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Optimization of a MT1-MMP-
targeting Peptide and Its 
Application in Near-infrared 
Fluorescence Tumor Imaging
Li Ren1,2, Ye Wang3, Lei Zhu4, Liqiao Shen5, Jinrui Zhang5, Jingjing Wang6, Haolong Li5, 
Qingchuan Zheng7, Dahai Yu5 & Xuexun Fang5

Membrane type 1 metalloproteinase (MT1-MMP) is an important regulator of cancer invasion, growth 
and angiogenesis, thus making it an attractive target for cancer imaging and therapy. A non-substrate 
peptide (MT1-AF7p) that bonded to the “MT-Loop” region of MT1-MMP was identified by using a 
phage-displayed peptide library and was used to image the MT1-MMP expression in vivo through 
optical imaging. However, the substrate in the screening did not have a 3D structure, thus resulting in 
a loose bonding of MT1-AF7p. To simulate the real conformation of the “MT-Loop” and improve the 
performance of MT1-AF7p, molecular simulations were performed, because this strategy provides 
multiple methods for predicting the conformation and interaction of proteinase in 3D. In view of the 
binding site of the receptor–ligand interactions, histidine 4 was selected for mutation to achieve an 
increased affinity effect. The optimized peptides were further identified and conformed by atomic 
force microscopy, isothermal titration calorimetry, cell fluorescence imaging in vitro, and near-infrared 
fluorescence tumor optical imaging in vivo. The results revealed that the optimized peptide with a 
mutation of histidine 4 to arginine has the highest affinity and specificity, and exhibited an increased 
fluorescence intensity in the tumor site in optical imaging.

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that consists of 24 human 
MMPs, which are capable of remodeling the extracellular matrix (ECM), targeting growth factors, cytokines, 
cell surface-associated adhesion, and signaling receptors1–3. Membrane type 1 MMP (MT1-MMP, also known 
as MMP14) belongs to the type I transmembrane MMP (MT-MMP) subfamily. From a structural perspective, 
MT1-MMP is expressed on the cell membrane and contains a potential transmembrane domain. The surface 
of the extracellular region has a unique segment termed as the “MT-Loop”4,5. This area is flexible, exposed, low 
homological, distant from the catalytic active site, and can be easily assessed by ligands. From a functional per-
spective, MT1-MMP acts as a collagenase, which is involved in the degradation and remodeling of the extra-
cellular matrix in normal physiological processes, such as embryonic development and reproduction, as well 
as in diverse aggressive disease processes, such as in lung, liver, oral mucosal, gastric, intestinal, pancreatic, 
renal, prostate, testicular, colorectal, breast, ovarian, endometrial, cervical, glioma, melanoma, head, and neck 
cancers1,2,6–8. Moreover, MT1-MMP is involved in hyperlipemia, atherosclerosis, influenza-related tissue dam-
age9, Alzheimer’s disease10, arthritis and Winchester syndrome11. Aside from exhibiting pericellular collagenase 
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activity, MT1-MMP activates MMP-2, which is essential for biological and pathological processes, and this 
activity has been proven to be involved in tumor invasion3. An increasing number of studies have reported that 
MT1-MMP is a promising target for cancer detection and therapy.

Selective receptor-targeting agents are effective tools for targeting or inhibiting specific cells. A ligand that 
has a specific affinity to MT1-MMP may facilitate the targeting and labeling of malignant tumors that over-
express MT1-MMP. Peptide probes aid in the early diagnosis and effective treatment of tumors. Several 
studies have demonstrated that polypeptide molecules that can trace MT1-MMP could be used as imaging 
agents in several cancer models12–14. We reported that MT1-AF7p (HWKHLHNTKTFL) was screened and 
identified by using phage displayed-library that bind to the “MT-Loop” region and was utilized to target the 
MT1-MMP-overexpressed tumor cells in vitro and in vivo15. Another group employed MT1-AF7p to decorate 
nanoparticles to mediate tumor targeting, and they obtained the desired effects16. Nonetheless, several factors, 
such as the short half-life time in vivo, binding ability, and specificity, could still be improved. Recent studies 
have been devoted to discovering new bioactive peptides and improving the properties of peptide probes17. Chen 
et al. summarized the development of peptide-based imaging agents with emphasis on the probe design18. The 
present work attempts to address these limitations of peptide probes. Computer-aided technology is widely used 
for designing bioactive peptides, predicting mutation energies to improve performance, and forecasting pro-
tein–peptide interactions19. Compared with other experimental methods, molecular docking and simulation 
approaches will decrease the cost of laboratory research since they will be able to perform studies directed to 
specific predicted protein-peptide interactions20. Thus, a molecular dynamics program called GROMACS and 
a protein–protein molecular docking approach named ZDOCK were used in this study. ZDOCK utilizes fast 
Fourier transform to perform an exhaustive, grid-based search of the spatial degrees of freedom between two 
macromolecules21.

