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Abstract: Molecular dynamics (MD) simulations are powerful theoretical methods that can reveal
biomolecular properties, such as structure, fluctuations, and ligand binding, at the level of atomic
detail. In this review article, recent MD simulation studies on these biomolecular properties of
the RNA-dependent RNA polymerase (RdRp), which is a multidomain protein, of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) are presented. Although the tertiary structures of
RdRps in SARS-CoV-2 and SARS-CoV are almost identical, the RNA synthesis activity of RdRp of
SARS-CoV is higher than SARS-CoV-2. Recent MD simulations observed a difference in the dynamic
properties of the two RdRps, which may cause activity differences. RdRp is also a drug target for
Coronavirus disease 2019 (COVID-19). Nucleotide analogs, such as remdesivir and favipiravir, are
considered to be taken up by RdRp and inhibit RNA replication. Recent MD simulations revealed
the recognition mechanism of RdRp for these drug molecules and adenosine triphosphate (ATP).
The ligand-recognition ability of RdRp decreases in the order of remdesivir, favipiravir, and ATP.
As a typical recognition process, it was found that several lysine residues of RdRp transfer these
ligand molecules to the binding site such as a “bucket brigade.” This finding will contribute to
understanding the mechanism of the efficient ligand recognition by RdRp. In addition, various
simulation studies on the complexes of SARS-CoV-2 RdRp with several nucleotide analogs are
reviewed, and the molecular mechanisms by which these compounds inhibit the function of RdRp
are discussed. The simulation studies presented in this review will provide useful insights into how
nucleotide analogs are recognized by RdRp and inhibit the RNA replication.

Keywords: molecular dynamics simulation; RNA-dependent RNA polymerase; SARS-CoV-2;
nucleotide analogs; RNA replication inhibition

1. Introduction

Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. This disease causes pathogenic symptoms such
as fever, cough, and sore throat [2–4]. Seriously ill patients may develop a cytokine storm
syndrome and pneumonia [2,5]. COVID-19 was first reported in Wuhan, China, in Decem-
ber 2019. It spread rapidly worldwide. In March 2020, the World Health Organization
declared a pandemic of COVID-19 [6]. Similarly to other highly pathogenic viruses such
as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respira-
tory syndrome coronavirus (MERS-CoV), SARS-CoV-2 is classified in the Betacoronavirus
belonging to the family Coronaviridae. It has a large positive-sense single-stranded RNA
((+)ssRNA) genome consisting of about 30 kilobases, encoding more than 20 structural and
nonstructural proteins (nsps) [7–9]. This virus invades a host cell and multiplies through
the following process, as illustrated in Figure 1 [10]:
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1. The spike protein on the surface of SARS-CoV-2 is bound to angiotensin-converting
enzyme II (ACE2), a receptor on the host cell’s surface, and the virus enters the cell
through endocytosis. The virus then uncoats, and the viral genomic RNA is released
into the cytoplasm.

1’. Another way for the viral genomic RNA to enter the host cell is by membrane fusion.
After the spike protein is bound to ACE2, part of the spike protein is cleaved by a
type II transmembrane serine protease (TMPRSS2) on the host cell’s surface. The viral
envelope is fused with the host cell’s membrane, and the viral genomic RNA is then
released into the cytoplasm.

2. Because the genomic RNA of SARS-CoV-2 is (+)ssRNA, which functions as mRNAs,
it is translated by ribosomes of the host cell. Two large proteins, called polyprotein 1a
(pp1a) and polyprotein 1ab (pp1ab), are synthesized.

3. The polyproteins are then hydrolyzed, that is, proteolyzed, by virus-derived proteases,
part of the polyprotein, to synthesize a series of nsps, which is necessary for the viral
replication.

4. The RNA-dependent RNA polymerase (RdRp), one of the nsps, first synthesizes a
negative-sense single-stranded RNA ((−)ssRNA) from (+)ssRNA. RdRp then uses
(−)ssRNA as a template to synthesize the genomic RNAs for progeny viruses and
several short subgenomic RNAs.

5. The synthesized nucleocapsid proteins are bound to the genomic RNA. In addition,
various structural proteins are synthesized by translation of the subgenomic RNAs
and inserted into the endoplasmic reticulum membrane. The genomic RNA and nucle-
ocapsid protein complex is assembled with structural proteins (spike, membrane, and
envelope proteins) at the endoplasmic reticulum–Golgi intermediate compartment
(ERGIC) to form progeny viruses.

