively, of UGT2B28. In the fifth
family, subjects 2DF5A and 2DF5U showed a duplication of
141 kb and deletion of 146 kb in the UGT2B17, respectively.
Subject 2DF2F from the sixth family had a duplication of
200 kb inUGT2B17 andUGT2B15, while subject 2DF3A from
the seventh family showed a deletion of 114 kb involving
UGT2B17. In UGT2B15, duplications in two subjects and
deletion in one subject were observed, whereas in UGT2B28
duplication in one individual and deletions in five individuals
were seen (Table 1). These CNVs were also validated using
SVSGoldenHelixVersion 7.2 and the duplication breakpoints
were found to be novel when checked against the online CNV
database.

By taking cognizance of all the 8 families, both dupli-
cation and deletion polymorphisms of UGT 2B genes were
observed in these families (Table 1) and the copy number
state varied from 1 to 3 copies (Figure 2). The CNVs of UGT
2B genes were found to be in heterozygous deletion and
duplication (Figure 3). The prevalence of UGT2B17 CNVs
was found to be 76.4% and that of UGT2B15 was 17.6%,
whereasUGT2B28 showed a prevalence of 35.2% in this study.
No zero allelic state was observed in these families and a
minimum of one allele to a maximum of three alleles of
UGT 2B were observed in the genotypes of the families. The
deletions and duplications observed here encompassed the
complete gene structure and its flanking regions (Table 1).

A heat map showing the difference in heat emission for
normal, deletion polymorphisms, and duplication polymor-
phisms of the 4q13.2 region with inferred functional copy
number for all the members under study can be seen in
Figure 2.
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Figure 1: Illustration of pedigrees and heat map of UGT 2B gene regions in subjects under study. (A and B)The pedigrees of families showing
the allelic state in family members in 4q13.2/UGT2B17 region. Subject 1 = 1A-I-2; Subject 10 = 1A-III-4; Subject 11 = 1A-III-3; Subject 12 =
1A-II-8; Subject 13 = 1A-I-1; Subject 14 = 1A-II-3 in Pedigree A and Subject 6 = 1B-V-2; Subject 7 = 1B-III-5; Subject 8 = 1B-IV-2; and Subject
9 = 1B-V-1 in Pedigree B have been genotyped.

3.1. Molecular Protein Interaction Network of UGT 2B Genes.
The network analysis of UGT 2B genes establishes inter-
connecting pathways of genes involved in steroid hormones
processing and xenobiotics metabolizing such as UGT2B7,
UGT2B15, UGT2B4, and CYP3A4 (Figure 4). These genes
function independently in their own pathways involving
coexpression and colocalization of UGT2B4, UGT2B28, and
UT2B15 with UGT2B17 proteins in the protein association
network indicating the role of other UGT 2B enzymes in this
pathway. The loss or presence of UGT2B17 did not have a
significant functional impact in the disease pathways. Since
the gene modules in the network correspond to biological
pathways, focusing the analysis on modules and their highly
connected intramodular hub genes identifies the significant
role played by each gene functionally. In this way, the impact
ofUGT2B17 in its loss or gain status on the biological pathway
can be downplayed in the earlier reported diseases. This
network also provides predictive genes involved in the steroid
metabolizing pathway and xenobiotic metabolizing pathway
(Table 1).

4. Discussion

Perusal of the literature revealed that UGT2B17 in the
4q13.2 region is highly polymorphic and the frequency of
polymorphism in this gene was found to be more in African
populations, intermediate in Europe and parts of West Asia,
and low in East Asia [8–11]. Polymorphisms have been

previously described for 1AUGTs, as well as several members
of family 2B UGTs, including UGT2B4, UGT2B7, UGT2B15,
and UGT2B17 [7, 22–24]. CNVs in the UGT 2B genes are
common in the general population as suggested by Xue et al.
[10] and Chew et al. [12]. However, the role of polymor-
phism in UGT2B17 remains controversial since the deletion
polymorphism of UGT2B17 was found to be associated with
lung cancer, osteoporosis, prostate cancer, and endometrial
cancer [9, 11, 25, 26] while there are also studies to relate
the duplication polymorphism with lower BMD, thinner CT,
higher BR, and osteoporosis [25]. On the contrary, Gallagher
et al. [8] reported nonassociation ofUGT2B17 polymorphism
with the risk of lung cancer. Similarly, Olsson et al. [13]
also opined the nonassociation of UGT2B17 polymorphism
with prostate cancer risk and, recently, Chew et al. [12]
disregarded homozygous deletion genotype of UGT2B17
with osteoporosis risk. Either the deletion or duplication
polymorphisms in UGT2B15 are occurring along with the
polymorphism of UGT2B17, which could be due to its close
proximity. However, CNVs in UGT2B28 for the first time
have also been identified from this study. This gene also
encodes for the uridine diphospho-glucuronosyltransferase
protein. The encoded enzyme catalyzes the transfer of
glucuronic acid from uridine diphosphoglucuronic acid to
a diverse array of substrates including steroid hormones
and lipid-soluble drugs (Table 1). Two transcript variants
encoding different isoforms have been found for this gene
[27].
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in Pedigree A; Subject 6 = 1B-V-2 in Pedigree B; Subject 7 = 1B-III-5 in Pedigree B; Subject 8 = 1B-IV-2 in Pedigree B; Subject 9 = 1B-V-1 in
Pedigree B; Subject 10 = 1A-III-4 in Pedigree A; Subject 11 = 1A-III-3 in Pedigree A; Subject 12 = 1A-II-8 in Pedigree A; Subject 13 = 1A-I-1
in Pedigree A; Subject 14 = 1A-II-3 in Pedigree A. Subjects 1 and 10–14 belong to the first family; Subjects 6–9 belong to the second family;
Subjects 2–5 belong to the third family; Subjects 27–29 belong to the fourth family; Subjects 30-31 belong to the fifth family; Subjects 19–22
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CNVs are widely distributed in the genome; these CNVs
might be the consequence of recurrent events via homol-
ogous recombination. Examining the sequences of UGT
2B family genes revealed ∼95% sequence identity and also
found a major concentration of repeat sequences which are
thought to mediate homologous recombination. Therefore,
we strongly believe the role of transposition activity to be
the cause of deletion and duplication polymorphism. A
typical example can be seen in the twins from the first
family (Figure 1). Weighted protein network analysis started