Here, to obtain a novel peptide with an increased specific affinity and a prolonged half-life time, we used 
computational methods and rational design to optimize the structure and specificity of MT1-AF7p. Two peptid-
omimetics with mutation at histidine 4 were obtained and denoted as MT1-AF7p-H4K and MT1-AF7p-H4R. We 
performed atomic force microscopy (AFM), isothermal titration calorimetry (ITC), and cell fluorescence imaging 
techniques on the MT1-MMP and 12-residue-optimized peptides in vitro. We further showed that compared 
with the original peptide (MT1-AF7p), MT1-AF7p-H4R had a prolonged half-life time, higher specificity and 
affinity to the receptor (MT1-MMP) in optical imaging in vivo, indicating that molecular simulation is an efficient 
way of optimizing peptides for cancer detection.

Methods
Molecular simulation.  Preparation of protein.  The 3D structure of the MT1-MMP catalytic domain (PDB 
code 1BQQ) was obtained from the Protein Data Bank (www.rcsb.org). Prior to the docking procedure, the water 
molecules and the ligand (TIMP-2) were removed from the protein crystal structure by using Discovery Studio 
(DS)22,23 version 2.5. Hydrogen atoms were added by using the CHARMm24 force field.

Construction of the polypeptide structure.  The polypeptide structure (MT1-AF7p) was built by using the Build 
and Edit Protein module of DS 2.5. Then, a reasonable conformation was obtained by using GROMACS version 
4.6.5 with the OPLS-AA/L all-atom force field (2001 amino acid dihedrals). MT1-AF7p was centered in separate 
cubic boxes and solvated by using the SPC216 water model25. The protein had a total charge of 2.000 e; thus, the 
system needed two CL ions to achieve electroneutrality. Convergence was achieved when a maximum force of 
less than 1000 kJ mol−1nm−1 resided on any atom. A two-step equilibration phase was used to independently 
simulate the constant volume and constant pressure ensembles with 2 ns until the system was well equilibrated at 
the desired temperature and pressure. Then, molecular dynamics simulations were conducted for 1 μs under the 
same conditions. The system stability, the differences in the trajectories, and the root mean square deviations were 
analyzed by using the available tools in the GROMACS package.

The site-directed mutation of MT1-AF7p was executed by using the Build Mutants protocol of DS 2.5, which 
mutates selected residues to specified types and optimizes the conformation of both the mutated residues and any 
surrounding residue.

Molecular docking of MT1-MMP and the polypeptide.  To generate the docking model for MT1-MMP and the 
polypeptide, molecular docking was conducted by using the Protein Docking module of DS 2.5. The Protein 
Docking module is a suite of programs for the automatic docking of a protein (or polypeptide) to a receptor, and 
it uses the classic ZDOCK algorithm to predict complex protein–protein structures. Then, the MT1-AF7p equi-
librium conformation was docked into the MT1-MMP model by using ZDOCK26 with a 6° angular step size to 
generate 54,000 poses, of which the top 2000 were re-ranked by ZRANK27 and the top 100 were clustered. These 
poses were subsequently processed with RDOCK28, and only clusters with the highest density of poses were fur-
ther considered.

Protein expression, purification, and refolding.  The MT1-MMP catalytic domain (20 kDa) was 
expressed in Escherichia coli (E. coli) as inclusion bodies. The activated form was produced through refold 
method. The recombinant human MT1-MMP catalytic domain was produced by E. coli BL21 that carried expres-
sion plasmids. The bacteria were grown to an optical density of 0.4 at 37 °C prior to induction. The overexpres-
sion of the protein of interest was induced by adding isopropyl-β-galactoside to a final concentration of 0.5 mM. 
Cultivation was proceeded for 4 h before the bacteria were broken by an ultrasonic wave. The inclusion bodies 
(proMT1-MMP) were solubilized and purified through his-tag affinity chromatography (General Electric, USA), 
as well as refolded by using dialysis bags to gradually reduce high denaturant concentrations in this process. The 
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refolding buffer included 50 mM HEPES, 10 mM CaCl2, 200 mM NaCl, 1 mM phenylmethylsulfonyl fluoride, 
20 μM ZnCl2, 0.01% Brij-35, 5% Glycerol, 100 μg/ml DNase, at a pH 7.5.

Evaluation of protease activity.  The protein samples from induced lysates, inclusion bodies and renatur-
ation were separated by 15% reducing sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) 
gel followed by Coomassie Brilliant Blue R-250 (CBB) staining. Protein concentration was measured at each step 
by the BCA Protein Assay Kit (Thermo Scientific, USA) according to manufacturer’s instructions. After renatur-
ation of MT1-MMP, the enzymatic activity of the recombinant MT1-MMP was measured by using fluorescein 
conjugated substrate, DQ™-gelatin from pig skin (Molecular Probes).

