
RESEARCH ARTICLE

metagene Profiles Analyses Reveal
Regulatory Element’s Factor-Specific
Recruitment Patterns
Charles Joly Beauparlant1,2☯, Fabien C. Lamaze1,3☯, Astrid Deschênes1, Rawane Samb1,
Audrey Lemaçon1, Pascal Belleau1, Steve Bilodeau1,3,4, Arnaud Droit1,2*

1Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada, 2Département de
Médecine Moléculaire, Faculté de médecine, Québec, Canada, 3 Centre de Recherche sur le Cancer de
l’Université Laval, Québec, Québec, Canada, 4 Département de Biologie Moléculaire, Biochimie Médicale et
Pathologie, Faculté de médecine, Québec, Canada

☯ These authors contributed equally to this work.
* Arnaud.Droit@crchudequebec.ulaval.ca

Abstract
ChIP-Sequencing (ChIP-Seq) provides a vast amount of information regarding the localiza-

tion of proteins across the genome. The aggregation of ChIP-Seq enrichment signal in a

metagene plot is an approach commonly used to summarize data complexity and to obtain

a high level visual representation of the general occupancy pattern of a protein. Here we

present the R packagemetagene, the graphical interface Imetagene and the companion

package similaRpeak. Together, they provide a framework to integrate, summarize and

compare the ChIP-Seq enrichment signal from complex experimental designs. Those pack-

ages identify and quantify similarities or dissimilarities in patterns between large numbers of

ChIP-Seq profiles. We usedmetagene to investigate the differential occupancy of regula-

tory factors at noncoding regulatory regions (promoters and enhancers) in relation to tran-

scriptional activity in GM12878 B-lymphocytes. The relationships between occupancy

patterns and transcriptional activity suggest two different mechanisms of action for tran-

scriptional control: i) a “gradient effect” where the regulatory factor occupancy levels follow

transcription and ii) a “threshold effect” where the regulatory factor occupancy levels max

out prior to reaching maximal transcription.metagene, Imetagene and similaRpeak are
implemented in R under the Artistic license 2.0 and are available on Bioconductor.

This is a PLOS Computational Biology Software paper.

Introduction
Understanding the global regulation of gene expression programs is an important goal of func-
tional genomics studies. To this end, it is now standard procedure to survey the occupancy of
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regulatory proteins genome-wide using chromatin immunoprecipitation coupled with mas-
sively parallel sequencing (ChIP-Seq) [1]. Affordability and accessibility of the technique are
now generating more complex experimental designs containing many samples, treatments,
controls comparisons and technical replicates. Furthermore, the abundance of public datasets,
such as those provided by the ENCODE [2] and Roadmap Epigenomics [3] consortiums, pro-
vides a wealth of information. Unfortunately, the integration of large amounts of ChIP-Seq
information remains challenging.

In a typical ChIP-Seq analysis, reads are first aligned using an aligner of choice and peaks
are called using peak calling algorithms, such as MACS [4] or PICS [5], to obtain a list of occu-
pied regions. Then, these regions are annotated to genes [6] and/or used to search for DNA
binding motifs [7]. In addition, tools were developed to quantitatively compare regions from
ChIP-Seq experiments in order to define regions with differential binding between conditions
[8]. The algorithms and models used to manage background, to normalize read counts and to
estimate the reads distribution across the genome are the main differences between the differ-
ent methods. While these tools allow the discovery of regions that are differentially occupied
by a factor of interest, they are unable to evaluate differences in the general occupancy patterns
of DNA-binding proteins. Furthermore, they rely on the peak calling step which varies greatly
based on the algorithm or the parameters used [9].

