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Abstract

Objectives. As the prognosis of relapsed/refractory (R/R) acute
myeloid leukaemia (AML) remains poor, novel treatment strategies
are urgently needed. Clinical trials have shown that chimeric
antigen receptor (CAR)-T cells for AML are more challenging than
those targeting CD19 in B-cell malignancies. We recently
developed piggyBac-modified ligand-based CAR-T cells that target
CD116/CD131 complexes, also known as the GM-CSF receptor
(GMR), for the treatment of juvenile myelomonocytic leukaemia.
This study therefore aimed to develop a novel therapeutic method
for R/R AML using GMR CAR-T cells. Methods. To further improve
the efficacy of the original GMR CAR-T cells, we have developed
novel GMR CAR vectors incorporating a mutated GM-CSF for the
antigen-binding domain and G4S spacer. All GMR CAR-T cells were
generated using a piggyBac-based gene transfer system. The anti-
tumor effect of GMR CAR-T cells was tested in mouse AML
xenograft models. Results. Nearly 80% of the AML cells
predominant in myelomonocytic leukaemia were found to express
CD116. GMR CAR-T cells exhibited potent cytotoxic activities
against CD116" AML cells in vitro. Furthermore, GMR CAR-T cells
incorporating a G4S spacer significantly improved long-term
in vitro and in vivo anti-tumor effects. By employing a mutated
GM-CSF at residue 21 (E21K), the anti-tumor effects of GMR CAR-T
cells were also improved especially in long-term in vitro settings.
Although GMR CAR-T cells exerted cytotoxic effects on normal
monocytes, their lethality on normal neutrophils, T cells, B cells
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GMR CAR-T therapy for acute myeloid leukaemia

A Hasegawa et al.

and NK cells was minimal. Conclusions. GMR CAR-T cell therapy
represents a promising strategy for CD116" R/R AML.

Keywords: AML, CD116, GM-CSF, GM-CSF receptor, GMR, low
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INTRODUCTION

In spite of the modern advances in intensive
chemotherapy and haematopoietic stem cell
transplantation (HSCT), the prognosis of acute
myeloid leukaemia (AML) remains poor.“3
Approximately 10-20% of AML patients
experience induction failure,* and 5-year survival
is only 60% in paediatric AML patients>® and 40%
in adults."? AML outcomes further deteriorate in
patients with such poor prognostic factors as FMS-
like tyrosine kinase 3 (FLT3) mutations.”® Thus,
effective and safe therapies are urgently needed
for AML patients.

Recent clinical trials have shown impressive
results for CD19 antigen-specific chimeric antigen
receptor-T  (CAR-T) cell therapies in B-cell
malignancies.” "> However, AML-directed CAR-T
cell treatments have been challenging to date in
clinical studies.”* '’ Specifically, the ‘on target off
tumor effect’ is almost inevitable when CAR-T
cells are targeted to AML blasts since the AML-
associated target antigens are generally expressed
on normal myeloid cells as well.”®*?' New
strategies are therefore needed to improve the
safety and efficacy of CAR-T cell therapy for AML.

The granulocyte-macrophage colony-
stimulating factor (GM-CSF) receptor (GMR)
consists of two subunits: an o subunit (CD116) and
a common f subunit (CD131) that is shared with
IL-3 and IL-5 receptors. As the o subunit of the
GMR, CD116 is expressed in juvenile
myelomonocytic leukaemia (JMML),??> AML and
normal myeloid cells.?® Specifically,
hypersensitivity to GM-CSF is a hallmark of JMML,
with mutually exclusive genetic abnormalities in
the GMR signalling pathway.?*?> A recent study
revealed that hypersensitivity to GM-CSF was also
found in chronic myelomonocytic leukaemia
(CMML).?®  Moreover, approximately 30% of
CMML patients obtained clinical benefit from the
GM-CSF inhibitor lenzilumab in a phase Vb
clinical trial.?” We recently demonstrated the
antiproliferative effects of ligand-based GMR-
specific CAR-T cells against JMML with minimal
toxicity to normal myeloid progenitor cells.??
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Since CD116 is overexpressed in 63-78% of AML
cases,?>?® and especially in the FLT3-mutated AML
associated with poor prognosis,® we hypothesise
that CAR-T cells targeting CD116/CD131 complexes
may be a promising strategy for the treatment of
high-risk and relapsed/refractory (R/R) AML.

The residue 21 of GM-CSF plays a critical role in
its biological activity.>® Mutated analogs of GM-
CSF at this residue, such as E21K and E21R, exhibit
distinct biological functions as compared with the
wild type.3' Thus, it is possible that mutated
ligand-based GMR CAR-T cells can alter the
biological interactions between CAR-T cells and
their targets, which may enhance anti-tumor
activity.

In the present study, we aimed to demonstrate
that GMR CAR-T cells could elicit anti-tumor
effects against AML both in vitro and in vivo. By
employing both an optimised spacer and a
specifically mutated GM-CSF at residue 21, we also
sought to improve the in vivo anti-tumor effects
of GMR CAR-T while maintaining minimal toxicity
on normal cells.