6. Progeny viruses are then released from the host cell through exocytosis.
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Therapeutic agents and vaccines against COVID-19 have been developed thus far.
One of the drug targets is RdRp [11,12]. The inhibition of RNA replications by therapeutic
agents is expected to inhibit viral replications. RdRp of SARS-CoV-2 is a complex of nsp7,
nsp8, and nsp12 [13–16]. The catalytic core of RdRp for the RNA replication is nsp12.
However, nsp12 alone shows little activity [17,18]. Other subunits, such as nsp7 and
nsp8, assist nsp12 as cofactors [17]. Nsp12 is a multidomain protein and has three main
domains: nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain (residues
1–250), interface domain (residues 251–397), and conserved polymerase domain (residues
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398–932) [19]. The polymerase domain consists of three subdomains: fingers, palm, and
thumb. In the polymerase domain, seven motifs A–G, form the binding site of RdRp. The
amino acids that constitute the domains and motifs are shown in Figure 2a.
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Figure 2. (a) Domains of SARS-CoV-2 nsp12 and motifs A–G. (b) The tertiary structure of SARS-CoV-
2 RdRp and (c) that of SARS-CoV RdRp. These structures were determined by cryo-EM. NiRAN,
interface, fingers, palm, and thumb domains are drawn in purple, green, orange, blue, and red,
respectively. These colors correspond to those shown in (a). Nsp7 and two nsp8s (nsp8-1 and nsp8-2)
cofactors are represented as pink, brown, and sand ribbons. Reproduced with permission from
Ref. [20]. Copyright 2021 Elsevier.

The tertiary structure of RdRp consisting of nsp7, nsp8, and nsp12 was determined
recently using cryogenic electron microscopy (cryo-EM), as shown in Figure 2b (Protein
Data Bank (PDB) entry: 7bv2) [13]. In addition to this structure, other structures have also
been reported. For example, the structure of RdRp bound to the RNA duplex [21], and
the structures with RNA duplex and nsp13 helicase [22] were determined. The structure
of RdRp in SARS-CoV-2 is almost identical to that of RdRp in SARS-CoV (Figure 2c, PDB
entry: 6nur) [18]. Their nsp12s show more than 96% sequence identity [15,19]. The amino-
acid sequences of these nsp12s are presented in Figure 3. Although the tertiary structures
and amino-acid sequences of both nsp12s are almost identical, it has been reported that
SARS-CoV-2 and SARS-CoV RdRps have different polymerase activities [23]. It has also
been shown that replacing nsp12 of SARS-CoV-2 RdRp with nsp12 of SARS-CoV RdRp
more than doubles polymerase activities.

In this review, we present computational molecular science studies on SARS-CoV-2
RdRp. This review is organized as follows. In Sections 2 and 3, we describe the simulation
studies that we have performed thus far on the dynamic properties and molecular recogni-
tion of RdRp. The difference in the activity of RdRp between SARS-CoV-2 and SARS-CoV
is expected to be caused by the difference in their dynamic properties because the static
properties, such as the tertiary structure, are almost the same. We introduce an all-atom
molecular dynamics (MD) simulation study to investigate the difference in fluctuations
of RdRp between SARS-CoV-2 and SARS-CoV in Section 2 [20]. Section 3 is devoted to
an all-atom MD simulation study that elucidated the ligand-recognition process of RdRp
in SARS-CoV-2 [24]. Nucleotide analogs such as remdesivir and favipiravir (brand name:
Avigan) are drugs that target RdRps of the virus. Remdesivir was developed by Gilead
Sciences (Foster City, CA, USA) originally for the Ebola virus disease [25]. Favipiravir
was developed as an anti-influenza virus agent by Toyama Chemical (Tokyo, Japan) [26].
These drugs are thought to interfere with the RNA replications by RdRp, which normally
recognizes nucleoside triphosphates (NTPs) such as adenosine triphosphate (ATP) for the
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RNA replication. Remdesivir is triphosphorylated (RemTP), and favipiravir is ribosylated
and triphosphorylated (FavTP) in cells. Chemical structures of RemTP, FavTP, and ATP
are illustrated in Figure 4. These forms are the active metabolite forms and are thought
to inhibit the RNA replications by RdRp [13,27–30]. Note that remdesivir and favipiravir
are not transformed to RemTP and FavTP directly but via several steps. Please refer to
Ref. [31] for remdesivir transformations and Refs. [26,32] for favipiravir transformations in
detail. We remark that RemTP should be referred to as GS-443902 [33], and FavTP should
be referred to as favipiravir-ribofuranosyl-5′-triphosphate [34]. However, they are called
RemTP and FavTP here for the sake of simplicity. In Section 4, we introduce various other
simulation studies on the complexes of SARS-CoV-2 RdRp with several nucleotide analogs
and discuss the molecular mechanisms by which these compounds inhibit the function of
RdRp. In addition to the nucleotide analogs, MD simulations of RdRp with nonnucleoside
antiviral compounds have been performed [35–40], but this review will focus on nucleotide
analogs. Section 5 is devoted to the conclusions.
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2. Difference in Dynamic Properties of SARS-CoV and SARS-CoV-2 RNA-Dependent
RNA Polymerases

In this section, we introduce the MD simulation study of RdRp, which has been
conducted to explore the reason for the difference in RdRp activities between SARS-CoV-2
and SARS-CoV. As mentioned in the Introduction, this difference is expected to be due
to the difference in their dynamic properties because the static properties, such as the
tertiary structure, of RdRps in SARS-CoV-2 and SARS-CoV are almost identical. It has been
shown experimentally that there is a difference in the melting temperature between the
two nsp12s [23]. However, the differences in the dynamic properties of the two RdRps had
not been studied at the atomic level. Therefore, we performed all-atom MD simulations for
RdRps of SARS-CoV-2 and SARS-CoV [20]. Note that the PDB structure of SARS-CoV-2
RdRp contains two Mg2+ ions that are essential for catalyzing RNA syntheses, while that of
SARS-CoV RdRp does not contain Mg2+ ions. However, we also investigated the difference
in dynamic properties with and without Mg2+ ions for SARS-CoV-2 RdRp, and we found
that the structure and dynamics of RdRp did not change with the presence of the ions. We,
thus, only present the results without Mg2+ ions here [20].