Synthesis and labeling of peptide probes.  The peptide probe MT1-AF7p (HWKHLHNTKTFL) 
was synthesized through solid-phase method by using Fmoc chemistry, and the crude products were puri-
fied through reversed phase column chromatography by using LC-8A and SPD-M10A (Shimadzu, Japan) and 
validated through time-of-flight mass spectrography (AB SCIEX 5800, USA). The polypeptides MT1–160p 
(REVPYAYIREGHEKQ), MT1-AF7p-H4K (HWKKLHNTKTFL), MT1-AF7p-H4R (HWKRLHNTKTFL), 
FITC-labeled peptides with purities of 98% were synthesized by GL Biochem Ltd. (Shanghai, China). 
Cy5.5-labeled peptides with purities of 98% were synthesized and purified in Dr. Lei Zhu’s lab at Xiamen 
University. In brief, Cy5.5 succinimide easter (Cy5.5-NHS, 1 mg) was coupled to the NH2-terminus of MT1-AF7p 
(4 mg) in 400 μL anhydrous dimethylformamide containing 10% of diisopropylethylamine and shielded from 
light. The crude peptides were purified and analyzed by HPLC on a C18 column.

Biomechanical tests.  Immobilization of MT1-160p or MT1-MMP on substrate.  The surface layer 
of the mica was stripped to expose the silanol group-coated surface. Then, the mica was treated with 
3-aminopropyltriethoxysilane (APTES, vapor) for 1.5 h at room temperature and dried in vacuum. To immobi-
lize the protein or the peptide, the activated mica surface was immerged into MT1-160p or MT1-MMP solution 
(300 µg/mL in PBS) for 15 min, rinsed and kept in PBS buffer.

Functionalization of the AFM cantilever tips.  AFM cantilever tips (MSCT) were purchased from Veeco (CA). 
The polypeptides were covalently immobilized on the tips by using chemical reactions as previously described29. 
Briefly, the cleaned AFM tips were immediately transferred to a desiccator flooded with argon, and aminated by 
incubation with 50 µL APTES and 15 µL N, N-diisopropylethylamine for 1.5 h through chemical vapor-phase 
deposition. Then, flexible bifunctional PEG cross-linkers (NHS-PEG18-aldehyde, purchased from Dr. Hermann 
Gruber’s laboratory, Johannes Kepler University Linz, Austria) were attached to the amino-modified cantile-
vers by incubating the tips in NHS-PEG18-aldehyde buffer (3.3 mg/mL in chloroform containing 0.5% triethyl-
amine (v/v)) for 2 h at room temperature. Subsequently, the AFM tips were rinsed with chloroform to remove the 
un-bound NHS-PEG18-aldehyde and dried with argon. The AFM tips were immersed in 100 µg/mL polypeptide 
solution containing 10 mM NaCNBH3 and incubated for 1 h at room temperature. Ethanolamine was added to a 
final concentration of 25 mM to block the unoccupied aldehyde groups. The prepared AFM tips and samples were 
cleaned with PBS and stored in the PBS buffer at 4 °C.

AFM force curve measurements.  The force curves were measured by using a PicoPSM 5500 instrument (Agilent 
Technologies, MA). The activated mica was placed in a fluid cell, and the polypeptides were covalently immobi-
lized on the AFM cantilever tips. Free excess peptides (1 mmol/L) were added to the dish for the control measure-
ment. The interaction force were detected at different points on the substrate. Over 1,000 force–distance cycles 
were collected, and a total of 300 force curves were recorded at different positions on the substrate. The average 
force values were summarized and calculated in the form of histograms and were expressed as a probability (%), 
which was obtained by dividing each count number by the total number of measured force curves.

Isothermal Titration Calorimetry.  The ITC experiments were conducted by using a MicroCal ITC-200 
system (General Electric, USA) to determine the thermodynamic parameters of the polypeptides. The peptide of 
interest was dissolved in 10 mM HEPES and 150 mM NaCl solution at pH 7.4. All titrations were performed at 
25 °C by injecting aliquots of a 40 μL MT1-160p (1 mM) degassed solution in a syringe into the calorimeter cell 
containing 200 μL of binding peptides (0.1 mM) degassed solution at a stirring rate of 1000 rpm. The baseline 
was corrected manually and the heat data were processed by fitting the ITC data into the NanoAnalyze software.