RESULTS

The GM-CSF receptor o chain, CD116, is
highly expressed in AML cells

To determine whether the GM-CSF receptor o
chain (CD116) could be used as a target of CAR-T
therapy for AML, we examined CD116 expression
in 5 AML cell lines by flow cytometry. CD116 was
highly expressed in the myelomonocytic
leukaemia lines of THP-1 (French—-American—British
[FAB] classification M5), MV4-11 (M5) and
ShinAML-1 (M4) and was partially expressed in
Kasumi-1 (M2) and HL-60 (M3) cell lines
(Figure 1a). In contrast, CD116 was minimally
expressed in the B-acute lymphoblastic leukaemia
(ALL) cell line (KOPN57bi) (Figure 1a). We next
evaluated CD116 expression in primary leukaemic
cells by analysing peripheral blood or bone
marrow samples obtained from 29 AML patients
with various FAB subtypes (M1-M7) (Figure 1b, c)
(Supplementary figure 1 and Supplementary table
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Figure 1. CD116 (GMRa) is expressed in AML. CD116 expression was examined in both AML cell lines and primary leukaemic samples from
AML patients. (a) Surface CD116 (GMRa) expression relative to the isotype control of 5 AML cell lines: Kasumi-1, HL-60, shinAML-1, THP-1,
MV4-11 and 1 ALL cell line (KOPN57bi). RFI was calculated by dividing the MFI of samples with that of the isotype control (b, €). Summary
results of CD116 expression on primary leukaemia cells from 29 AML patients according to FAB classification. The percentage of CD116-positive
cells (b) and RFI (c) is shown. (d) Comparison of CD116 expression between 29 AML patients and 5 ALL patients. The percentage of CD116-
positive cells and RFl is shown. (e) Comparison of CD116 expression between 3 CMML patients and 5 JMML patients. The percentage of CD116-
positive cells and RFI is shown. Mann-Whitney U-tests were used to identify significant differences. *P < 0.05, **P < 0.01, n.s., not significant.

1). Overall, the median (range) percentage of intensity (RFI) of >2 (Figure 1d). Specifically,
CD116" cells was 24.4 (1.0-98.1) % in AML myelomonocytic and monocytic leukaemia (FAB
patients (Figure 1d), and 24 of 29 (83%) AML M4 and MS5) displayed significantly higher
patients showed a CD116 relative fluorescence percentages (median 60.1%, range 20.5-98.1%,
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P < 0.001) of CD116" cells than those (median
11.5%, range 1.0-87.8% P <0.01) of other
subtypes (M1-3 and M6-7) (Figure 1b). CD116
expression  levels were  consistently and
significantly higher (RFl: median 7.1 range 2.3-
36.0, P<0.01) in FAB M4 and M5 subtypes as
compared with those (RFl: median 2.6, range 1.1-
11.0) of other subtypes (Figure 1c). These results
indicated that AML, especially of the
myelomonocytic lineage, highly expressed CD116.
CD116 was overexpressed in AML, whereas
negligible percentages (median 1.4%, range 0.6—
2.8%) and intensities (RFl: median 1.5, range 1.2-
1.6) of CD116 were observed in ALL cells
(Figure 1d). Additionally, both CMML and JMML
expressed high levels of CD116 (Figure 1e). Based
on the above findings, we proceeded to
investigate the anti-tumor effects of GMR CAR-T
therapy for AML, particularly of myelomonocytic
lineage.

GMR CAR-T cells exert anti-tumor effects on
AML cells in vitro

We previously described the antiproliferative
effects of ligand-based GMR CAR-T cells against
JMML cells.?* However, our original GMR CAR
construct contained GM-CSF as an antigen-binding
site and an IgG1 CH2CH3 hinge lesion as a spacer
(GMRWT CAR [CH2CH3]) (Figure 2a), which might
abrogate the in vivo efficacy of CAR-T cells.3234
As expected, GMRWT CAR[CH2CH3]-T cells showed
no anti-tumor effects in vivo (Supplementary
figure 2). Therefore, we constructed 2 new
plasmid vectors of GMR™WT CAR (Figure 2a) by
either removing the CH2CH3 region (ACH2CH3) or
replacing it with a G4S linker (G4S) (Figure 2a). As
shown in Figure 2b, GMRW" CAR-T cells with
either the ACH2CH3 spacer (GMRYT CAR
[ACH2CH3]-T cells) or G4S spacer (GMRWT CAR
[G4S]-T cells) displayed similar CAR expression
levels (37-42%), which were comparable to that
of the original GMR CAR-T cells (46%) (data not
shown).

To examine the anti-tumor effects of GMRW'
CAR-T cells on AML cells in vitro, GMR"WT CAR-T
cells were co-cultured with 4 different subtypes of
AML cell lines: FAB M2, M3, M4 and M5. On day 5
of co-culture, GMRWT CAR-T cells with either the
ACH2CH3 or G4S spacer had eradicated the
CD116" ShinAML-1 and THP-1 cells (Figure 2c). The
GMRWT CAR-T cells also exhibited specific anti-
tumor effects on CD116" in the MV4-11 (M5) cell
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line and could eradicate Kasumi-1 (M2) cells
having only partial CD116 expression (Figure 2c).
These anti-tumor effects were comparable for the
ACH2CH3 and G4S spacers. In contrast, neither of
the GMRWT CAR-T cell types exerted anti-tumor
effects on HL-60 (M3) cells weakly expressing
CD116 (Figure 2c).

We next explored the long-term killing ability
of the GMRWT CAR-T cells with different spacers.
Against multiple challenges of leukaemia cells,
the GMRW'T CAR[ACH2CH3]-T cells initially
reduced, but ultimately failed, to control tumor
growth, whereas the GMRW' CAR[G4S]-T cells
could sustain their anti-tumor activity against
both MV4-11 and THP-1 even after a second or a
third challenge (Figure 2d) (Supplementary figure
3). Thus, the GA4S spacer appeared to provide
superior long-term anti-tumor effects to GMR"'"
CAR-T cells in vitro.

