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Objectives: SARS-CoV-2 has evolved rapidly into several genetic clusters. However, data on mutations
during the course of infection are scarce. This study aims to determine viral genome diversity in serial
samples of COVID-19 patients.
Methods: Targeted deep sequencing of the spike gene was performed on serial respiratory specimens
from COVID-19 patients using nanopore and Illumina sequencing. Sanger sequencing was then per-
formed to confirm the single nucleotide polymorphisms.
Results: A total of 28 serial respiratory specimens from 12 patients were successfully sequenced using
nanopore and Illumina sequencing. A 75-year-old patient with severe disease had a mutation, G22017T,
identified in the second specimen. The frequency of G22017T increased from �5% (nanopore: 3.8%;
Illumina: 5%) from the first respiratory tract specimen (sputum) to �60% (nanopore: 67.7%; Illumina:
60.4%) in the second specimen (saliva; collected 2 days after the first specimen). The difference in
G22017T frequency was also confirmed by Sanger sequencing. G22017T corresponds to W152L amino
acid mutation in the spike protein which was only found in <0.03% of the sequences deposited into a
public database. Spike amino acid residue 152 is located within the N-terminal domain, which mediates
the binding of a neutralizing antibody.
Discussion: A spike protein amino acid mutation W152L located within a neutralizing epitope has
appeared naturally in a patient. Our study demonstrated that monitoring of serial specimens is important
in identifying hotspots of mutations, especially those occurring at neutralizing epitopes which may affect
the therapeutic efficacy of monoclonal antibodies. Jonathan Daniel Ip, Clin Microbiol Infect
2021;27:1350.e1e1350.e5
© 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has spread rapidly, resulting in more than 28 million laboratory-
rtment of Microbiology, 19th
Pokfulam, Hong Kong Special

biology and Infectious Diseases. P
confirmed COVID-19 cases globally as of 14 September 2020.
SARS-CoV-2 mainly causes respiratory tract infection, although
extrapulmonary manifestations have been reported [1]. The effi-
cient person-to-person transmission may be related to the high
viral load shortly after symptom onset and the large number of
asymptomatic individuals [2,3]. Prolonged persistence of RNA in
body fluids is common despite the development of neutralizing
antibodies [2].
ublished by Elsevier Ltd. All rights reserved.
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As an RNA virus, the genome replication of SARS-CoV-2 is prone
to error, and gene mutations arise frequently. Whole genome
sequencing showed that the viral genomes may differ between
family members [4]. Major genetic diversity has already been seen
[5]. Phylogenetic analysis has demonstrated that even patients
within the same geographical regionwere infected with genetically
diverse SARS-CoV-2 strains [6].

Most studies on viral genome focus on the population level.
However, understanding viral mutations on an individual patient
level can have important implications for pathogenesis and treat-
ment of virus infection. For A(H1N1)pdm09 virus, the D225G
substitution of haemagglutinin was more enriched in the lower
respiratory tract specimens because this substitution enables the
virus to bind more efficiently to a2,3 sialic acid receptors that are
predominantly found in the alveoli [7]. Furthermore, analysis of
serial specimens allows the detection of resistant mutants arising
during antiviral treatment [8]. A recent analysis of bronchoalveolar
fluid from COVID-19 patients showed that intra-host viral genome
variation is a rare event, with a median of 1 nucleotide variant with
minor allele frequency of �20% [9], but whether mutations arise
during the course of illness was not examined.

In this study, we analysed serial specimens from individual
patients to search for nucleotide and amino acid variations that
develop over the course of illness. We have specifically chosen the
spike protein for targeted sequencing because the spike protein is
responsible for the binding of the virus to the host cell angiotensin-
converting enzyme 2 (ACE2) receptor and membrane fusion [10].
Our recent study has demonstrated that the level of IgG against
spike protein RBD has a high correlationwith neutralizing antibody
titre [11].

Patients and methods

Patients

This study included archived respiratory specimens from
COVID-19 patients with laboratory confirmation by real-time
reverse transcription-polymerase chain reaction (RT-PCR) tar-
geting the E or RdRp-Hel gene as described previously [12,13].
The respiratory specimens included nasopharyngeal swab, saliva,
endotracheal aspirate and sputum. Serial specimens were
defined as specimens collected from the same patient at least
1 day apart. Some patients in this study were enrolled in our
previous randomized controlled trial on triple therapy with
interferon-b1b, lopinavireritonavir and ribavirin [14], or in our
previous study on viral load and serological profile [2]. This study
has been approved by the Institutional Review Board of The
University of Hong Kong/Hospital Authority Hong Kong West
Cluster (UW 13-372).