Cell fluorescent labeling by using a confocal laser scanning microscope.  MT1-MMP overex-
pressed tumor cell lines were examined by western blot. In brief, the proteins were extracted from cells, and the 
protein concentration was measured by BCA Protein Assay Kit (Thermo Scientific, USA). Samples were boiled 
in Laemmli sample buffer and separated by SDS-PAGE. After transferred to polyvinylidene difluoride (PVDF) 
membranes, samples were probed with the MT1-MMP antibody or actin, then developed by Pierce ECL 2 west-
ern blotting substrate (Thermo Scientific, Rockford, IL). The human fibrosarcoma cell line HT1080 was cultured 
in RPMI-1640 medium containing 10% (v/v) fetal bovine serum (Invitrogen, USA) supplemented with penicillin 
(100 μg/mL) and streptomycin (100 μg/mL) at 37 °C under 5% CO2. Cells were seeded on a six-well plate with 
a cover glass at a concentration of 1 × 104 cells/well. After being fixed and blocked on the next day, cells were 
detected by using fluorophore-labeled peptides at a concentration of 10 nM. The samples were washed thrice at the 
end of each step. To comparative analyze the affinity between the FITC-MT1-AF7p-H4R and other peptides, the 
fixed HT1080 cells were incubated with 10 nM peptide ligand and then added with free FITC-MT1-AF7p-H4R 
to facilitate a competitive reaction. All of the cells were counted with 4′,6-diamidino-2-phenyl indole-containing 
mounting medium and detected with a confocal laser scanning microscope.
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Whole-body small animal optical imaging.  All of the animal experiments were conducted in accord-
ance with the principles and procedures outlined in the ethics committee of Jilin University, and approved by 
Animal Care and Use Committee (CC/ACUCC) of Xiamen University. Subcutaneous sites of athymic nude mice 
(BALB/c, 6 weeks old, female, 19–21 g) were injected with a suspension of 1 × 107 breast carcinoma MDA-MB-435 
cells in PBS (100 μL). Tumor growth was assessed with caliper measurements every 2 days, and tumor size was 
determined using the formula: V = a*(b2)/2, where a is the maximum length and b is the maximum width of each 
tumor in mm respectively. The tumor-bearing mice (n = 5/group) were subjected to optical imaging experiments 
once the tumor volume (in the right front leg region) reached average size of 200 mm3 (Error less than 18 mm3), 
mice were randomly allocated into three groups: Cy5.5-MT1-AF7p-H4R, Cy5.5-MT1-AF7p-H4R-Block or 
Cy5.5-MT1-AF7p were injected via their tail vein with 10 μM (1 nM in 100 μL PBS). Fluorescent images and 
analysis were performed by using an IVIS Lumina II imaging system (Caliper Life Sciences, MA, USA; Excitation 
Filter: 630 nm, Emission Filter: 700 nm) at different time point post-injection (1, 2, 4, 6, 12, and 24 h). During 
injection and image acquiring process, mice were anesthetized with 2.5% isoflurane in oxygen at a flow of 1.5 L/
min. Images were normalized to the same scale and analyzed. For semi-quantitative comparison, the regions of 
interest (ROI) were drawn over the tissues of interest, and the scaled average signal (photons cm−2 s−1) for each 
area was measured. Fluorescent signals from ROI were further corrected by the mice body weights. Results were 
presented as the mean ± SD for a group of five animals.

The ex vivo imaging of excised tumors and organs further confirmed the targeting specificity of the optimized 
peptide. The mice were injected with 1 nM Cy5.5-peptide to evaluate the distribution of affinity peptides in tumor 
tissues and major organs. At 4 h post-injection, the tumor-bearing mice were sacrificed, and their major organs, 
tissues, and tumors were harvested and placed on a black paper for ex vivo imaging (IVIS Lumina II, Caliper Life 
Sciences, MA, USA). The results were presented as the average scaled signal from the organs and the tumors.

All methods were conducted according to guidelines and regulations of the Key Laboratory of Molecular 
Enzymology and Enzyme Engineering of the Ministry of Education. All experimental protocols at in vitro and in 
vivo level were approved by the department of animal care at Jilin University and Xiamen University.

Statistical Analysis.  Results were exhibited as mean ± SD. Differences within groups and between groups 
were checked by two-tailed paired and unpaired Student’s t-tests, respectively. *Represent P-value ≤ 0.05, **repre-
sent P-value ≤ 0.01, and ***represent P-value ≤ 0.001. The results were considered significant with P-values ≤ 0.05.

Data availability.  The authors have declared that the materials, data and protocols in the manuscript are 
available to readers, and the information for materials is disclosed. The authors declared that experiments on 
mice were conducted in accordance with the principles and procedures outlined in the ethics committee of Jilin 
University and Xiamen University.

Results
Molecular modeling of MT1-AF7p and MT1-MMP revealed the possible interaction mecha-
nism.  MT1-AF7p, which exhibited a binding ability to MT1-MMP in the physical studies and in the imaging 
at the cellular and organism levels15,30. Here, to optimize the affinity and specificity of MT1-AF7p and char-
acterize their interactions, computer-aided methods, including molecular modeling and docking experiments 
were employed. The conformation of the MT1-MMP catalytic domain had identical regular secondary structure 
elements as that of classical MMPs: three α-helices and five stranded β-sheets (Fig. 1A,B). The most signifi-
cant deviation occurred in Tyr164-Gln174, where the chain bulged out to form a “MT-Loop”4. In contrast to 
classical MMPs, the typical MT-Loop in MT-MMP, established a groove with Ile128-Thr132 and Ile179-Phe185 
(Fig. 1C,D).