The cryo-EM structures of RdRp in SARS-CoV (PDB entry: 6nur) [18] and RdRp in
SARS-CoV-2 (PDB entry: 7bv2) [13] were used as the initial structures. Na+ ions were added
to neutralize the electric charge of the system. Water molecules were also included explicitly.
The Amber parm14SB force field [41] was applied to proteins and ions. The TIP3P rigid
body model [42] was used for water. The symplectic [43] quaternion scheme [44,45] was
employed for water molecules. The particle mesh Ewald (PME) method [46,47] was used
to calculate the electrostatic potential. MD simulations were performed in the isothermal–
isobaric ensemble at 310 K and 0.1 MPa for 150 ns. The temperature and pressure were
controlled using the Nosé–Hoover thermostat [48–50] and the Andersen barostat [51],
respectively. To perform MD simulations, the Generalized-Ensemble Molecular Biophysics
(GEMB) program was used. This program was developed by one of the authors (H. O.) and
has been used for several biomolecules [52–55]. For other details, please refer to Ref. [20].

We first calculated the formation probability of the secondary structure of RdRps
using the Define Secondary Structure of Proteins (DSSP) criteria [56]. We then calculated
the difference in the helix and β-strand formation probabilities between SARS-CoV and
SARS-CoV-2. Figure 5a shows the difference in helix formation of nsp12, and Figure 5b
shows the difference in β-strand formation. As highlighted by the green rectangles, the
helix and β-strand structures are broken at residues near residue 260 in SARS-CoV nsp12.
On the other hand, as highlighted by the brown rectangle, the residues near residue 515 of
SARS-CoV nsp12 form more helix structures than SARS-CoV-2 nsp12.

Next, the root-mean-square fluctuation (RMSF) was calculated to clarify the difference
in the fluctuations of nsp12s. Figure 6 shows the RMSFs of SARS-CoV nsp12 and SARS-
CoV-2 nsp12. The residues in the interface domain have large fluctuations in common to
SARS-CoV-2 and SARS-CoV, except for the N- and C-terminal regions. However, the RMSF
of SARS-CoV nsp12 differs from that of SARS-CoV-2 nsp12 near residues 515, 620, and
760, as indicated by the brown and green squares. The large fluctuations around residue
515 observed in SARS-CoV-2 nsp12 are suppressed in SARS-CoV nsp12. Parts of these
residues constitute motif G. In SARS-CoV nsp12, residues near residues 620 and 760 have
large fluctuations, and these residues exist in motifs A and C.
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Furthermore, to observe the tertiary-structure difference between SARS-CoV-2 nsp12
and SARS-CoV nsp12, the average distances between Cα atoms in nsp12s were calculated,
as shown in Figure 7a,b. We can see that the two systems have the following in common:
the NiRAN and palm domains are spatially close to each other, and the interface and
fingers domains are close to each other. To clarify the difference in the average distances
between SARS-CoV-2 nsp12 and SARS-CoV nsp12, we calculated the ratio of the difference
as follows: Dij =

(
d1

ij − d2
ij

)
/d1

ij, where d1
ij is the average distance between the Cα atoms

of residues i and j in SARS-CoV nsp12, and d2
ij is that in SARS-CoV-2 nsp12. The calculated

ratios for the two systems are shown in Figure 7c. The difference between nsp12s of SARS-
CoV-2 and SARS-CoV is observed in the region indicated by the brown square. Blue lines
(or blue meshes) are observed in residues around 430, 520, 560, 620, 690, 760, and 800.
These results mean that the distances between all motifs of nsp12 in SARS-CoV are shorter
than those of nsp12 in SARS-CoV-2. In particular, the distance between motifs F and G for
SARS-CoV is up to 63% shorter than that for SARS-CoV-2.
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Figure 7. The average distances between Cα atoms of nsp12 for (a) SARS-CoV-2 and (b) SARS-CoV.
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In addition, dynamic cross-correlation (DCC) was calculated to investigate the correla-
tion between domain motions. The DCC analysis is a useful tool to analyze domain motions
of biomolecules [57]. DCC between residues i and j is defined by