SARS-CoV-2 spike gene RT-PCR

Viral RNA was extracted from respiratory specimens using
Qiagen Viral RNA Mini Kit (Hilden, Germany) or BioM�erieux
NucliSENS easyMag (Marcy-l'�Etoile, France) as described previously
[4]. Full-length spike gene was amplified using SuperScript™ III
one-step RT-PCR system with Platinum™ Taq High Fidelity DNA
polymerase (Thermo Fisher Scientific, Waltham, MA, USA) using
primer set 1, or primer set 2, and 3 (Table S1) under the following
RT-PCR conditions: 50�C for 30 min, 94�C for 2 min; then 40 cycles
of 94�C for 30 s, 55�C for 30 s and 68�C for 250 s. Amplified PCR
products were either purified by 0.5x AMPure XP bead (Beckman
Coulter, California, CA, USA) or gel purified by QIAquick Gel
Extraction Kit (Qiagen, Hilden, Germany). Purified PCR products
were then subjected to nanopore or Illumina library preparations.
Since RT-PCR may lead to bias in assessing frequency of nucleotide
variants, we performed separate RT-PCRs for nanopore and Illu-
mina sequencing.

Nanopore targeted sequencing

DNA libraries were prepared using the Ligation Sequencing Kit
(SQK-LSK109, Oxford Nanopore Technologies) according to the
manufacturer's instructions with modifications [14]. Briefly,
amplified and purified spike gene PCR products were subjected to
PCR barcoding using PCR Barcoding Expansion 1-96 kit (EXP-
PBC096). Barcoded samples were then pooled at equal molar ratio
prior to end repair, sequencing adapter ligation and clean-up. The
end repair incubation time was prolonged from the manufacturer's
recommendation of 5 min at 20�C and 5 min at 65�C, to 30 min at
20�C and 30 min at 65�C. The Oxford Nanopore MinION platform
and R9.4.1 flow cell were used for sequencing.

Guppy v3.4.5 was used in converting the raw signal data into
FASTQ format, demultiplexing and removing nanopore adaptor
sequences. Only reads with a minimumQ score of 10 were included
for subsequent analysis. The sequencing run was quality checked
using MinIONQC [15]. Quality-checked reads were filtered by
length to remove primer dimer and chimera. The filtered reads
were then aligned with the SARS-CoV-2 reference genomeWuhan-
Hu-1 (GenBank accession number MN908947.3) using the
BurrowseWheeler Aligner (BWA) [16]. SAMtools v1.10 and BCFtools
mpileup were used in creating a variant file [17,18]. Only reads with
mapping quality �30 and base quality �20 were used in piling.
BCFtools [17] call, vcfutils.pl [18] and SEQTK [19] were used in
generating the FASTA consensus sequence. The variation fre-
quencies were obtained using SAMtools v1.10 [18] and VarScan2
[20] with reads of mapping quality score �30, basecalling quality
score �20. Only single nucleotide polymorphisms (SNPs) with a
minimumof 250� coverage, p< 0.001,minimumvariant frequency
of 0.5%, minimum average basecalling quality score of 30 and
minimum read support for variant of 10 reads were reported. The
raw data have been deposited in the NCBI Sequence Read Archive
with accession number PRJNA664839.

Targeted sequencing of spike gene using Illumina sequencing

For Illumina sequencing, DNA libraries were prepared using the
Nextera XT DNA Library Prep Kit (Illumina) following the manu-
facturer's protocol with 1 ng of the spike gene cDNA as the starting
material. In brief, DNA fragments with adaptors were generated by
tagmentation reaction at 55�C for 5 min. The tagmented DNAwere
then indexed and amplified in a 50 mL reaction volume with 12
cycles of PCR, followed by AMPure XP bead clean-up. The quality of
the enriched libraries was then validated using Agilent Bioanalyzer,
Qubit and real-time RT-qPCR.

The libraries were pooled at equal molar ratio, denatured and
diluted to optimal concentration prior to sequencing. The Illumina
NovaSeq 6000 was used for sequencing to generate pair-end 151 bp
reads. The whole dataset was deposited in the NCBI Sequence Read
Archive with accession number PRJNA664541.