Molecular interactions between peptides and MT1-MMP mediate many biological and pathological processes. 
To study the possible interaction mechanism, MT1-AF7p was docked into MT1-MMP by using the ZDOCK 
module of DS 2.5. The optimal structure of MT1-AF7p was the average conformation in the last 100 ns after 1 μs 
of molecular dynamics simulations (Fig. S1). As shown in Fig. S2, the top poses were located in the largest clus-
ter (the top 100 poses from ZDOCK were re-ranked by ZRANK and clustered) were mostly processed around 
the groove near the MT-Loop. All of the top poses were then evaluated with RDOCK, and the cluster with the 
highest density of poses was considered. The best pose on the basis of the lowest RDOCK energy (−62.87 kcal/
mol) (Table S1) was kept for each conformation (Fig. S3A). A detailed analysis of the amino acids of MT1-MMP 
that bonded to MT1-AF7p in shown in Fig. S3B. Tyr166, Phe181, Glu183, and Asp212 could form six hydrogen 
bonds with His6, Asn7, Thr8, Lys9, and Leu12 of MT1-AF7p (Table S2). As shown in Fig. S3B, the MT1-AF7p 
residues within 7 Å of any residue of MT1-MMP were His4, Leu5, and Phe11, all of which could be mutated to 
achieve a greater affinity effect aside from the residues that formed hydrogen bonds with MT1-MMP. By contrast, 
the other residues of MT1-AF7p, namely, His1, Trp2, Lys3, and Thr10, were not in the range of 7 Å of any residue 
of MT1-MMP. His1, Trp2, and Lys3, were at the N terminal of MT1-AF7p, suggesting that they be could useful 
biomarkers even though they are far away from MT1-MMP.

Optimization of MT1-AF7p.  Previous studies showed that the “MT-Loop” favors MT1-AF7p residues at 
the groove positions of MT1-MMP31. His6, Asn7, Thr8, Lys9, and Leu12 of MT1-AF7p form hydrogen bonds 
with MT1-MMP. Thus, to improve the binding ability of MT1-AF7p to MT1-MMP, His4, Leu5, and Phe11 were 
mutated. In Fig. 2A, Lys173, Ile176, Gly187, Asp188, and Ile209 of MT1-MMP were selected within 7 Å of His4 
of MT1-AF7p. Therefore, if His4 mutated into Lys or Arg, depending on which basic amino acid had a longer 
chain, His4 might form hydrogen bonds with the carbonyl oxygen of Gly187. By contrast, Phe185, His186, and 
Gly187 of MT1-MMP were in the range of 7 Å of Leu5 of MT1-AF7p, and Phe185 was closer to the Leu5 side 
chain (Fig. 2B). Leu5 is not going to mutate to any amino, because both Phe185 and Leu5 are hydrophobic amino 
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acids that could form a hydrophobic interaction together. Similarly, Phe11, which could also produce a strong 
hydrophobic interaction with Tyr131 and Tyr166 (Fig. 2C), was also retained. In summary, two mutations were 
identified: MT1-AF7p-H4K and MT1-AF7p-H4R.

To confirm that the mutations had an optimal affinity to MT1-MMP, we docked the two polypeptides to 
MT1-MMP by using the aforementioned method and calculated the interaction energy of the polypeptide/
MT1-MMP complexes. As shown in Fig. 2D, MT1-AF7p-H4K and MT1-AF7p-H4R were tightly bound to nearly 
the same site as MT1-AF7p, in the groove of MT1-MMP. Table S1 lists the RDOCK scores (lower scores are 
better). The RDOCK score of MT1-AF7p-H4K and MT1-AF7p-H4R were −65.11 and −68.99 kcal/mol, both 
of which were lower than that of MT1-AF7, implying that the mutations of MT1-AF7p presented a more opti-
mal binding. The hydrogen bonds formed between the polypeptides and MT1-MMP contributed to the stability 
of the complexes, and a greater number of hydrogen bonds resulted in a more stable complex. Tables S3 and 
S4 show the detailed parameters of the hydrogen bond between the polypeptides and MT1-MMP. When His4 
mutated into Lys or Arg, the H of the extended side chain formed hydrogen bonds with the carbonyl oxygen of 
Gly187 of MT1-MMP (Fig. 2D). His6 of MT1-AF7p-H4K lost the hydrogen bonds but formed a pi–pi interaction 
with Asp212 of MT1-MMP (Table S5). In conclusion, the mutations could form an additional non-bond inter-
action with MT1-MMP than with MT1-AF-7p. MT1-AF7p-H4K formed an additional pi–pi interaction, and 
MT1-AF7p-H4R formed an additional hydrogen bond. Thus, on the basis of the docking results, the polypeptides 
that mutated with a more favorable interaction energy were selected for further analysis.