with UGT2B17, identified modules of physically interacting
proteins, colocalized proteins, coexpressed proteins, and
proteins falling under the commonpathway, and related these
modules to clinical variables and gene ontology information.
In addition, identification and establishment of network
pathways could help us to further understand the molecular
mechanism in more refined manner than the existing one.
The present study identified de novo CNV events in the UGT
2B region. Since CNVs in UGT 2B region were identified in
normal subjects and since this gene is specifically expressed
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Figure 4: Network of UGT 2B genes involved in uridine diphospho-glucuronosyltransferase activity.
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to metabolize the steroids, identifying the changes at protein
level as well as small sample size was a possible limitation of
this study.

Competing Interests

The authors declare no conflict of interests.

Acknowledgments

Theauthors thank the funding agencyDepartment of Science
and Technology-Health Science (SR/SO/HS-103/2007), Gov-
ernment of India, New Delhi; the subjects and their families
for participating in this study; Professor H. A. Ranganath for
his help and encouragement; Anand S. and Shyamala K. V. for
their help in sample collection; and also University of Mysore
for providing facility to conduct this work.

References

[1] J. L. Freeman, G. H. Perry, L. Feuk et al., “Copy number
variation: new insights in genome diversity,” Genome Research,
vol. 16, no. 8, pp. 949–961, 2006.

[2] R. Redon, S. Ishikawa, K. R. Fitch et al., “Global variation in
copy number in the human genome,” Nature, vol. 444, no. 7118,
pp. 444–454, 2006.

[3] T. J. Aitman, R. Dong, T. J. Vyse et al., “Copy number polymor-
phism in Fcgr3 predisposes to glomerulonephritis in rats and
humans,” Nature, vol. 439, no. 7078, pp. 851–855, 2006.

[4] E. Gonzalez, H. Kulkarni, H. Bolivar et al., “The influence
of CCL3L1 gene-containing segmental duplications on HIV-
1/AIDS susceptibility,” Science, vol. 307, no. 5714, pp. 1434–1440,
2005.

[5] J. M. Young, R. M. Endicott, S. S. Parghi, M.Walker, J. M. Kidd,
and B. J. Trask, “Extensive copy-number variation of the human
olfactory receptor gene family,”TheAmerican Journal of Human
Genetics, vol. 83, no. 2, pp. 228–242, 2008.

[6] T. R. Tephly and B. Burchell, “UDP-glucuronosyltransferases:
a family of detoxifying enzymes,” Trends in Pharmacological
Sciences, vol. 11, no. 7, pp. 276–279, 1990.

[7] C. Jin, J. O. Miners, K. J. Lillywhite, and P. I. Mackenzie,
“Complementary deoxyribonucleic acid cloning and expression
of a human liver uridine diphosphate-glucuronosyltransferase
glucuronidating carboxylic acid-containing drugs,” Journal of
Pharmacology andExperimentalTherapeutics, vol. 264, no. 1, pp.
475–479, 1993.

[8] C. J. Gallagher, F. F. Kadlubar, J. E. Muscat, C. B. Ambrosone,
N. P. Lang, and P. Lazarus, “The UGT2B17 gene deletion
polymorphism and risk of prostate cancer. A case-control study
in Caucasians,” Cancer Detection and Prevention, vol. 31, no. 4,
pp. 310–315, 2007.

[9] A.-H. Karypidis, M. Olsson, S.-O. Andersson, A. Rane, and
L. Ekström, “Deletion polymorphism of the UGT2B17 gene is
associated with increased risk for prostate cancer and correlated
to gene expression in the prostate,” The Pharmacogenomics
Journal, vol. 8, no. 2, pp. 147–151, 2008.

[10] Y. Xue, D. Sun, A. Daly et al., “Adaptive evolution of UGT2B17
copy-number variation,” American Journal of Human Genetics,
vol. 83, no. 3, pp. 337–346, 2008.

[11] S. Bai, Y. Xu, L. Wu, L. Li, and X. Wang, “The presence of the
UGT2B17 gene is associated with lung cancer in male Chinese
Han smokers,”Genes andGenomics, vol. 32, no. 1, pp. 13–17, 2010.

[12] S. Chew, B. H.Mullin, J. R. Lewis, T. D. Spector, R. L. Prince, and
S.G.Wilson, “Homozygous deletion of theUGT2B17 gene is not
associated with osteoporosis risk in elderly Caucasian women,”
Osteoporosis International, vol. 22, no. 6, pp. 1981–1986, 2011.

[13] M. Olsson, S. Lindström, B. Häggkvist et al., “The UGT2B17
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