DCC(i, j) =
〈

∆qi·∆qj

〉
/
√〈

(∆qi)
2
〉〈

(∆qj)
2
〉

, where ∆qi = qi − 〈qi〉 and qi is the co-

ordinate vector of the Cα atom of residue i. DCCs of SARS-CoV-2 nsp12 and SARS-CoV
nsp12 are presented in Figure 8a,b. Here, red and blue indicate positive and negative
correlations, respectively. The fact that there is a positive (negative) correlation between
two residues indicates that the motions of these residues are in the same (opposite) direc-
tion. In both systems, positive correlations are found between most residues within the
same domains. However, there are both positive and negative correlations in the interface
domain of SARS-CoV nsp12. The boundary between these correlations is residue 330.
Residues before and after residue 330 in the interface domain are positively correlated with
the NiRAN domain and fingers domain, respectively. Figure 8c shows the difference in
DCC between SARS-CoV-2 and SARS-CoV nsp12s. As shown by the region surrounded by
the brown lines, the difference is larger in the NiRAN and interface domains. NiRAN and
interface domains before residue 330 have a strong negative correlation with the fingers
domain in SARS-CoV nsp12. That is, the regions before residue 330 move cooperatively
with the fingers domain, moving closer and further away from each other.
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The MD simulations described above show almost no differences in the tertiary struc-
tures of SARS-CoV nsp12 and SARS-CoV-2 nsp12 but some differences in their dynamic
properties. The secondary structure near residue 260 of SARS-CoV nsp12 tends to be more
broken than SARS-CoV-2 nsp12 (Figure 5). There are multiple substitutions in the residues
near residue 260, as shown in Figure 3, and these differences in residues are thought to
affect the stability of the secondary structure.

As shown in Figure 6, fluctuations of SARS-CoV nsp12 are suppressed around residue
515. This is because the residues near residue 515 form a helix structure, as shown in
Figure 5a. On the contrary, the residues that constitute motifs A and C have larger fluctua-
tions. In SARS-CoV-2 nsp12, fluctuations of the N-terminal residues before residue 100 are
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larger than the other residues. The structure of the N-terminal residues before residue 116
has not yet been determined in SARS-CoV nsp12, suggesting that the N-terminal residues
of SARS-CoV nsp12 also have large fluctuations. As shown in Figure 7c, the distances
between all motifs in SARS-CoV nsp12 are shorter compared to SARS-CoV-2 nsp12. This
fact may also enhance the RdRp activity of SARS-CoV. Furthermore, in SARS-CoV nsp12,
the NiRAN and fingers domains move cooperatively toward and away from each other;
because the removal of the NiRAN domain reduces the RdRp activity [58], the NiRAN
domain is important for the RdRp activities. The cooperative movement of the NiRAN
domain with the core (fingers) domain of RdRp may enhance the activity of RdRp.

3. “Bucket Brigade” in RdRp Ligand Recognition

In this section, we review the ligand binding to SARS-CoV-2 RdRp. Because RdRp
plays the most important role in the RNA replication, this protein is a promising drug
target for COVID-19. Nucleotide analogs such as remdesivir and favipiravir are considered
to compete with NTPs such as ATP to be taken up by RdRp and inhibit the RNA replication.
However, the process by which the drugs and NTPs are incorporated into RdRp had
been unclear. To clarify how RdRp takes up and recognizes the drugs and NTPs, we
recently performed all-atom MD simulations of RdRp with RemTP, FavTP, or ATP [24]. The
recognition ability of RdRp for each ligand was also clarified. Here, we explain this MD
simulation study [24].

For the initial conformation of RdRp, the cryo-EM structure of RdRp of SARS-CoV-
2 (PDB entry: 7bv2) was used [13]. Since one of the two nsp8s in this structure was
missing, nsp8 corresponding to chain D of apo RdRp (PDB entry: 7bv1) [13] was added.
One-hundred ligand molecules (either RemTP, FavTP, or ATP) were placed randomly
around RdRp at a distance of at least 50 Å from one of the two Mg2+ ions at the binding
site, as shown in Figure 9. Five initial conformations of each system were prepared by
changing random seeds for the ligand arrangement. To neutralize the electric charge of
the entire system, 415 Na+ ions were added. The Amber parm14SB force field [41] and
TIP3P parameter [42] were used for proteins and water molecules, respectively. Under
the periodic boundary conditions, long-range electrostatic interactions were calculated
using the PME method [46,47]. The MD simulations were performed using the AMBER18
program [59]. The production run was performed for 110 ns from each initial condition.
Fifty independent MD simulations were performed for each system with five different
initial conformations and 10 different initial velocities. The MD simulations were performed
at T = 310 K using the Langevin thermostat with a fixed volume.

As a result of the MD simulations, the ligands were taken up into the binding site of
RdRp in all three systems of RemTP, FavTP, and ATP. In other words, the ligand recognition
process by RdRp was observed. First, the ligand recognition probability was calculated, as
listed in Table 1, to clarify the ligand dependence of the ligand recognition by RdRp. The
ligand-recognition probability was calculated by dividing the number of MD simulations, in
which a ligand recognition event occurred, by the total number of MD simulations. RemTP
shows the highest probability, FavTP shows the second-highest probability, followed by
ATP, although within statistical errors. These results are in qualitative agreement with
previous experimental studies [13,60]. In addition, MD simulations of the RdRp-RemTP
complex using the free energy perturbation method showed that RemTP is bound more
strongly to RdRp than ATP [61], which is also consistent with the present results.
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Table 1. The number of MD simulations in which RdRp recognized the ligands out of the total 50
MD simulations. Ligand recognition probability is also listed. Reproduced with permission from Ref.
[24]. Copyright 2021 Biophysical Society.