To compare the in vivo anti-tumor activities of
GMRWT CAR-T cells with different spacers, THP-1
firefly Luciferase (ffLuc)-bearing NOD. Cg-
Prkdc@112rg"™"™"1Sz) (NSG) mice were treated
with intravenous injection of 1.2 x 10° of CAR-T
cells (Figure 2e). In mice receiving PBS, tumor
progression was evident (Figure 2f-g), and all
mice had succumbed to leukaemia by day 60
(Figure 2h). Similarly, CD19.CAR-T cells were
unable to control leukaemia progression, and all
mice had died by day 80. Conversely, GMR"'
[G4S] CAR-T cells significantly suppressed
leukaemia progression as compared with
CD19.CAR-T cells as well as with GMR"T CAR
[ACH2CH3]-T cells (both, P <0.01) (Figure 2g).
These substantial anti-tumor effects translated to
a significant prolongation of survival in GMRWT
CAR[GA4S]-T cells versus PBS and CD19.CAR-T cells
(both, P < 0.01), with all the mice surviving more
than 145 days (Figure 2h). Together with the
long-term in vitro co-culture results, GMRWT CAR
[G4S]-T cells were considered to have robust and
durable anti-tumor activities against CD116" AML.

CAR-T cells with a mutated GM-CSF ligand
exhibit superior anti-tumor effects

We simultaneously sought to further improve the
anti-tumor activity of GMR CAR by modulating
the binding affinity of the antigen recognition
site. Based on studies performed by Lopez
et al.,3%3" GM-CSF mutations at residue 21 in GMR
CAR vectors were used to fine-tune the antigen-
binding ability of GMR CAR-T cells.

© 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of
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Figure 2. GMR CAR-T with modified G4S spacer exhibited superior anti-leukaemic effects against AML cells. (@) Schematic diagram of the GMR
CAR constructs with spacer modifications. The CH2CH3 region was removed from the original GMR CAR (CH2CH3) construct and replaced with
either an IgG1 hinge region (ACH2CH3) or 3 repeated sequences of GGGGS (G4S). (b) Representative surface CAR expression of 2 GMR CAR-T
cells with different spacers (ACH2CH3 and G4S). Mock-T cells were used as a negative control. (c) /n vitro anti-tumor effects of the spacer-
modified GMR CAR-T cells. GMR CAR-T cells were co-cultured with 5 different AML lines at an E:T ratio of 1:5 or 1:10. The numbers of residual
live leukaemia cells at 5 days after co-culture are shown. Data represent the mean £+ SEM (n = 3). Student’s t-tests were employed to identify
significant differences. *P < 0.05, **P < 0.01, n.s., not significant. (d) Long-term in vitro killing ability of GMR CAR-T by serial co-culture assays.
GMR CAR-T cells were co-cultured with THP-1 or MV4-11. On day 3 or 4 of serial co-culture, the cells were harvested and analysed by flow
cytometry to quantify the residual leukaemic cells and T cells. Fresh leukaemia cells were repeatedly added at the defined E:T ratio (n = 1). (e)
Experimental plan of the THP-1 ffLuc xenograft model. On day 3 after leukaemia inoculation, the mice were treated with 1.2 x 10® GMR CAR-T
cells (dose was adjusted by CAR" cells). (f) Sequential BLI study in the THP-1 ffLuc xenograft model. BLI was performed approximately every
10 days until day 120. (g) Summary of the BLI results in each treatment group. Data represent the mean + SEM of each group. *P < 0.05,
#*p < 0.01. (h) Kaplan—Meier analysis of survival for each treatment group. Log-rank tests were used for statistical analysis of survival between
groups. *P < 0.05, **P < 0.01. Data are representative of one experiment (n = 5 mice per group) (g, h).
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Screening analysis of 7 mutated GMR CAR
constructs (Figure 3a) with the CH2CH3 spacer
revealed that GMR CAR-T cells with GM-CSF E21R or
E21K mutations (GMRE'R or GMRE?'X) exhibited
superior anti-tumor activity in vitro (Figure 3b)
against THP-1 cells. Accordingly, we constructed
GMR CAR vectors with either E21K or E21R
mutations and the ACH2CH3 spacer (Figure 3c).
Both mutated GMR®'® and GMRM'® CAR
[ACH2CH3]-T cells showed equivalent CAR
expression (Figure 3d). To test the anti-tumor
activity of the mutated GMR CAR-T cells, THP-1-
bearing NSG mice were intravenously treated with
5 x 10° total T cells (Figure 3e). All control group
mice had died from leukaemia by day 49 (PBS) or
day 53 (CD19.CAR-T cells) (Figure 3f) because of the
leukaemia  progression, as confirmed by
pathological examination (Supplementary figure
4). The mice treated with GMRY'™ CAR[ACH2CH3]-T
cells had succumbed to leukaemia by day 63
(Figure 3f). In contrast, the animals treated with
both GMRF'® and GMRF?'™ CAR[ACH2CH3]-T cells
showed significantly prolonged survival over
controls (PBS or CD19.CAR-T cells) (all, P < 0.01) as
well as over GMRYT CAR[ACH2CH3]-T cells (E21R,
P < 0.01; E21K, P = 0.02), with some surviving more
than 150 days. These results indicated that
modifying the antigen-binding site could further
improve the anti-tumor effects of GMR CAR-T cells.