Current approaches to compare and summarize enrichment signals for groups of regions
rely on visual representations of the average enrichment at a specific position. These represen-
tations are known as metagene plots (also referred to as meta-gene [10] or aggregation plots
[11]). To compare multiple samples, many tools implemented reads per million aligned [11,
12] or quantile [13, 14] normalizations. The addition of confidence intervals (represented as
ribbons) based on standard errors (of mean or of percentiles) in ngs.plot [12], on bootstrap
approaches in ChIPseeker [15] or as standard error in seqPlots [13] improved the prediction of
the mean. However, while confidence intervals are effective tools to estimate the range within
which the true mean is likely to lie, profile comparisons require statistical testing. In addition,
valuable information embedded in the enrichment profiles such as the position of the binding
event inside the region or the presence of a specific pattern notwithstanding its amplitude is
currently ignored. Therefore, representation tools enabling a quantitative assessment and
robust statistical comparisons of metagene profiles are needed.

We developed themetagene package to quantitatively compare enrichment profiles of group
of regions. Specifically, this package is designed to 1) facilitate the integration of signal frommany
datasets linked by complex experimental designs, 2) statistically compare the enrichment profiles
of groups of genomic regions and 3) provide visual representations of the data to facilitate inter-
pretation. Here we used themetagene package to investigate how regulatory factors contribute to
the transcriptional output of noncoding regulatory regions. Indeed, recruitment of regulatory fac-
tors to noncoding regulatory regions, including enhancer and promoter regions, modulates the
transcriptional response of each gene. Using themetagene and similaRpeak package, we identified
the similarities and dissimilarities in the recruitment patterns of these factors at enhancer and
promoter regions. Our results demonstrate that there are two distinct mechanisms of action for
transcriptional regulators. Indeed, we discovered that the level of the regulatory factors either cor-
relates with the transcriptional activity or saturates prior to maximal transcriptional activity of
the regulatory region. We termed those patterns “gradient effect” and “threshold effect”.

Design and Implementation
Themetagene package builds upon Bioconductor scalable data structures for representing
annotated ranges on the genome [16]. Additionally, to efficiently import large datasets,
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metagene supports the most common genomic file formats such as bam, bed and narrowPeak/
broadPeak. The number of files used in a single analysis is only limited by the computer mem-
ory available. To reduce memory usage,metagene produces coverages only for the genomic
regions of interest and stores this information in Run-length encoding. It is possible to com-
pare multiple region groups and multiple experiments in a single analysis. To increase the ana-
lytical power,metagene uses the controls to estimate the signal-to-noise ratio and remove
background signal. The datasets are also normalized for an accurate comparison. Furthermore,
the directionality of the genomic regions (i.e. the strand) is usable to highlight asymmetric
enrichment patterns. In the final graphical output, the metagene plot, each curve summarizes
the information of multiple genomic regions (termed region groups) from a single experiment.
When used with the similaRpeak package, our approach allows the comparison of multiple
samples and gives the possibility to statistically compare the results with metrics adapted to dif-
ferent profile features. The Imetagene package offers a simple graphical interface to manage
complex experimental designs. A workflow of a typicalmetagene analysis is provided in Fig 1.

In order to quantitatively compare different experiments, it is crucial to take into account
the signal-to-noise ratio and to normalize samples. Indeed, the ChIP-Seq signal is a mixture of
legitimate signal and noise. The experimental noise is influenced by biological factors such as
the GC content and the chromatin structure [17] and by technical factors such as the antibody
quality, the cell number, the DNA fragmentation and the library construction [18]. A common
approach to separate true signal from noise is to use controls. Ideally, the controls should be
normalized to fit only with the noise component of the chip signal since only this part of the
signal will follow the same distribution [19]. In order to normalize the controls before subtract-
ing the background,metagene uses the Normalization of ChIP-seq (NCIS) approach [20] to
calculate the signal to noise ratio. This approach performs well on ChIP-Seq datasets [19] and
is readily available in R (Fig 2A and 2B show the effect of noise reduction). If multiple samples
are compared together, they should be normalized to take into account the difference in library
sizes. This is performed inmetagene by converting the raw coverage values in read per millions
aligned. It is also possible to change the orientation of each genomic region on the negative
strand to represent every region in the 5’!3’ orientation. The profile of each group defined in
the design is calculated using either an average or median profile, as specified by the user. A
confidence intervals of the estimators (mean or median) is computed at each base pair using
bootstraps (1000 times by default) for each group profile. To reduce the effects of extreme cov-
erage values, a data binning strategy with customizable bin sizes, is applied before bootstrap-
ping. Visually, the confidence interval is represented by a ribbon which includes an editable
percentage (default 95%) of the sampled values (see S1 Text for more information on the boot-
strap approach implemented inmetagene). Using the Imetagene package, it is also possible to
preview the regions as an interactive heatmap (S1 Fig).