Ligand Ligand Recognition/Total Ligand Recognition Probability

RemTP 12/50 0.24 ± 0.07
FavTP 9/50 0.18 ± 0.06
ATP 7/50 0.14 ± 0.06

Next, to understand the mechanism of the ligand recognition by RdRp, the trajectories
of the recognized ligands were examined. As a result, an interesting path was observed in
which the lysine residues of RdRp carry ligands to the binding site like a “bucket brigade,”
as shown in Figure 10. In this path, the phosphate groups of the ligands contacted LYS2
and LYS43 of nsp7 and LYS551, LYS621, and LYS798 of nsp12. Because nsp12 and nsp7
correspond to chain A and chain C, respectively, in the cryo-EM structure of the original
PDB, the residues are expressed here as “chain label + residue number + residue name,”
as written in Figure 10. These lysine residues have a positive charge, of which C2LYS,
C43LYS, and A551LYS are in a line toward the binding site. In this process of ligand
transportation, the phosphate groups of RemTP first interact with the side chain of C2LYS
(state 1 (S1), Figure 10b). C2LYS passes RemTP to C43LYS, which is spatially close (state 2
(S2), Figure 10c). C43LYS then passes RemTP to A551LYS (state 3 (S3), Figure 10d). RemTP
finally reaches the binding site (state 4 (S4), Figure 10e). The ligand also interacts electrically
with A621LYS and A798LYS at the binding site. These residues are located near the binding
site. A similar process was also observed in the FavTP and ATP systems. Another path has
been found in which the ligand is transported to the binding site like a bucket brigade. For
details, please refer to Ref. [24].
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Figure 10. (a) “Bucket brigade” trajectory of RemTP recognized by RdRp. The black circles mean
the positions at which RemTP has contact with RdRp residues. (b–e) Typical snapshot at each state
(S1–S4). In (b–e), the lysine residues that contributed to the ligand recognition and RemTP are
expressed as blue and red stick models, respectively. Reproduced with permission from Ref. [24].
Copyright 2021 Biophysical Society.

These positively charged basic residues have been reported to be favorable for the
NTP recognition [13,15]. Furthermore, the lysine residues, A551LYS, A621LYS, A798LYS,
C2LYS, and C43LYS, which contribute to the bucket-brigade ligand transportation, are
highly conserved in RdRp of SARS-CoV [18]. Therefore, we think that for both SARS-CoV-2
and SARS-CoV RdRps, these linearly arranged lysine residues carry NTPs to the binding
site, thereby enhancing the NTP recognition ability of RdRp.

In addition to the bucket-brigade path of the ligand transport, we also found a path
where the ligand reaches the binding site directly without interactions with any residues
of RdRp (Figure 11). This path is the simplest process for the ligand recognition. The
phosphate groups of the ligand are attracted to the two Mg2+ ions at the binding site by the
electrostatic interaction. This path, as well as the bucket-brigade path, was observed in all
ligand systems, suggesting that this is also one of the major ligand-recognition processes.

These paths are common to all ligands, but other ligand-specific paths were also found.
In these paths, residues other than the positively charged residues near the binding site are
involved in recognizing the ligands by RdRp. However, these paths may be minor because
they are not common to all ligands.
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4. Molecular Simulation Studies on Inhibition Mechanisms of Nucleotide Analogs
against the SARS-CoV-2 RdRp Function
4.1. SARS-CoV-2 RdRp with Remdesivir in the Triphosphate Form

Experimental studies have shown that remdesivir is converted to the active triphos-
phate form (RemTP) by intracellular metabolism to be recognized by RdRp as a nucleotide
analog [13,28,29]. It is important to understand the mechanism by which RemTP is bound
to RdRp and inhibits the RNA replications. Zhang and Zhou performed MD simulations
and free energy perturbation (FEP) calculations to examine the binding and inhibition
mechanisms of RemTP against SARS-CoV-2 nsp12 [61]. They reported that RemTP was
bound to nsp12 at about 100 times stronger in terms of the Kd value than ATP and suggested
that RemTP replaces ATP and efficiently stops the RNA replications. Srivastava et al. per-
formed a comparative simulation study of the apo-form of RdRp and the complex of RdRp
with remdesivir, remdesivir monophosphate, or RemTP to understand the mechanism
of the RdRp inhibition by RemTP [62]. They revealed that RemTP specifically interacted
with the seven basic residues: LYS545, ARG553, ARG555, LYS621, ARG624, LYS798, and
ARG836. They also identified three residues, SER549, ASP618, and PRO620, as the key
contributors to RemTP binding. They suggested that the favorable binding of RemTP
to these residues, especially LYS545, ARG553, and ARG555, interferes with the entry of
new NTPs, which possibly perturbs the replication cycle. Romero et al. studied how
RemTP is bound and inserted to the SARS-CoV-2 RdRp binding site with an RNA duplex
using targeted MD simulations and umbrella sampling in comparison with ATP [63]. They
reported that the insertion barrier for RemTP was ~1.5 kcal/mol and was lower than the
barrier associated with the ATP insertion (2.6 kcal/mol). They also identified the residues
involved in stabilizing the initial base stacking of RemTP with the template nucleotide and
distinguishing between RemTP and ATP. Luo et al. performed MD simulations to elucidate
the nascent-RNA-synthesis inhibition mechanism by remdesivir embedded in the template
strand (T-Rem) [64]. It has been shown that T-Rem inhibits the synthesis of the nascent
RNA strand [65]. They revealed that when T-Rem was at the binding site, the translocation
of T-Rem was hampered by the hydrogen-bond formation between the 1′-cyano group of
T-Rem and the backbone of GLY683 and the steric clash between the 1′-cyano group and
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the backbone of SER682. Olotu et al. reported the different binding behavior of RemTP
and ATP to RdRp using MD simulations and molecular mechanics Poisson-Boltzmann
surface area (MM-PBSA) calculations [66]. In addition to the higher affinity of RemTP for
nsp12 than that of ATP, they found the novel mechanism that RemTP disintegrated RdRp,
starting with the detachment of the nsp8-nsp7 heterodimer.