Fine-tuned GMR CAR-T cells display
enhanced anti-tumor effects

To further optimise GMR CAR-T cells, the mutated
GMR CAR-T cells were incorporated with the G4S
spacer (Figure 4a). Both the mutated GMR®?'€ and
GMRE2'™® GMR CAR[G4S]-T cells showed similar
CAR expression levels (Figure 4b, «¢) and
comparable ex vivo expansion of transduced T
cells (Figure 4d), as compared to GMR“'T CAR
[G4S]-T cells as well as GMR CAR[ACH2CH3]-T cells
(Figure 4¢, d). To examine whether the mutated
GM-CSF ligands could ameliorate long-term
in vitro anti-tumor effects, GMR CAR-T cells were
sequentially co-cultured with THP-1 cells or MV4-
11 cells. After multiple leukaemia cell challenges,
GMRE2'CAR[GA4S]-T cells maintained superior anti-
tumor activity to GMRWTCAR[GA4S]-T cells against

MV4-11 cells, but not against THP-1 cells
(Figure 4e) (Supplementary figure 5).
Furthermore, GMRE'®CAR[G4S]-T cells showed

significantly better proliferation in response to
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both THP-1 «cells and MV4-11 cells than
GMRWTCAR[GA4S]-T cells after 2-5 stimulations.
Next, MV4-11-bearing NSG mice were
intravenously treated with 1.2 x 10° GMR CAR
[G4S]-T cells to evaluate in vivo anti-tumor effects
(Figure 4f). On day 45, peripheral blood samples
were collected from the mice, and leukaemia cell
burden was quantified by detecting the MLL-AF4
fusion gene using qRT-PCR. In control group mice
(PBS and CD19.CAR-T cells), substantial amounts
of leukaemic MLL-AF4 fusion transcripts were
observed on day 45 (Figure 4g), and most animals
had died by day 60 (Figure 4g). MLL-AF4 fusion
transcripts were also detected in the mice treated
with GMRE2™R CAR[GA4S]-T cells regardless of the
spacer, and approximately half of them had died
by day 75. No leukaemic MLL-AF4 transcripts were
detected in mice treated with GMRWTCAR[GA4S]-T
cells or GMRE?'™CAR[GA4S]-T cells (Figure 4h),
which resulted in significantly longer survival than
in control groups (both P < 0.05) (Figure 4h)
(Supplementary table 2).

GMR CAR-T responses correlated with the
CD116 expression levels of target cells

To investigate whether the expression levels of
CD116 correlated with the cytotoxic effects of
GMR CAR-T cells, we co-cultured GMR®'® CAR
[G4S]-T cells with 3 cell lines (MV4-11, Kasumi-1
and K562) possessing different CD116 levels. As
expected, cytotoxicity against the 3 cell lines was
correlated to the CD116 expression levels of the
target  cells (Supplementary  figure 6).
Furthermore, IFN-y, IL-2 and TNF-a production by
GMRE2'® CAR[G4S]-T cells correlated with CD116
expression levels (Supplementary figure 6). To

confirm these observations, we co-cultured
GMRE?'™®  CAR[G4S]-T cells with 7 leukaemic
primary cells exhibiting different CD116

expression levels (Supplementary figure 7). The
cytotoxicity of the GMRF?' CAR[G4S]-T cells were
closely correlated to the % of CD116-positive cells
in the target cells (R*=0.7444, P =0.07)
(Supplementary figure 8). In agreement, IFN-y
production levels against leukaemia cells were
also related to target cell CD116 expression levels
(R? = 0.7404, P = 0.013) (Supplementary figure 8).
These results confirmed that the cytotoxic and
cytokine responses of GMRE?' CAR[GA4S]-T cells
correlated strongly with the CD116 levels of the
target cells.
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constructs with the ACH2CH3 spacer. (d) Representative surface expression of CAR in GMR CAR-T cells with the WT or mutated GM-CSF ligand
and incorporating the ACH2CH3 spacer. (e) Experimental plan of the THP-1 xenograft model. NSG mice were intravenously injected with
1 x 10° THP-1 cells on day 0. The mice received 5 x 10° of GMR CAR-T cells (dose was adjusted by CD3" cells) on day 3. (f) Kaplan-Meier
analysis for each treatment group). Log-rank tests were used for statistical analysis of survival between groups. *P < 0.05, **P < 0.01. Data are
representative of one experiment (PBS, n = 6; CD19, n = 4, GMR WT, n = 3; GMR E21R and E21K, n = 5 mice per group).