A unique feature of themetagene package is the implementation of a statistical comparison
between profiles to detect differential enrichment. The comparison is done through a permuta-
tion test using metrics which are specified by the user that is not related to the confidence inter-
vals calculated with bootstrapping. For each round of the permutation test, the metric value is
calculated using two profiles obtained by randomly sampling the coverages used to compute
the original profiles. The proportion of metric scores above the original score is used to calcu-
late a p-value and determine if two profiles are significantly different (see S1 Text for more
details). By enabling the use of a diversity of metrics, the statistical comparison can be tailored
to fit custom needs. To facilitate the identification of common patterns between two ChIP-Seq
profiles, similaRpeak is proposed as a companion package tometagene. The similaRpeak pack-
age implements six pseudometrics specialized in pattern similarity detection (Fig 2C). The pro-
file submitted to each pseudometric must respect certain editable criterias, specific to each
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pseudometric, to ensure that the calculation of the pseudometric is only made in presence of
informative peaks and to limit the computation of extreme values. A description of each pseu-
dometric is available in S2 Table. Lastly, we developed a graphical user interface powered by
Shiny [21], Imetagene. This graphical interface was developed to facilitate the use ofmetagene
without R programming experience. Taken together, this set of software is used to quickly
compare multiple region groups to discover enrichment patterns that would otherwise be
missed when looking at individual regions.

Results
Proper spatiotemporal transcription requires the complex interplay of transcription factors,
cofactors and chromatin regulators at noncoding regulatory regions [22, 23]. Indeed, enhancer
and promoter regions recruit regulatory factors to modulate the recruitment, initiation, pause-
release and elongation of the RNA polymerase II (Pol II) [24, 25]. During the transcriptional
process, both enhancer and promoter regions are transcribed [26–28]. Here we use the

Fig 1. metageneworkflow. Ametagene analysis requires 3 types of inputs: 1) a list of genomic regions (BED
or GRanges formats), 2) alignment files (BAM format) and 3) a design sheet (data frame format) explaining the
relations between samples. The alignment files are processed to extract the coverages of every genomic
regions. Afterward, the background is removed from the coverages and the signal is normalized (reads per
millions aligned or RPM) to allow comparison between samples. The main output is the metagene plot. The
other outputs are the curve values and confidence intervals (CI) used to produce the plot and an interactive
heatmap with Imetagene. The results are compatible with similaRpeak for profile characterization.

doi:10.1371/journal.pcbi.1004751.g001
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Fig 2. Impact of noise removal and description of the pseudometrics.Metagene plots of the BCL11A transcription factor (A) with noise
removal using the NCIS algorithm and (B) without noise removal. The x-axis is centered on enhancers and promoters ±1000bp. The y-axis
represents the mean occupancy normalized in reads per million (RPM). Each line represents the mean occupancy of the BCL11A replicates.
Groups of transcriptional activity of enhancers or promoters are identified by different colors (red = no CAGE signal; green = low CAGE
signal; blue = moderate CAGE signal; purple = high CAGE signal; see S1 Text). Ribbons represent the 95% confidence interval of the mean
calculated using 1000 bootstraps. (C) Description of some of the pseudometrics implemented in the similaRpeak packages.

doi:10.1371/journal.pcbi.1004751.g002
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metagene package to correlate the recruitment of regulatory factors at enhancer and promoter
regions with their transcriptional output.

