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Listeria monocytogenes is a worldwide pathogen, 
but the geographic distribution of clones remains 
largely unknown. Genotyping of 300 isolates from the 5 
continents and diverse sources showed the existence 
of few prevalent and globally distributed clones, some 
of which include previously described epidemic clones. 
Cosmopolitan distribution indicates the need for genotyping 
standardization.

Listeria monocytogenes is a foodborne pathogen that can 
cause listeriosis, a severe invasive infection in humans 

with a particularly high case-fatality rate. Listeriosis is a 
major public health concern in all world regions, with an 
increasing incidence in Europe, especially among elderly 
persons (1,2).

L. monocytogenes is genetically heterogeneous (3–5). 
To help epidemiologic investigation and to defi ne clones, 
i.e., groups of genetically similar isolates descending from 
a common ancestor, a variety of typing methods have 
been used, including pulsed-fi eld gel electrophoresis (5,6), 
single nucleotide polymorphism typing (7), and multiple 
housekeeping and virulence gene sequencing (8,9). Some 
clones implicated in multiple outbreaks have been defi ned 
as epidemic clones (EC) (3,5,9–11). ECI and ECIV have 
been described in several countries (3,5), but because of the 
lack of standardization of genotyping, a defi nition of clones 
is not widely accepted, and current knowledge on the global 
distribution of L. monocytogenes clones is virtually absent. 
Multilocus sequence typing (MLST) is a reference method 
for global epidemiology and population biology of bacteria, 

and its application to L. monocytogenes (12) effectively 
allows isolate comparisons across laboratories (www.
pasteur.fr/mlst). The aim of this study was to investigate 
the global distribution of L. monocytogenes MLST-defi ned 
clones.

The Study
Three hundred L. monocytogenes isolates were 

collected from different sources from 42 countries on 5 
continents (online Appendix Table, www.cdc.gov/EID/
content/17/6/1110-appT.htm). The isolates derived 
from 1) the collection of the World Health Organization 
Collaborating Center for Listeria and 2) the Seeliger Listeria 
Culture Collection. When available, up to 10 countries per 
continent were included. Only 1 isolate per documented 
outbreak was kept, and the isolates from a given country 
were selected from various sources, years, and serotypes. 
A total of 117 isolates were from humans, 107 from food, 
28 from animals, 32 from the environment and vegetation, 
and 16 of undocumented origin. The relative proportion 
of isolates from distinct sources was similar among world 
regions (online Appendix Table), except that no animal 
isolate was available from the Western Hemisphere and 
that the ratio of human to food isolates was lower from this 
continent.

Each isolate was hemolytic when streaked for 
isolation on blood agar. Genomic DNA was extracted by 
using Promega Wizard Genomic DNA purifi cation kit 
(Promega, Madison, WI, USA). Serotype information 
was confi rmed by PCR serogrouping (13). MLST was 
performed as described (12). Alleles and sequence types 
(STs) are publicly available at www.pasteur.fr/mlst. Clonal 
complexes (CC) were defi ned as groups of STs differing 
by only 1 gene from another member of the group (12) 
and were considered as clones. The θ estimator of the Fst 
statistic, which measures population differentiation, was 
determined on the basis of ST frequency by using FSTAT 
(www2.unil.ch/popgen/softwares/fstat.htm).

The 300 isolates represented 111 STs (diversity index 
95.4%) grouped into 17 CCs (online Appendix Figure, www.
cdc.gov/EID/content/17/6/1110-appF.htm). Phylogenetic 
analysis of the concatenated genes (not shown) indicated 
that 199, 98, and 3 isolates belonged to lineages I, II, and 
III, respectively (12). In lineage I, 3 CCs were highly 
prevalent: CC1 (47 isolates, serotype 4b), CC2 (64 isolates, 
4b,) and CC3 (32 isolates, 1/2b). The remaining isolates of 
lineage I were of serotype 4b or 1/2b (Table). In lineage II, 
CC9 (28, all with serotype 1/2c, except one 1/2a isolate) 
was the most frequent, followed by CC7 (15 1/2a isolates). 
All other lineage II isolates had serotype 1/2a.
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Worldwide Distribution of L. monocytogenes

Comparisons of populations from different sources 
(Table) showed a clear partitioning of genotypic diversity 
between clinical isolates on the one hand and food or 
environmental isolates on the other (θ = 0.033 and 
0.050, respectively; p<0.0002). Consistent with common 
knowledge (4,5), and even though recent outbreaks in 
Canada and Austria/Germany were caused by 1/2a strains, 
isolates of serotype 4b were, compared with other serotypes, 
relatively more frequent in human cases than in food. This 
difference in source distribution was further demonstrated 
for individual clones because the human/food ratio of 
both CC1 (2.6) and CC2 (2.8) differed signifi cantly from 
those of CC3 (0.65) and CC9 (0.5) (χ2 p<0.01 for the 4 
comparisons).