only negligible levels. We observed a significantly

Safety of GMR CAR-T cells higher percentage and RFI for CD116 in

To characterise the safety profile of GMR CAR-T
cells, CD116 expression was examined in normal
haematopoietic cells. As expected, nearly 100% of
monocytes and neutrophils expressed CD116
(Figure 5a, b), while T, B and NK cells expressed
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monocytes than in neutrophils (Figure 5b, ¢). We
subsequently co-cultured GMR CAR-T cells with
PBMCs or polymorphonuclear leukocytes (PMNs)
to determine whether GMR CAR-T cells affected
normal haematopoietic cells. All of the tested
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Figure 4. GMR®'® CAR-T cells incorporating a G4S spacer exhibited potent anti-leukaemic effects. (a) Schematic diagram of the CAR constructs
of GMR CAR with a mutated GMR ligand-binding site and G4S spacer. (b) Representative surface expression of GMR CAR-T cells generated from
a healthy donor with wild-type GMR or with mutated GMR and the G4S spacer. (c) Comparison of CAR expressions among GMR CAR-T cells
with 6 different constructs (ACH2CH3 or G4S x WT, E21K or E21R). Data represent CAR expression in GMR CAR-T cells generated from 5
(ACH2CH3) or 6 (G4S) healthy donors 14 days after the culture initiation. Each colour represents a different donor. (d) Total CAR™ T cell numbers
generated by the piggyBac-modified CAR-T generation system from 10 x 10° PBMCs after 14 days of culture. Data represent the numbers of
CD3*CAR" cells obtained from 5 (ACH2CH3) or 6 (G4S) healthy donors. Each colour represents a different donor. (e) Long-term in vitro killing
ability of the mutated GMR CAR-T cells with the G4S spacer by serial co-culture assays. GMR CAR-T cells were co-cultured with 1 x 10° THP-1
or MV4-11 cells in each well of 48-well plates. On day 3 or 4 of serial co-culture, the cells were harvested and analysed by flow cytometry to
quantify the residual leukaemic cells and CAR™ T cells. CAR-T cells were repeatedly re-challenged with fresh leukaemia cells at the defined E:T
ratio. The mean + SEM values from 3 independent experiments are shown. Student’s t-tests were used to identify significant differences.
*P < 0.05, **P < 0.01. (f) Experimental plan of the MV4-11 xenograft model. NSG mice were treated with 1.2 x 10 GMR CAR-T cells (dose
was adjusted by CAR™ cells) on day 3 after tumor inoculation. (g) Leukaemic MLL-AF4 transcripts in peripheral blood samples were examined by
gRT-PCR. Data represent the median (range) of each group. (h) Kaplan—Meier analysis of each treatment group. Log-rank tests were used for
statistical analysis of survival among the groups. *P < 0.05, **P < 0.01. Data are representative of one experiment (PBS, n = 3; CD19, n=5;
GMR, n =5 mice per group) (g, h).
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Figure 5. Safety profile of GMR CAR-T cells. (a-c) CD116 expression in normal haematopoietic cells of healthy donors. Representative
histogram plots (a) and summary results of CD116 (%) (b) and CD116 (RFl) (c) are shown. Data represent the median (range) values from 3
donors. Mann-Whitney U-tests and Kruskal-Wallis tests were used to identify significant differences between treatment groups. *P < 0.05,
**P < 0.01, n.s., not significant. (d) PBMCs (monocytes and T, B and NK cells) or PMNs (neutrophils) were co-cultured with GMR CAR-T cells
at an E:T = 1:1 for 3 days, and then B cells (CD197CD37), NK cells (CD16"CD3™), neutrophils (CD11b"CD3~) and monocytes (CD11b"CD3™)
were quantified by flow cytometry using counting beads. (e). Samples of 500 human cord blood CD34" cells and effector cells (Mock-T cells
or GMR CAR-T cells) were co-cultured at the indicated E:T ratios. On day 7, colony numbers of erythroid and myeloid colonies from the co-
cultures were quantified using STEMvision™. The mean 4 SD values are shown (n = 3). Student's t-tests were employed to identify significant
differences. *P < 0.05, **P < 0.01.
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GMR CAR-T cells exerted substantial cytotoxic
effects on monocytes, but only negligible
cytotoxicity on T, B and NK cells (Figure 5d).
Surprisingly, GMR CAR-T cells minimally affected

neutrophils despite high neutrophil CD116
expression. Although GMR CAR-T cells induced
higher cytotoxic effects on CD116 highly

expressing dendritic cells (DCs) than on control
CD19 CAR-T cells, they did not eradicate DCs, even
at high E:T ratios (Supplementary figure 9).

To examine the toxic effects of GMR CAR-T cells
on haematopoietic stem cells (HSCs)/progenitor
cells (HPCs), CD116 expression in those cells was
analysed by flow cytometry. Although HSCs and
HPCs partially expressed CD116, their expression
levels were remarkably lower than that in bone
marrow myeloid cells (Supplementary figure 10).
We next assessed the impact of GMR CAR-T cells
on HSCs by colony-forming assays. All of the
tested GMR CAR-T cells were comparably toxic to
myeloid progenitor cells but showed limited
cytotoxicity on erythroid progenitor cells
(Figure 5e). Statistical analysis showed that
myeloid progenitor cells were significantly more
susceptible to GMR CAR-T cells than were
erythroid progenitor cells.

Optimised GMR CAR-T cells exhibit a
favorable phenotype

To characterise the phenotype of the optimised
GMRE?'®  CAR[G4S]-T cells, immunophenotypes
were examined by flow cytometry. Consistently
with our previous reports,>>3® piggyBac-modified
GMR CAR-T cell products contained 68.7 + 11.6%
of CD3" cells with CD8" dominance and a low
percentage (10.4 + 4.3%) of CD3 CD56" cells
(Supplementary figure 11a, b). Moreover, GMR
CAR-T cells contained approximately 20.2 + 2.4%
of the CCR7'CD45RA™ naive/stem cell memory
population (Supplementary figure 11c, d).
Although 485 + 11.2% of GMR CAR-T cells
expressed the exhaustion marker TIM3, they
minimally expressed other markers, such as PD-1
and LAG3 (Supplementary figure 11e, f). These
phenotypical characteristics were comparable
among GMR CAR-T cells with 6 different CAR
configurations (Supplementary figure 12). These
findings suggested that the piggyBac-modified
GMR CAR-T cells possessed a relatively favorable
phenotype that might be beneficial in clinical
trials.
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DISCUSSION