Zhang et al. examined how remdesivir integrated into the nascent RNA strand (N-
Rem) inhibited RdRp from adding nucleotides to the strand [67]. They found that N-Rem
could not impair the next nucleotide addition at the binding site of RdRp. However, they
also revealed that N-Rem led to a delayed chain termination, where the translocation of
the nascent RNA strand is terminated once three nucleotides were added after the RemTP
incorporation. It was clarified that the forward translocation of the nascent RNA strand was
impeded by the electrostatic repulsion between ASP865 and the 1′-cyano group of N-Rem as
well as the steric clash between SER861 and the 1′-cyano group in a position where N-Rem
reaches after three nucleotide incorporations. They also found that N-Rem at this site greatly
weakened the hydrogen bonds of base pairs with its template uracil due to the electrostatic
attraction between LYS593 and the 1′-cyano group. Their simulation study showed that the
1′-cyano group on the ribose was essential for remdesivir to inhibit the RNA replication by
RdRp. Naseem-Khan et al. reported that the translocation of N-Rem was inhibited by the
steric repulsion with SER861 using MD simulations [68]. Furthermore, the simulation study
performed by Byléhn et al. showed base-pair hydrogen-bond interactions between template
uracil and N-Rem weakened at three nucleotides upstream rather than at the 3′ terminal of
the nascent RNA strand due to the strong electrostatic attraction between LYS593 and the
1′-cyano group of N-Rem [69]. Both Naseem-Khan et al. [68] and Byléhn et al. [69] also found
that the overall structure of RdRp was destabilized by the uptake of remdesivir.

Using MD simulations and quantum mechanics/molecular mechanics (QM/MM)
simulations for SARS-CoV-2 RdRp with an RNA duplex, Aranda et al. reported the detailed
mechanisms of the binding and incorporation of natural nucleotides and RemTP [70]. They
revealed that SARS-CoV-2 RdRp made use of a self-activated mechanism where the gamma-
phosphate group of a pyrophosphate molecule deprotonated the hydroxylic 3′ terminal to
generate the nucleophile that participated in the subsequent incorporation of a nucleotide.
They also found that RemTP was preferentially bound to RdRp over ATP, while it was
incorporated into the nascent RNA strand with an efficiency only slightly lower than ATP:
the activation barrier of the phosphodiester bond formation was 16.2 kcal/mol for ATP and
was 17.4 kcal/mol for RemTP. In addition, they reported that, unlike the results obtained
through simulation studies by Zhang et al. [67] and Naseem-Khan et al. [68], no steric
clash was detected between N-Rem and the residues of RdRp (especially SER861) when
the nascent RNA strand was translocated along the exit channel. Instead, they found that
N-Rem was trapped at a position where the three nucleotides were incorporated after
RemTP. Therefore, they suggested that either non-covalent or transient-covalent bonds
between the 1′-cyano group of N-Rem at this position and hydroxyl group of SER861
could act as a trap for the nascent RNA strand and stall the translocation of the duplex by
stabilizing N-Rem.

4.2. SARS-CoV-2 RdRp with Other Nucleotide Analogs

Many simulation studies have been conducted on the inhibition mechanism of the
RdRp function by nucleotide analogs other than remdesivir. Ribavirin 5′-triphosphate
and FavTP were identified as promising nucleotide analogs using molecular docking,
molecular mechanics Generalized Born surface area (MM-GBSA) calculations, and MD
simulations [71]. Defant et al. synthesized several nucleoside-like compounds from a
cellulose pyrolysis product and identified a nucleotide analog among those compounds
that was more promising as RdRp inhibitors than remdesivir by molecular docking and MD
simulations [72]. Sonousi et al. [73] and Elfiky et al. [74] identified several ATP derivatives
and guanosine triphosphate (GTP) derivatives that had stronger affinities for RdRp than
RemTP using molecular docking, MM-GBSA calculations, and MD simulations. Arba et al.
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performed molecular docking, MD simulations, and MM-PBSA calculations to study the
binding mode and binding affinities of 3′ modified analogs of RemTP for nsp12 with an
RNA duplex [75]. They reported that the RemTP analogs were bound to the nascent RNA
strand in similar poses as that of RemTP with much higher affinities. They also found that
the electrostatic contribution was the dominant factor in enhancing the binding affinity.