Data collection andmetagene analyses
To define the contribution of transcription factors and cofactors to the transcriptional activity
of promoters and enhancers, we gathered the publically available data generated in GM12878
B-lymphocytes (106 available experiment datasets; 276 alignment files, information in S1
Table). Promoters regions were obtained using the Bioconductor’s TxDb.Hsapiens.UCSC.
hg19.knownGene package [16] and enhancers were downloaded from the Fantom5 database
[29]. Robust enhancer and promoter regions were defined by regions with at least one robust
transcription start site (TSS) in the Fantom5 database. Finally, the regions were stratified into
four groups based on their cap analysis of gene expression (CAGE) levels [28]: “no expression”,
“low expression”, “moderate expression” and “high expression” (see S1 Text).

Pol II and the general transcription factors levels correlate with
transcriptional activity
To validate our transcriptional stratification of enhancers and promoters, we surveyed the
occupancy of total Pol II and the general transcription factors (GTFs), in function of the tran-
scriptional activity [30–32]. As expected, transcriptional levels of enhancer and promoter
regions correlated with recruitment of Pol II (Fig 3A and S2 and S3 Figs), TAF1 (Fig 3B), and
TBP (S4 Fig). Histone marks associated with active enhancers (H3K27ac) and with active pro-
moters (H3K4me3) showed a similar pattern (S5 Fig). The RATIO INTERSECT pseudometric,
which calculates the ratio of the area under the intersection of two profiles with the total area,
was used to compare the coverage between each group (S3 Table). The pseudometric value
tends to 1 as the similarity between profiles increases. The statistical analyses confirmed that
an increase in transcriptional activity correlates with an increase in the Pol II machinery (per-
mutation p-value<0.001). In addition, the GTFs followed the same correlation with transcrip-
tional activity. These results demonstrate thatmetagene and similaRpeak are able to distinguish
patterns associated with different levels of transcription activity in a large number of samples
by using robust metrics. Together, they offer an excellent tool to investigate the relationship
between recruitment of regulatory factors and transcriptional activity.

Differential recruitment of regulatory factors at promoter and enhancer
regions
While Pol II and GTFs activities are directly linked to the transcriptional output, the impor-
tance of each individual regulatory factor for the transcription process is not well understood.
To assess the quantitative recruitment of transcription factors, cofactors and chromatin regula-
tors at cis-regulatory elements as a function of the transcriptional activity, we evaluated the
occupancy of regulatory factors, histone modifications and DNAse hypersensitive sites in
GM12878 cells. Interestingly, we observed two distinct recruitment patterns at promoter and
enhancer regions. Indeed, a “gradient effect” was observed when the occupancy level of a factor
correlated with the transcriptional activity (Fig 3A and 3B) while a “threshold effect” refers to
factors reaching a plateau in their occupancy prior to maximal transcriptional activity (Fig 3C).
We defined a “threshold effect” as a ratio between the intersection area and the total area of the
two profiles (RATIO INTERSECT) superior or equal to 0.85 between the high and moderate
CAGE signal group. Overall, 44.6% of factors showed a “threshold effect” at enhancer regions
while only 19.8% were observed at promoter regions (S6 Fig; p-value = 0.0048, Welch’s Two
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Fig 3. Metagene profiles in enhancer and promoter regions. (A) POLR2A, the largest subunit of Pol II. (B)
TAF1, a general transcription factor. (C) ELF1, a transcription factor. The x-axis is centered on enhancers
and promoters ±1000bp. The y-axis represents the mean occupancy normalized in reads per million (RPM).
Each line represents the mean occupancy of the factor replicates. Groups of transcriptional activity of
enhancers or promoters are identified by different colors (red = no CAGE signal; green = low CAGE signal;
blue = moderate CAGE signal; purple = high CAGE signal). The ribbons represent the 95% confidence
interval of the mean calculated using 1000 bootstraps.

doi:10.1371/journal.pcbi.1004751.g003
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Sample t-test). For example, the transcription factor ELF1 levels correlated with the transcrip-
tional activity at promoters regions (RATIO INTERSECT = 0.66), but not at enhancers regions
(RATIO INTERSECT = 0.88) (Fig 3C). A total of 35 regulatory factors including IRF3 and
IRF4 (involved in interleukin regulation [33, 34]) and cofactors like SMC3 and EP300 (S7 and
S8 Figs) were identified with a similar dichotomy (see S3 Table for a complete list). These
results highlight a differential requirement of regulatory factors at enhancer and promoter
regions in relation to transcriptional activity.