The present study comprehensively demonstrated
that GMR CAR-T cells redirected to a GMR
complex exhibited specific and potent anti-tumor
activity against CD116° AML cells both in vitro
and in vivo. Although various kinds of CAR-T cells
have been developed for AML, there remain
challenges in AML targeting, mostly because of
the heterogeneous and weak expression of target
antigens and myelotoxicity. We herein described
novel GMR CAR-T cells specifically targeted
CD116" AML cells for eradication at very low E:T
ratios in vitro. Not only did the GMR CAR-T cells
demonstrate durable cytotoxic activity against
multiple challenges of AML cells in vitro, they also
completely suppressed the progression of CD116"
AML cells in multiple AML xenograft models.
Furthermore, fine-tuning of GMR CAR-T cells with
the E21K mutation of GM-CSF and a G4S spacer
produced a CAR configuration and phenotype
suitable for clinical testing.

This study showed that 82% of AML primary
cells overexpressed CD116, which was consistent
with recent studies®*2® showing CD116 expression
in 63%-78% of AML cells. Specifically, higher
CD116 expression was observed in AML with the
M4-5 FAB subtypes in accordance with the
remarkably high CD116 expression in JMML and
CMML. These AML subtypes may be of clinical
relevance because of the potential suboptimal
response to venetoclax with hypomethylating
agents.®” The CD116 expression pattern in AML
subtypes differs from those of CD33 and CD123,3®
both of which have been promising targets in
CAR-T therapy for AML.?° The unique therapeutic
range provided by GMR CAR-T cells represents an
attractive alternative CAR-T treatment for R/R
AML.

The design of spacers connecting the antigen
recognition site and transmembrane region is
known to affect the persistency and efficacy of
CAR-T cells.32334941 specifically, GMR CAR-T cells
incorporating the G4S spacer exhibited superior
long-term in vitro anti-tumor activity over the
ACH2CH3 spacer consistently with a greater long-
term in vitro killing ability. Although the precise
mechanism of the difference between CH2CH3
and G4S was not addressed in this study, one
possible explanation was that a different spacer
length could provide the optimal distance
between target antigens and CAR-T cells.*?
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The present study also demonstrated that the
use of a mutated GM-CSF (E21K) significantly
improved long-term in vitro anti-tumor activities.
Recent structure-function studies have revealed
that GMRs may be binary complexes of GMRa
alone (low-affinity receptors) or
hexamer/dodecamer complexes consisting of both
GMR o and B chains (high-affinity receptors).43
The E21K-mutated GM-CSF analog has been
reported as harbouring a significantly decreased
binding ability to high-affinity receptors but
maintaining an equivalent binding ability to low-
affinity ones.>® Given that most AML cells express
both high- and low-affinity receptors, the
GMRE2'® CAR[GA4S]-T cells are considered to have a
lower binding ability to AML cells than do GMR™W'
CAR-T cells. Recent studies of low-affinity CARs
targeting CD19,** ErbB2*> and ICAM-1*® showed
comparable or superior anti-tumor effects to high-
affinity CARs in preclinical and clinical trials in
spite of conflicting data in preliminary research
stages.*’*® Although the mechanism of how low-
affinity CARs improve the anti-tumor activity of
CAR-T cells remains undetermined, it has been
postulated that a shorter duration of receptor-
ligand interactions may cause repeated
stimulations of CARs, thus leading to enhanced
intracellular proliferative signalling.** A lower
binding ability to leukaemia cells could therefore
have contributed to the improved long-term
in vitro anti-tumor effects of the GMRF'® CAR
[G4S]-T cells. Additionally, Lopez et al. have
described that GM-CSF analogs with mutations at
residue 21 (E21R and E21K) function only as
antagonists, without inducing agonistic
effects.3%3! Therefore, the avoidance of unwanted
signals through the GMR in leukaemia cells may
also support the enhanced anti-tumor effects of
GMR®2™€ CAR[G4S]-T cells.

Safety tests revealed that the toxicity of GMR
CAR-T cells was restricted to normal monocytes.
Surprisingly, GMR CAR-T cells minimally affected
normal neutrophils despite their CD116 expression
being similar to that on monocytes. The clinical
characteristics of MonoMAC syndrome patients
who congenitally lack monocytes have been well
described.*>>° Based on those features, transient
monocytopenia caused by GMR CAR-T cells should
be manageable if the patient is bridged to HSCT.
Meanwhile, GMR CAR-T cells showed significantly
higher cytotoxic effects on myeloid progenitor
cells than on erythroid progenitor cells. Since
myelotoxicity could not completely be ruled out,
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bridging HSCT will be required for the clinical
application of GMR CAR-T cells.

A variety of safety switch systems have been
developed for eliminating CAR-T cells in the case
of excessive reactivation, some of which have
already been translated into clinical trial settings,
such as truncated epidermal growth factor
receptor + cetuximab and  iCasp9 + AP1903.'
Although no safety switch systems were applied in
the present study, the incorporation of such a
system would further enhance the safety of CAR-T
therapy and should therefore be studied
specifically in patients who are ineligible for
HSCT.