Yuan et al. investigated the incorporation efficiency and inhibitory effect of nucleotide
analogs with various 2′ modifications against SARS-CoV-2 RdRp using MD simulations
and FEP methods [76]. The nucleotide analogs included 2′-O-methyl uridine triphos-
phate (OMU-TP), sofosbuvir triphosphate (SFU-TP), 2′-C-methyl cytidine triphosphate
(CMC-TP), Gemcitabine triphosphate (GMC-TP), and ara-uridine triphosphate (ARU-TP).
Previous experimental studies reported that three of these, OMU-TP, SFU-TP, and CMC-TP,
act as effective inhibitors, while GMC-TP and ARU-TP have no inhibitory effects [77–79].
Their simulation results showed that the five nucleotide analogs were effectively bound
to RdRp with comparable binding affinities and were incorporated into the nascent RNA
strand. They also revealed that OMU decreased the binding probability of the subsequent
NTP and consequently caused partial chain terminations due to the steric hindrance by
its 2′-O-methyl modification. In addition, it was found that the bulky 2′-methyl substitu-
tions in SFU and CMC largely disrupted the binding site, leading to the immediate chain
termination. In contrast, GMC and ARU, which have smaller 2′ substitutions such as the
fluorine atoms and ara-hydroxyl group, showed marginal effects on the polymerization
process upon the incorporation. Their simulation results were consistent with previous
experimental results [77–79] and elucidated the detailed inhibition mechanisms of 2′ sub-
stituted nucleotide analogs against SARS-CoV-2 RdRp. Another simulation study also
indicated the effectiveness of adding a bulky group at the 2′ position of the ribose ring to
improve the inhibitory effects of nucleotide analogs [74].

Li et al. systematically investigated the inhibitory effects of ATP analogs possessing
2′ or 3′ ribose modifications against SARS-CoV-2 RdRp using MD simulations and FEP
methods [80]. The analogs included clofarabine triphosphate (COP), didanosine triphos-
phate (DIP), fludarabine triphosphate (FLP), vidarabine triphosphate (VDP), 2′-amino-2′-
deoxyadenosine triphosphate (BNP), 2′,3′-didehydro-2′,3′-dideoxyadenosine triphosphate
(STP), and cordycepin triphosphate (CRP). Among them, COP, FLP, VDP, and BNP are the
2′ modified analogs, CRP is the 3′ modified analog, and DIP and STP are the 2′ and 3′ mod-
ified analogs. They found that clofarabine and fludarabine could not form stable binding
at the binding site and only had a minor effect on the next nucleotide incorporation into
the nascent strand. It was also clarified that vidarabine and 2′-amino-2′-deoxyadenosine
could not efficiently inhibit the incorporation of the next substrate, although they could
be incorporated into the nascent strand as the substrate. Didanosine, 2′,3′-didehydro-2′,3′-
dideoxyadenosine, and cordycepin could also be incorporated into the nascent strand and
had the capability to terminate the next nucleotide addition while STP was less competitive
than the other two analogs. Therefore, they concluded that substituting the 3′-hydroxyl
group with one hydrogen atom would inherently inhibit the next nucleotide addition when
it appears at the 3′ terminal of the nascent strand. They proposed that cordycepin and
didanosine were promising nucleotide analogs as immediate terminators.

4.3. Overview and Perspective of Molecular Simulations on SARS-CoV-2 RdRp with
Nucleotide Analogs

NTPs and nucleotide analogs are integrated into the nascent RNA strand through a
nucleotide-addition cycle consisting of initial binding to RdRp, uptake into the binding site,
catalytic production of nucleotide monophosphate and pyrophosphate, the release of pyrophos-
phate, the formation of a covalent bond between nucleotide monophosphate and the 3′ end of
the nascent RNA strand, the base pairing with the template strand, and the translocation of the
RNA double strand. Nucleotide analogs inhibit the RNA replications by interfering with the
addition of the next nucleotide (immediate chain termination) [77] or by interfering with the
translocation of the nascent RNA strand after the incorporation of three nucleotides (delayed
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chain termination) [60]. It was shown that nucleotide analogs embedded in the template strand
also inhibit the RNA replications (template-dependent inhibition) [65]. The simulation studies
reviewed here elucidated the atomic level mechanisms of the delayed chain termination of
remdesivir, immediate chain termination of 2′ and 3′ modified nucleotide analogs, and template-
dependent inhibition of remdesivir. Furthermore, these simulation studies also suggested more
promising nucleotide analogs for inhibiting the function of RdRp than remdesivir [72–75]. All
simulation studies focused on the situation after NTPs or nucleotide analogs are incorporated
into the binding site of RdRp. On the other hand, our simulation study described in Section 3 [24]
focused on the process by which ligands far from RdRp were incorporated into the binding
site and revealed the bucket-brigade transport mechanism of NTPs and nucleotide analogs by
lysine residues of RdRp. Overall, the simulation studies described in this review help us in
enhancing the understanding on how nucleotide analogs are recognized by RdRp and inhibit
the RNA replication at the atomic level.