AFM analysis of the intermolecular force between MT1-MMP and peptidomimetics.  AFM 
was conducted in the following chemical reaction experiment to evaluate the specific interaction forces between 
each optimized peptide and MT1-MMP. MT1-MMP was expressed in E.coli as inclusion bodies and re-natured 
with catalytic activity (Fig. S4), MT1-MMP showed high enzymatic activity (9.81 × 106) against DQ-gelatin 
substrate. The optimized peptide was covalently conjugated onto an APTES-coated AFM tip via a flexible het-
erobifunctional polyethylene glycol cross-linker (NHS-PEG18-aldehyde). The NHS-ester of the linker bound 
to the APTES-coated tip through the NHS-ester end, and the free aldehyde group end was designed to cova-
lently bind the protein or the peptide. The characteristic parabolic bending curve was caused by the stretch-
ing of the PEG linker. Figure 3 shows a typical force–distance cycle with a single-molecule recognition event 

Figure 1.  The overall conformation of MT1-MMP and the classical MMP (MMP2). (A,C) MT1-MMP (PDB 
code: 1BQQ_M); (B,D) MMP2 (PDB code: 1QIB_A). Protein (A,B) are represented by the solid ribbon which 
are colored by the secondary type; Protein (C,D) are represented by the surface which are colored by the 
interpolated charge. Blue represents positive charge and red represents negative charge. The conformation in the 
dotted circle is MT-Loop. An arrow is pointed at the groove.
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that demonstrates the retraction forces between peptides. The negative force indicates an attraction between 
MT1-MMP and the peptide probes (MT1-AF7p (3A), MT1-AF7p-H4R (3C), and MT1-AF7p-H4K (3E)). By 
contrast, a control experiment was performed by adding a free blocking reagent (free excess peptide) to the fluid 
cell of the MT1-MMP-immobilized substrate, and no peak was revealed (inset). To estimate the strength of the 
specific affinity, the averaged retraction force was determined for each force curve of the peptide probe against 
MT1-MMP. We then summarized and analyzed these forces in the form of histograms that fit well to Gaussian 
curves (Fig. 3B,D,F). As shown in Fig. 3C,D, MT1-AF7p-H4R had the highest affinity to MT1-MMP. The peak 
position of the histogram was at 260 pN, which had the lowest interaction energy base on its energy rank order-
ing. This finding agreed with the molecular docking results. MT1-AF7p-H4K (Fig. 3E,F) had a nearly identical 
binding capacity with MT1-MMP than MT1-AF7P (Fig. 3A,B) at 166 and 150 pN, respectively. Similarly, the force 
curve between MT1-160p and the optimized peptides showed the same trend (Fig. S5). The AFM single-molecule 
recognition force spectroscopy (SMRFS) results showed that MT1-AF7p-H4R were tightly bound to its target, 
MT1-MMP, as predicted by the molecular modeling data, whereas the mutated peptide MT1-AF7p-H4K showed 
opposite trend.

Figure 2.  The schematic of the amino acid MT1-MMP around the amino acid to be mutated of MT1-AF7p at a 
7 Å radius and the interrelation between affinity peptides superposition. The amino acid to be mutated of MT1-
AF7p was (A), His4; (B), Leu5; (C), Phe11. In Figures (A–C), the amino acid of MT1-AF7p is displayed in the 
stick model, whose carbon skeleton is painted orange. MT1-AF7p is represented by a solid ribbon colored by 
the N-C terminal. The amino acids of MT1-MMP around the 7 Å radius are shown by the line, and the carbon 
skeleton of the amino acid of MT1-MMP is painted grey. Figure D shows the superposition between MT1-
MMP and MT1-AF7p/MT1-AF7p-H4K/MT1-AF7p-H4R. In figure D, MT1-MMP is represented by the cyan 
line ribbon. The amino acid of MT1-MMP that formed hydrogen bonds are displayed in line model. The carbon 
skeleton of the amino acid of MT1-MMP was painted grey. The MT1-AF7p/MT1-AF7p-H4K/MT1-AF7p-H4R 
superposition are displayed in stick model representation with different colors of carbon skeletons: MT1-AF7p, 
magenta; MT1-AF7p-H4K, green; and MT1-AF7p-H4R, orange.
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Peptidomimetics binds to MT1-MMP in ITC binding assay.  To further validate and characterize the 
interaction of MT1-MMP with its optimized 12-residue peptides, we measured the interaction by using ITC 
to titrate MT1-AF7p and MT1-AF7p-H4R into MT1-MMP. Figure 4 shows the typical thermodynamic titra-
tion curves of the binding affinity between MT1-MMP and the polypeptides. An exothermic binding reaction 
was observed as illustrated, and the corresponding thermodynamic parameters are presented inside the figures. 
The thermodynamic titration curves decreased as the number of injections increased and the concentration of 
free peptides in the cell decreased simultaneously. Figure 4A and B showed a spontaneous reaction, the nega-
tive enthalpy (ΔH < 0) and positive entropy (ΔS > 0) values indicated that hydrophobic forces and electrostatic 
interactions played pivotal roles in the binding process. MT1-AF7p-H4R showed that it is an enthalpy-driven 
process and exhibited better thermodynamic parameters (ΔH = −2.9 × 102 cal/mol, ΔS = 23 cal/mol/deg, and 
the stoichiometry N = 1.14). The binding constant (Ka) of the affinity peptide MT1-AF7p-H4R (1.75 × 105 M−1) 
to MT1-MMP was higher than that of MT1-AF7P (1.07 × 105 M−1).