Lastly, we employed a piggyBac system to
transfect GMR CAR genes into T cells. Consistently
with our previous studies, 3¢ piggyBac-modified
GMR CAR-T cells showed a naive/stem cell memory
T cell-dominant phenotype as indicated by the
CD45RA'CCR7" population, which has been
related to the increased persistency and anti-
tumor effects of CAR-T cells in both preclinical®?
and clinical studies.>® Furthermore, the present
investigation revealed that the piggyBac-modified
GMR CAR-T cells minimally expressed such
exhaustion markers as PD-1 and LAG3. This
favorable phenotype of piggyBac-modified GMR
CAR-T cells may have contributed to the long-
term anti-tumor effects observed in our preclinical
trials.

The limitations of this study include the
restricted expression of CD116 in myelomonocytic
AML. Approximately 20-30% of AML cases cannot
be targeted by GMR CAR-T cells and require
alternative therapeutic approaches. Another
limitation is the potential safety issues of GMR
CAR-T cells. Although we extensively examined
their toxicity on haematopoietic cells, the adverse
effects on other tissues were not investigated in
this study. Since the GMR has not yet been tested
as a target of immunotherapy, its safety must
carefully be evaluated in a phase | clinical trial.

CONCLUSIONS

Optimised GMR CAR-T cells containing an E21K
GM-CSF mutant and G4S spacer exhibited potent
anti-tumor effects against CD116° AML both
in vitro and in vivo. GMR CAR-T cells minimally
affected normal haematopoietic cells apart from
monocytes. Further testing is warranted to
determine the safety and efficacy of piggyBac-
modified GMR CAR-T therapy on R/R AML.
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METHODS

This study was conducted in accordance with the Helsinki
Declaration and was approved by the institutional review
board of Shinshu University School of Medicine.

Plasmids

The PiggyBac transposase plasmid (pCMV-piggyBac)>* and
original GMR CAR with a CH2CH3 hinge construct (CH2CH3)
were as described previously.?? In order to improve in vivo
persistence, we modified the original GMR CAR vector by
replacing the CH2CH3 hinge region with either an IgG1
hinge region (ACH2CH3) or 3 repeated sequences of GGGGS
(G4S). To modulate the antigen-binding ability of GMR
CAR, 7 new types were generated by replacing E with each
of the following amino acids: R, K, H, D, S, F and A. The
mutated GMR CAR constructs with E21R or E21K were
further modified by incorporating either a ACH2CH3 or G4S
spacer.

PiggyBac transposon-based gene transfer
and culture method

GMR CAR-T cells were generated from healthy donor
peripheral blood mononuclear cells (PBMCs) using piggyBac
transposon-mediated gene  transfer, as  described
previously.3> Briefly, 15 x 10° PBMCs were electroporated
with 5 ug of a pIRII-GMR CAR transposon plasmid and a
pCMV-piggyBac transposase plasmid using a 4D-
Nucleofector device (program FL-115) and P3 primary cell
4D-Nucleofector X kit (Lonza, Basel, Switzerland).
Electroporated cells were then cultured with 2 x 10°
irradiated PBMCs pulsed by viral peptide pools. Cells were
maintained in serum-free TexMACS™ medium (Miltenyi
Biotec, Inc., Auburn, CA) supplemented twice a week with
IL-7 and IL-15. On day 7, the cells were transferred to G-
REX10 culture flasks (Wilson Wolf, New Brighton, MN) and
stimulated with 3.0 x 10° OKT3 blasts pulsed by viral
peptide pools, as previously reported.3® On days 14-16, the
cells were harvested for further experiments.

Flow cytometry

Anti-human GM-CSF-PE, CD3-APC, CD33-PE (Miltenyi Biotec,
Auburn, CA); CD45RA-Pacific blue, CCR7-APC/cy7, CD4-
Pacific blue, CD8-APC/cy7, CD19-APC-Cy7, CD3-FITC, CD11b-
APC, CD38-BV421, CD33-BV605, CD34-APC, CD45RA-BV786
and CD16-Pacific Blue (Biolegend, San Diego, CA); and
CD116-PE (BD Biosciences, Franklin Lakes, NJ) antibodies
were used for analysis. Flow cytometric data were acquired
by BD FACSCanto™!Il, BD FACSCelesta™ or BD Accuri™ C6
Plus (BD Biosciences San Jose, CA) and analysed by Flowlo
(TOMY Digital Biology, Tokyo, Japan).

Leukaemia cells

The AML cell lines (THP-1, MV4-11, Kasumi-1 and HL-60)
were all purchased from ATCC (Manassas, VA). ShinAML-1

2021 | Vol. 10 | e1282
Page 12

A Hasegawa et al.

was established in our laboratory from a patient with AML
FAB M4. Primary leukaemia samples were analysed from
AML patients after obtaining informed written consent. The
THP-1-ffLuc cell line was established in our laboratory using
lentiviral transduction.

Co-culture experiments

Samples of 1.0-2.5 x 10° target cells (tumor cells or PBMCs)
were co-cultured with effector cells at the indicated E:T
ratios in RPMI 1640 medium supplemented with 10% foetal
bovine serum. On day 1 or 5, the cells were harvested and
analysed by flow cytometry to quantify the numbers of
leukaemia cells and T cells using Count Bright Absolute
Counting Beads® (Invitrogen, Carlsbad, CA).

For serial co-culture experiments, leukaemia cells and
1.0 x 10° T cells were co-cultured at E:T ratios of 1:1 and
1:5 in each well of 48-well plates. On day 2-4, half of the
cells were analysed by flow cytometry. Aliquots of 1.0 x 10°
tumor cells were then added to the remaining cells.