5. Conclusions

Molecular dynamics (MD) simulation is one of the powerful theoretical methods,
which can reveal biomolecular properties such as structure, fluctuations, and ligand bind-
ing in atomic detail. This review article presented recent MD simulation studies on these
biomolecular properties of RNA-dependent RNA polymerase (RdRp), which is a multido-
main protein, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the
inhibition mechanism of nucleotide analogs against RdRp. First, we reviewed the multipli-
cation mechanism of SARS-CoV-2 and described the role of RdRp, which is composed of
viral nonstructural proteins (nsps), nsp7, nsp8, and nsp12 [13–18,81]. RdRp normally rec-
ognizes nucleoside triphosphates (NTPs) such as adenosine triphosphate (ATP) to replicate
RNA. The catalytic core of RdRp for the RNA replication is nsp12. SARS-CoV-2 nsp12 and
SARS-CoV nsp12 show more than 96% sequence identity [15,19]. In addition, the tertiary
structures of both nsp12s determined by cryogenic electron microscopy are almost the same.
However, it has been reported that nsp12s of SARS-CoV-2 and SARS-CoV have different
polymerase activities [23]. Replacing only nsp12 of SARS-CoV-2 with that of SARS-CoV,
the activity of SARS-CoV-2 RdRp increases more than twice [23]. Since the static properties
are almost the same between SARS-CoV-2 and SARS-CoV nsp12s, it is expected that a
difference in their dynamic properties may cause an activity difference.

We introduced MD simulations of RdRps of SARS-CoV-2 and SARS-CoV, which were
performed to investigate the difference in their dynamic properties. The MD simulations
showed that the dynamic properties of SARS-CoV and SARS-CoV-2 nsp12s are different
from each other: in SARS-CoV nsp12, the fluctuations near the residues that constitute
motifs A and C are larger, and motifs A–G are closer to each other. Furthermore, the
NiRAN and fingers domains move cooperatively in SARS-CoV nsp12. These differences
may cause the difference in the activity of the two nsp12s. It has also been experimentally
shown that the melting temperatures of these two nsp12s are different. Generalized-
ensemble algorithms [82,83], such as replica exchange [84–86] and replica permutation
methods [87–90], will be useful for future studies of the melting process.

We then presented an MD simulation study on SARS-CoV-2 RdRp and three ligands,
GS-443902 (RemTP), favipiravir-ribofuranosyl-5′-triphosphate (FavTP), and ATP to clarify
the recognition mechanism of these ligands. It was found that the recognition probability of
RemTP is the highest, that of FavTP is the second highest, and that of ATP is the lowest. In
addition, the “bucket-brigade” ligand-transport mechanism in the RdRp ligand recognition
was discovered, in which these ligands are transported to the binding site by several lysine
residues in a line. The lysine residues that interact with the phosphate groups of the ligands
include LYS2 and LYS43 of nsp7, and LYS551, LYS621, and LYS798 of nsp12. On the other
hand, there is another path in which the ligands directly reach the binding site without
contacting any amino-acid residues of RdRp. The direct uptake of the ligands by RdRp
means that RdRp can recognize NTPs without using the bucket-brigade mechanism by
the lysine residues. RdRp has the lysine residues in a line toward the binding site as if
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it were extending its tentacles, thereby increasing the efficiency of the NTP recognition.
These results are expected to contribute to understanding the efficient NTP recognition
by RdRp and to developing drugs that inhibit the RdRp function. The residues identified
in the simulations as contributing to the NTP recognition are well conserved in RdRp of
SARS-CoV [18]. Therefore, we can extend these results to the NTP recognition mechanisms
in other RNA viruses with similar RdRp to SARS-CoV-2.

This simulation study [24] revealed the process by which ligands far from RdRp
were incorporated into the binding site. In addition, several MD simulations have been
performed on SARS-CoV-2 RdRp after NTPs or nucleotide analogs were recognized, as
reviewed in Section 4. These simulation studies have elucidated the mechanisms of the
delayed chain termination of remdesivir, immediate chain termination of 2′ and 3′ modified
nucleotide analogs, and the template-dependent inhibition of remdesivir.

In this manner, the MD simulations have provided valuable insights at the atomic level
into the fundamental properties of apo RdRp and a sequence of the mechanisms from the
uptake of NTPs or nucleotide analogs by RdRp to the inhibition of the RdRp function by
nucleotide analogs, leading to the design of more promising drugs than remdesivir. We
hope that MD simulations will be utilized more as effective tools for the detailed analysis
of the functions of proteins involved in the SARS-CoV-2 replication and the development of
therapeutically more effective drug compounds to contribute to the convergence of COVID-19.
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