Figure 3.  The force measurement of optimized peptides and MT1-MMP. These typical force curves showing 
the interactions between MT1-AF7p and MT1-MMP (A), MT1-AF7p-H4R and MT1-MMP (B) or MT1-AF7p-
H4K and MT1-MMP (C) at 25 °C. An AFM tip functionalized with polypeptide approaches to the substrate 
where MT1-MMP is immobilized, as shown in panels A,C and D, in the trace process, the deflection shows 
zero when cantilever is not bent, as the tip comes into contact with substrate, the complexes were formed 
and the cantilever bends upwards. In the retrace process, the AFM cantilever has an opposite direction to the 
MT1-MMP coated surface, which result in a binding force compared with the trace process, then the cantilever 
tethered with polypeptide relaxes and unbends until the repulsive force drops to zero. As a control experiment, 
excessive free peptides added into reaction cell, the cantilever jumps back to zero deflection (inside). The 
average force values were expressed as a probability in the form of histograms (panels B, D and F).
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Staining of cells with optimized probes.  Given that optimized peptides can target and label MT1-MMP 
in biophysical experiments, we performed cell fluorescence imaging experiments to examine the binding ability 
of the optimized peptides at the cellular level in vitro, as a previous study showed that MT-MMPs were expressed 
differentially in tumor models32. The protein expression of MT1-MMP was examined by western blot. As Fig. S6 
shown, human fibrosarcoma HT1080 and human breast cancer cell line MDA-MB435 are MT1-MMP positive 
model, in which have higher expression of MT1-MMP than in A549. Thus, in this section, cellular fluorescence 
was detected in the HT1080 cells. Under culture conditions, MT1-AF7p-H4R exhibited a better imaging abil-
ity than MT1-AF7p-H4K and the original polypeptide MT1-AF7p (Fig. 5). To test the binding specificity, free 
polypeptides were added into the culture wells. The fluorescence signal disappeared because of the competition 
(Fig. 5), suggesting that MT1-AF7p-H4R, which was predicted and designed through molecular modeling meth-
ods, was specific enough to bind to MT1-MMP.

In vivo imaging of MT1-MMP using Cy5.5-labeled optimized peptides.  Among the mutated pep-
tides selected by virtual screening and docking based on the calculated lowest binding energy, the binding affini-
ties were tested by conducting AFM, ITC, and cell fluorescence imaging in vitro. The tumor targeting effects of the 
optimal peptide were further confirmed by performing an in vivo imaging experiment in a tumor-bearing mice 
model. The immunohistochemistry and histological examination have proved higher expression of MT1-MMP 
in breast cancer cell line MDA-MB-435 tumor. Furthermore, MDA-MB-435 xenografts had significantly higher 
tumor accumulation of Cy5.5-MT1-AF7p than that in negative control15. Thus, we seeded MDA-MB-435 tumor 
cells in mice and evaluated the specificity and affinity of the peptides to MT1-MMP in vivo. Free Cy5.5 dye was 
spread in the whole body and did not accumulate in the tumor site within 48 h post-injection, it demonstrated 
that the effect of passive targeting capabilities of the Cy5.5 dye was not significant33. The fluorescent label Cy5.5 
was conjugated onto the N-terminate of MT1-AF7p and MT1-AF7p-H4R. After the Cy5.5 labeled peptides were 
injected through the tail vein, the time-dependent biodistribution of the peptides were observed by performing 
NIRF imaging on the live animals. The fluorescent signals detected in the MDA-MB-435 tumors in Fig. S7, indi-
cating that the imaging effect of MT1-AF7p-H4R was better than MT1-AF7p (p ≤ 0.01). The intensity around 
the tumors disappeared when free polypeptides were injected to block the peptides bound to MT1-MMP. The 
fluorescence intensity of MT1-AF7p-H4R in the tumor site was considerably stronger than that of MT1-AF7p at 
all the time points from 2 h to 24 h.