Cytokine production assay

Co-culture supernatants were collected 24 h after culture
initiation and analysed in cytokine production assays. IFN-y
concentrations were measured using a Human IFN gamma
High Sensitivity ELISA Kit (Abcam, Cambridge, UK).

To determine the multiple cytokine responses of GMR
CAR-T cells to target cells, the production levels of IL-2,
TNF-o and IFN-y were measured using a Cytometric Bead
Array Kit (BD Biosciences, San Jose, CA). After 24 h of co-
culture, cell culture supernatants were collected, and
cytokine concentrations were measured and analysed. Data
were acquired on BD Accuri™ C6 Plus (BD Biosciences) and
analysed by FCAP Array™ Ver.3.0 (BD Biosciences).

Animal experiments

All animal studies were approved by the Institutional
Animal Care and Usage Committee of Shinshu University
School of Medicine. NOD. Cg-Prkdc™@Ii2rg™ " "WiiSz) (NSG)
mice were purchased from Charles River Laboratories
(Wilmington, MA).

In the THP-1-ffLuc xenograft model, 1.0 x 10° THP-1-
ffLuc cells were intravenously injected into NSG mice. Three
days after tumor inoculation, the mice were treated with
intravenous injection of 1.2 x 10° GMR CAR-T cells or
control CAR-T cells (dose was adjusted by CAR" cells).
Bioluminescence imaging (BLI) was performed twice per
week to track leukaemia burden after intraperitoneal
injection of D-Luciferin (OZ Bioscience, San Diego, CA)
using the Night OWL Il LB983 system (Berthold Oak, Ridge,
TN).

In the THP-1 xenograft model, 1.0 x 10° THP-1 cells were
intravenously injected into NSG mice. Three days after
tumor inoculation, the mice were treated with intravenous
injection of 5.0 x 10° CAR-T cells (dose was adjusted by
CD3" cells).

In the MV4-11 xenograft model, 1.0 x 10° MV4-11 cells
were intravenously injected into NSG mice on day 0. On day
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3, the mice were treated with intravenous injection of
1.2 x 10° GMR CAR-T cells (dose was adjusted by CAR"
cells). To quantify the leukaemic cell load in vivo, blood
samples were obtained from the mice, and MLL-AF4
chimeric transcripts were examined by quantitative reverse-
transcriptase polymerase chain reaction (qRT-PCR) by SRL
Inc. (Tokyo, Japan) on day 52 using the primers presented
in the Supplementary Data.

All mice were sacrificed according to predefined ethical
criteria.

Dendritic cell generation

CD14" cells were isolated from healthy donor peripheral
blood mononuclear cells using CD14 MicroBeads (Miltenyi
Biotec, Auburn, CA). Mature and immature dendritic cells
(DCs) were generated as previously described °°. Briefly,
CD14" cells were supplemented with IL-4 (1000 IU mL™") and
GM-CSF (800 IU mL™") on days 0, 3 and 5. For generating
mature DGCs, cells were further supplemented with IL-1B
(10 ng mL™"), TNF-a (10 ng mL™"), IL-6 (10 ng mL™") and
PGE2 (1 pg mL™") on day 5.

MTT assay for evaluating toxicity of GMR
CAR-T cells on normal human dendritic cells

Normal human dendritic cells (NHDC) were purchased from
Lonza (Basel, Switzerland). Aliquots of 2 x 10° GMR CAR-T
cells were co-cultured with NHDCs at the indicated
effector:target ratios. Three days after co-culture, the cells
were used for the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay using an MTT cell
quantification kit (Nacalai Tesque, Kyoto, Japan).

Colony-formation assays

Samples of 500 human cord blood CD34" cells (STEMCELL™
Technologies, Vancouver, Canada) were co-cultured with
effector cells (Mock-T cells or GMR CAR-T cells) at indicated
E:T ratios. Samples of 300 MV4-11 cells were also co-
cultured with effector cells as a positive control. Co-cultures
were maintained in 100 uL of RPMI 1640 medium
supplemented with IL-3 (10 ng mL™"), stem cell factor
(10 ng mL™") and thrombopoietin (10 ng mL™") in each well
of 96-well round-bottom plates.

On day 2 of co-culture, the cells were transferred to
SmartDish 6-well plates with an additional 1 mL of
MethoCult H4434 classic (STEMCELL Technologies). On day
7, the erythroid and myeloid colonies were quantified using
STEMvision™ (STEMCELL Technologies).

Primer sets for detecting MLL-AF4 fusion
transcripts in peripheral blood of MV4-11-
bearing mice

Forward primer: GGTCCAGAGCAGAGCAAACAGAAA, reverse
primer: GGGTTACAGAACTGACATGC and Probe 5'FAM:
TGGCTCCCCGCCCAAGTATCCCTG TAMRA 3.
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Statistical analysis

Statistical analysis was performed using EZR Ver. 1.37
(Saitama Medical Center, Jichi Medical University, Saitama,
Japan).®® Statistical significance was determined as P < 0.05.
Mann-Whitney U-tests and Kruskal-Wallis tests were used
to identify significant differences between treatment
groups. Student’'s t-tests were employed to identify
significant differences for comparing the anti-tumor effects
and proliferation ability of GMR CAR-T cells in in vitro
experiments and for comparing the toxicity of GMR CAR-T
cells on myeloid and erythroid progenitor cells. For the
mouse experiments, survival rates under each condition
were analysed using Kaplan-Meier curves and log-rank
testing.
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