Threshold versus gradient effects
Differential recruitment of regulatory factors at promoter and enhancer regions raises mecha-
nistic questions. We are proposing different models to explain the “gradient” and “threshold”
effects. For the “threshold effect”, mostly observed at enhancer regions, the regulatory factors
are potentially working as “on/off” switches. In that model, once a predetermined level is
achieved for a specific transcription factor or cofactors, the transcriptional contribution is max-
imized (Fig 3B, S7 and S8 Figs and S3 Table). Extrapolation of this model suggests that an accu-
mulation of different regulatory factors is required to achieve maximal transcriptional output
at enhancer regions. This idea is corroborated by observations of dozens of transcription fac-
tors at enhancers regions in mammalian cells [35]. For the “gradient effect”mostly observed at
promoter regions, we are considering two models: i) the regulatory factor directly contributes
to Pol II transcriptional activity or ii) the “gradient effect” corresponds to the signal accumula-
tion of multiple enhancers connecting to a promoter region through long distance interactions.
These models are not mutually exclusive, but the latter is supported by evidence of an average
of 4.9 enhancers connecting per promoter [28] in addition to a positive correlation between the
number of connections and the transcriptional output [36]. Taken together, our results estab-
lish different recruitment patterns of regulatory factors at enhancers and promoters.

Other applications ofmetagene
In addition to the current study, themetagene package will be usable for multiple applications.
For instance, themetagene package will be suitable to study differential recruitment in different
classes of regulatory elements. For instance, enhancers and promoters regions could be strati-
fied by functional types instead of expressions levels, such as the chromatin states [37]. The
enrichment patterns of a transcription factor following drug treatment or an infection could
also be analyzed withmetagene to provide molecular insights into the mechanism of action.
Additionally, the dynamic of transcription factors recruitment could be studied using time
course datasets. Future studies will reveal new details on the mechanisms of recruitment of reg-
ulatory factors and will help in understanding the similarities and dissimilarities between the
various classes of regulatory elements.

Availability and Future Directions
Themetagene package, the graphical interface Imetagene, and the companion package similaR-
peak are available on Bioconductor with documentation and an example dataset. These pack-
ages perform a thorough evaluation of the similarities or dissimilarities of the aggregated signal
of region groups. For the current version, the region groups are based on annotations in order
to test specific scientific hypotheses. Next, we will work on refinement to the bootstrapping
strategy and we will be implementing clustering algorithms (as a part of a machine learning
strategy) to cluster regions based directly on their occupancy patterns to provide an exploratory
approach.
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Supporting Information
S1 Fig. Imetagene interactive heatmap representation. After the matrices are computed, the
Imetagene package can be used to explore the matrix-associated with each experiment to visu-
alize the coverages of the regions.
(PDF)

S2 Fig. Metagene plots of RNA Pol II phosphorylated at serine 2 (POLR2AphosphoS2) in
promoters and enhancers. The x-axis is centered on enhancers and promoters ±1000bp. The
y-axis represents the mean occupancy normalized in reads per million (RPM). Each line repre-
sents the mean occupancy of POLR2Aphosphos2. Groups of transcriptional activity of enhanc-
ers or promoters are identified by different colors (red = no CAGE signal; green = low CAGE
signal; blue = moderate CAGE signal; purple = high CAGE signal; see S1 Text). Ribbons repre-
sent the 95% confidence interval of the mean calculated using 1000 bootstraps.
(PDF)

S3 Fig. Metagene plots of RNA Pol II phosphorylated at serine 5 (POLR2AphosphoS5) in
promoters and enhancers. The x-axis is centered on enhancers and promoters ±1000bp. The
y-axis represents the mean occupancy normalized in reads per million (RPM). Each line repre-
sents the mean occupancy of POLR2Aphosphos5. Groups of transcriptional activity of enhanc-
ers or promoters are identified by different colors (red = no CAGE signal; green = low CAGE
signal; blue = moderate CAGE signal; purple = high CAGE signal; see S1 Text). Ribbons repre-
sent the 95% confidence interval of the mean calculated using 1000 bootstraps.
(PDF)