A global distribution of L. monocytogenes clones was 
evident (Figure). Frequent clones were found in many 
countries (up to 30 countries for CC2; online Appendix 
Table) and were globally distributed. Remarkably, CC1 
and CC2 were predominant in all world regions except 
northern Africa for CC1 (Figure). CC3 ranked among the 
4 most common clones in all regions, whereas CC9 ranked 
third in Europe and the Western Hemisphere. Altogether, 
these 4 clones represented 54 (50%) food isolates and 80 
(68%) clinical isolates. Our results show that the same 

few clones account for a large fraction of nonepidemic L. 
monocytogenes isolates in distant world regions. However, 
continents and sources were not equally represented in 
our sample, and larger studies are needed to confi rm 
our hypothesis that the clonal composition is similar 
across world regions and countries. Consistent with their 
cosmopolitan distribution, 15 of the 17 clones found herein 
(except CC199 and CC315, with only 6 and 3 isolates, 
respectively) included isolates from our previous analysis 
of 360 isolates, mostly from France (12).

Conclusions
This study provides the fi rst global view of L. 

monocytogenes clonal diversity. Our results clearly 
demonstrate the worldwide distribution and high prevalence 
of a few frequent clones in distinct world regions. In the 
current debate on the phylogeography of bacterial species 
(14), major L. monocytogenes clones clearly fi t in the 
“everything is everywhere” group, as do other pathogens 
in the environment, e.g., Pseudomonas aeruginosa (15). 
Dispersal by human travel, animal or food trade, wild 
animal migration, or wind and dust all might contribute to 
the global diffusion of L. monocytogenes clones. However, 
fi ner phylogenetic resolution will possibly subdivide 
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Table. Distribution of the major Listeria monocytogenes clonal complexes in lineages I and II among sources 
Lineage or clonal 
complexes 

No. (%), by source Human/ 
food ratio Total Human Food Animal Environment Unknown

Lineage I, total 199 (100) 88 (44) 60 (30) 16 (8) 24 (12) 11 (6) 1.60:1
 CC1 (4b) 47 (100) 26 (55) 10 (21) 4 (9) 3 (6) 4 (9) 2.60:1
 CC2 (4b) 64 (100) 36 (56) 13 (20) 6 (9) 5 (8) 4 (6) 2.77:1
 CC3 (1/2b) 32 (100) 11 (34) 17 (53) 1 (3) 2 (6) 1 (3) 0.65:1
 Other 4b 20 (100) 8 (40) 6 (30) 1 (5) 4 (20) 1 (5) 1.33:1
 Other 1/2b 36 (100) 7 (19) 14 (39) 4 (11) 10 (28) 1 (3) 0.50:1
Lineage II, total 98 (100) 29 (30) 45 (46) 11 (11) 8 (8) 5 (5) 0.64:1
 CC9 (1/2c) 28 (100) 7 (25) 14 (50) 2 (7) 3 (11) 2 (7) 0.50:1
 Other, lineage II (1/2a) 70 (100) 22 (31) 31 (44) 9 (13) 5 (71) 3 (4) 0.71:1

Figure. Number of isolates 
from 7 world regions where 
the most prevalent clones of 
Listeria monocytogenes are 
found.



widespread MLST-defi ned clones into subclades that might 
exhibit phylogeographic partitioning and will better clarify 
the rate and patterns of strain dispersal.

Remarkably, some ECs correspond with highly 
prevalent clones. ECII, described relatively recently (6), and 
ECIII, involved in outbreaks from a single plant, correspond 
to 2 clones (CC6 and ST11, respectively [12]), that were rare 
herein (5 and 0 isolates, respectively), suggesting that both 
clones experienced particular conditions that favored their 
diffusion on specifi c occasions. In contrast, the outbreaks 
caused by ECI and ECIV, reference strains of which 
belong to CC1 and CC2, respectively (12), could have been 
favored by their high prevalence in sources. One important 
question for future research is whether ECs correspond 
entirely to MLST-defi ned clones (i.e., CCs) or whether, on 
the contrary, they represent a genotypic subset thereof. The 
cosmopolitan distribution of clones, which protects them 
against extinction resulting from local disturbances, further 
highlights the crucial need to standardize L. monocytogenes 
genotyping to improve global epidemiologic knowledge 
and monitoring of current emergence trends.
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