Illumina adapters were removed from the reads. Any reads with
length of at least 100 bp and at least 90% of bases with quality score
of �30 were retained during the quality filtering process using
FASTP [21]. Pair-end reads were aligned with the reference genome
SARS-CoV-2 Wuhan-Hu-1 (MN908947.3) using the BWA [16].
Sorting and read deduplication were performed using SAMtools
v1.10 [18] and Picard v2.22.3. The consensus sequence was gener-
ated using SEQTK [19] and BCFTools [17] with reads of mapping
quality and basecalling quality score �30. The coverage depth is
generated by SAMtools depth command. The variation frequencies
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were obtained using SAMtools v1.10 [18] and VarScan2 [20] with
reads of mapping quality score �30 and basecalling quality score
�35. Only SNPs with a minimum of 250 � coverage p < 0.001,
minimum variant frequency of 0.5%, minimum average basecalling
quality score of 30 and minimum read support for variant of 10
reads were reported.
Sanger sequencing

Sanger sequencing was performed as described previously [22].
Both strands were sequenced twice with an ABI Prism 3730xl DNA
Analyser (Applied Biosystems, Foster City, CA, USA) using forward
and reverse primers.
Consensus sequence

The consensus sequences were deposited into GISAID (Acces-
sion number EPI_ISL_538524-538551).
Results

This study included 21 patients with at least two serial respi-
ratory tract specimens available. A total of 98 serial respiratory
tract specimens, collected between January 23 and March 16,
2020, were retrieved. SARS-CoV-2 spike gene RT-PCR was positive
in 19 patients and 55 specimens. Of these 19 patients, 12 patients
had at least two serial samples positive on different days
(Table S2). Hence, nanopore and Illumina sequencing were per-
formed for 12 patients on 28 specimens. These 12 patients
included five males and seven females. The median age was
62 years, with a range between 30 and 75 years. Out of the 12
patients, four (33.3%) required oxygen supplementation, two
(16.7%) were admitted to the intensive care unit, one (8.3%) was
intubated and one (8.3%) died.

For these 12 patients, the mean filtered coverage was
36 393 � for nanopore sequencing and 40 990 � for Illumina
sequencing runs (Tables S3 and S4). Out of these 12 patients, only
one patient had nucleotide differences between samples collected
on different days andwith a difference in variant frequency between
initial and subsequent samples exceeding 10% in both nanopore and
Illumina sequencing. This patient was a 75-year-old man who
required oxygen supplementation during hospitalization. For
nanopore sequencing, the G22017T (guanine to thymine) was found
in 3.8% (158/4116) of the reads in the sputum specimen collected on
day 7 (first specimen) after symptom onset, while it accounts for
67.8% (12060/17795) of reads in the saliva specimen collected on day
9 after symptom onset (second specimen) (Fig. 1A). For Illumina
sequencing, G22017T was found in 5.0% (356/7082) of the reads in
the first specimen, while this mutation was found in 60.4% (4578/
7574) in the second specimen (Fig. 1B). Sanger sequencing was
performed to verify the mixed population at the position 22 017 in
the second specimen (Fig. 1C). He had received lopinavir-ritonavir
and ribavirin one day before the collection of the second spec-
imen. G22017T resulted in the non-synonymous mutation ofW152L
(tryptophan to leucine) in the N-terminal domain of the S1 subunit.
This mutation is within the N3 loop of the N-terminal domain,
which mediates the binding of a neutralizing antibody, 4A8 [23].

Next, we determined the prevalence of W152L mutation among
SARS-CoV-2 isolates deposited in GISAID up to 15 September 2020
(Table S5). Of 92942 sequences available, 21 (0.023%) had W152L
mutation.
Discussion

Summary of principal findings

This study assessed the SARS-CoV-2 spike gene mutations in
serial specimens from COVID-19 patients using a combination of
nanopore, Illumina and Sanger sequencing. In one patient with
severe disease, an important non-synonymous mutation G22017T,
which results in W152L (tryptophan to leucine) mutation in the N-
terminal domain of the spike gene, was present at a low frequency
of �5% in the sputum specimen but represented the predominant
population (�60%) in the saliva specimen collected 2 days later.
W152L is located within the binding site of a recently identified
neutralizing antibody 4A8. Spike protein amino acid residue 152,
together with residue 145 in the N3 loop of N-terminal domain,
interacts with the 4A8 antibody via hydrophobic interactions [23].
Since tryptophan has an aromatic side chain while leucine has an
aliphatic side chain, the W152L mutation might change the struc-
ture of the N3 loop in the N-terminal domain, hence affecting the
binding of neutralizing antibodies. Such observation may be an
example of microevolution induced by host antibody response in
an attempt to evade neutralizing antibody response which arise
during the course of illness.
Comparison with other studies