S4 Fig. Metagene plots of the general transcription factor TBP at promoters and enhancers.
The x-axis is centered on enhancers and promoters ±1000bp. The y-axis represents the mean
occupancy normalized in reads per million (RPM). Each line represents the mean occupancy
of TBP. Groups of transcriptional activity of enhancers or promoters are identified by different
colors (red = no CAGE signal; green = low CAGE signal; blue = moderate CAGE signal;
purple = high CAGE signal). The ribbons represent the 95% confidence interval of the mean
calculated using 1000 bootstraps.
(PDF)

S5 Fig. Metagene plots of H3K27ac at enhancers and H3K4me3 at promoters. The x-axis is
centered on enhancers and promoters ±1000bp. The y-axis represents the mean occupancy
normalized in reads per million (RPM). Each line represents the mean occupancy of the his-
tone mark. Groups of transcriptional activity of enhancers or promoters are identified by dif-
ferent colors (red = no CAGE signal; green = low CAGE signal; blue = moderate CAGE signal;
purple = high CAGE signal). The ribbons represent the 95% confidence interval of the mean
calculated using 1000 bootstraps.
(PDF)

S6 Fig. Boxplot of RATIO INTERSECT values for 106 experiments in GM12878. The
RATIO INTERSECT was calculated using the moderate CAGE signal and high CAGE signal
groups.
(PDF)

S7 Fig. Metagene plots of the cofactor SMC3 at promoters and enhancers. The x-axis is cen-
tered on enhancers and promoters ±1000bp. The y-axis represents the mean occupancy nor-
malized in reads per million (RPM). Each line represents the mean occupancy of SMC3.
Groups of transcriptional activity of enhancers or promoters are identified by different
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colors (red = no CAGE signal; green = low CAGE signal; blue = moderate CAGE signal;
purple = high CAGE signal). The ribbons represent the 95% confidence interval of the mean
calculated using 1000 bootstraps.
(PDF)

S8 Fig. Metagene plots of the cofactor EP300 at promoters and enhancers. The x-axis is cen-
tered on enhancers and promoters ±1000bp. The y-axis represents the mean occupancy nor-
malized in reads per million (RPM). Each line represents the mean occupancy of EP300.
Groups of transcriptional activity of enhancers or promoters are identified by different
colors (red = no CAGE signal; green = low CAGE signal; blue = moderate CAGE signal;
purple = high CAGE signal). The ribbons represent the 95% confidence interval of the mean
calculated using 1000 bootstraps.
(PDF)

S1 Table. Description of the 276 bam files used in this article. Experiment accession: unique
identifier of the experiment. File accession: unique identifier of the file. Target: the name of the
factor that was targeted for immunoprecipitation. Controls: the experiment accession of the
recommended controls. Biosample name: the cell type. Assembly: the version of the genome
used for the alignment. Href: the URL to download the file.
(CSV)

S2 Table. Description of similaRpeak’s pseudometrics. Pseudometric: the name of the pseu-
dometric. Definition: the description of the metric. Threshold: criteria that can be set by the
user to avoid calculating the value of a pseudometric that would return nonsensical results
(division by zero, etc. . .).
(XLSX)

S3 Table. Classification of GM12878 factors. The classification of the 106 regulatory factors
in “gradient” or “threshold”. Target: the name of the target. Type: enhancer or promoter.
RATIO_INTERSECT: the RATIO_INTERSECT score calculated using the moderate and high
CAGE signal groups. Class: “gradient” or “threshold”.
(CSV)

S1 Text. Data collection: Details of the data collection procedure. Bootstrap: Description of
the bootstrapping steps. Permutation: Details of the permutation procedure inMetagene and
similaRpeak.
(PDF)
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