W152L mutation is located at the N-terminal domain of the
spike protein. The presence of W152L from a minor population to
become the predominant population suggests that this site may be
under immune selection pressure in this patient. Neutralizing an-
tibodies against N-terminal domain could be found in COVID-19
patients [23e25], and may neutralize virus infection for several
reasons. First, Chi et al. postulated that the antibody may prevent
the conformational change of the S protein which is necessary for
fusion [23]. Second, antibody against N-terminal domain may block
the spike protein that binds to an unidentified receptor. The N-
terminal domain of S1 subunit has been shown to participate in
binding for other coronaviruses. The human coronaviruses OC43
and HKU1 has been shown to bind to 9-O-acetylated sialic acids,
while MERS-CoV-2 binds to non-acetylated sialic acid, via the N-
terminal domain [26,27]. The mouse hepatitis virus binds to host
cell receptor carcinoembryonic antigen-related cell adhesion
molecule via the S1 N-terminal domain [28].

Although nucleotide changes are frequent, amino acid mutation
is actually an infrequent event for the spike gene [29], except for
D614G which now accounts for the majority of the SARS-CoV-2 re-
portedworldwide [5]. Mutations at spike protein amino acid residue
152 are rarely found, accounting for <0.03% of the strains deposited
in GISAID as of 15 September 2020. The low prevalence of W152L
mutation suggest that this mutation may confer reduced fitness or
transmissibility. However, since usually only one viral sequence
from each patient would be deposited into public databases, the
prevalence of W152L mutation may have been underestimated.

Our patientwithW152Lmutationwas treatedwith ribavirin and
lopinavireritonavirwhich started between the collection of the first
and second specimen. Our previous clinical trial showed that triple
combination, which includes ribavirin, lopinavireritonavir and
interferon-b 1b, can shorten the duration of illness in COVID-19
patients [30]. Ribavirin is known to induce mutations in RNA vi-
ruses, and this may have promoted the mutation in this patient.
However, outof 4000bp sequenced, onlyW152Lwas found tobe the
predominant mutant. Therefore, it is unlikely that the mutation is
related to the antivirals given.



Fig. 1. G22017T spike gene mutation in patient HKU-IHCE0511-006. (A) Nanopore sequencing. (B) Illumina sequencing. (C) Sanger sequence tracing, demonstrating the double peak
at position 22017 in the day 9 specimen.
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Limitations of this study

There are several limitations in this study. First, we can only
determine the SNPs among specimens with successful RT-PCR of
the spike region. Second, the serial specimens of each patient that
were successfully sequenced were collected <14 days apart. This is
because the viral load reduces substantially during the second
week of infection [2,31]. Therefore, we were not able to determine
the variants that are present in patients with prolonged viral
shedding. Viral load can also be affected by other factors. Older age
has been associated with a higher viral load [2]. The type of spec-
imen can also affect the viral load [31]. The duration of viral
shedding can be longer in fecal than in respiratory specimens [32].
Third, the amplification of the spike gene may cause distortion in
the variant frequencies. We have addressed this problem by
performing a separate RT-PCR reaction for nanopore and Illumina
sequencing of the same specimen. Furthermore, we only focused on
variants that exceed 10% variation from the same individual. Fourth,
for the patient with W152L mutation in the saliva specimen
collected on day 9 after symptom onset, only sputum specimenwas
available on day 7 after symptom onset. It is possible that W152L
mutation is already present as a predominant population in the
saliva of the patient on day 7 after symptom onset.

Conclusions and implications for clinical practice and
research studies

Our study demonstrates that mutations may arise spontane-
ously at neutralizing antibody sites during the course of COVID-19.
Although these mutations may not be sustained during person-to-
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person transmission, these amino acid mutations may affect the
antiviral activity of neutralizing antibodies. Monitoring for intra-
host mutational hotspots are warranted. Serial monitoring of mu-
tations is needed for clinical trials on monoclonal antibody thera-
peutic trials.
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