The tumor-to-normal area ratios are shown in Fig. 6, Cy5.5-MT1-AF7p-H4R accumulates in MDA-MB-435 
tumor with time (Tumor/ Muscle ratio: 1.22 ± 0.22 at 1 h p.i. and 2.77 ± 0.31 at 2 h p.i.) and reaches its maximum 

Figure 4.  Typical ITC data for injections of optimized peptides into a solution of MT1-MMP protein at 
25 °C. The binding isotherms of MT1-AF7p (A) and MT1-AF7p-H4R (B) were fitted through a simple two-
state binding model. Ka, ∆H and ∆S were shown inside the figures. Molar ratio denoted the heat of reaction 
of optimized peptides and MT1-MMP, the solid line denoted the best fits to experimental data. The binding 
isotherms were fitted by using the MicroCal Origin package, and the best curve fitting was obtained by using a 
one-site binding model.
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at 4 h p.i. (T/M: 4.26 ± 0.56). After that, the fluorescent signal starts to decrease by reason of the metabolism. 
To confirm the binding specificity of Cy5.5-MT1-AF7p-H4R to MT1-MMP, an excess of free MT1-AF7p-H4R 
(1 μM) was injected 30 min prior to Cy5.5-MT1-AF7p-H4R. Low Cy5.5-MT1-AF7p-H4R accumulation was 
observed because the MT1-MMP were blocked with excessed free MT1-AF7p-H4R. Following the same treat-
ment, the tissue distribution was assessed in mice. We performed ex vivo optical imaging at the experimental 
endpoint (Fig. 7A). As shown in Fig. 7B, the fluorescence intensities were calculated from organs and tissues, 
such as the heart, the liver, the spleen, the lung, the kidney, and the tumor. A significantly higher accumula-
tion level of Cy5.5-MT1-AF7p-H4R was observed in the tumor (p-value ≤ 0.001). As expected, compared with 
MT1-AF7p, the fluorescent signals of Cy5.5-MT1-AF7p-H4R were 3.2 times higher (8.04 × 107 vs. 2.51 × 107) 

Figure 5.  Fluorescence imaging capability of polypeptides. Confocal fluorescence images of HT1080 cells 
incubated with FITC (Green) labeled polypeptide ligand FITC-MT1-AF7p-H4K, FITC-MT1-AF7p-H4R and 
FITC-MT1-AF7p for cell surface imaging. DAPI (blue) were used for staining of nucleus. Overlapping images 
are shown in the merge group.

Figure 6.  Tumor/muscle (T/M) ratio showed the accumulating ability of peptide probes in post-injection 
at tumor sites. There was a significant difference between the MT1-AF7p-H4R and MT1-AF7p treatment, 
**Represents P ≤ 0.01.
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were observed, and very few fluorescent signals were detected in the blocking group. Furthermore, the ex vivo 
quantification corroborated the observations from the in vivo optical imaging ROI analysis, which exhibited that 
Cy5.5-MT1-AF7p-H4R had a prominent renal clearance. Therefore, Cy5.5-MT1-AF7p-H4R exhibited a better 
specific and binding affinity to MT1-MMP than Cy5.5-MT1-AF7p in tumors.

Discussion
Compared with other micromolecules and antibodies, the peptide probe displayed a better biosafety and a num-
ber of advantages, such as lower production cost and better permeability and functionalization at nanomolar 
concentrations16,17. Furthermore, the kidney plays a key role in eliminating drug carriers from the body18. A 
smaller size and molecular weight of the peptide for is more favorable for glomerular filtration16–18. In addition, 
through computer-aided techniques, traditional phage display method has moved from 2D to 3D in the screen-
ing of the affinity of peptides. Rational optimization significantly enhanced the specificity and affinity of peptide 
probe in vitro and in vivo. MT1-AF7p, which exhibited a binding ability to MT1-MMP in the physical studies 
and in the imaging at the cellular and organism levels, was employed to decorate the nanoparticles to kill glioma 
cells15,30. Considering that the specificity and binding force of MT1-AF7p were weaker than that of the antibody 
to MT1-MMP, we posited that the mutagenesis of key amino acid residues could optimize the binding ability 
of MT1-AF7p. Computer-aided approaches provided tools for binding force enhancement and were suitable 
for the directly predicting specific ligand–receptor interactions and structures20,34. Here, to optimize the affinity 
and specificity of MT1-AF7p and characterize their interactions, computer-aided methods, including molecular 
modeling and docking experiments, were employed. We analyzed and predicted the polypeptide structures, the 
contributions of each amino acid, and the possible interaction mechanism. The results revealed that most of 
the peptide mutations with optimal scoring, ranking, and docking power bound to the “groove” formed by the 
“MT-Loop” and nearby amino acid sequences (Fig. 1). A systemic virtual mutation of the key amino acids of 
MT1-AF7p was performed to optimize its amino acid sequence for an increased binding affinity to MT1-MMP. 
We found that the mutation of the original ligand (MT1-AF7p) at His4 would optimize the conformation, energy, 
and chemical bonds in peptidomimetics and MT1-MMP complexes (Fig. 2).

Powerful biophysical approaches, such as AFM35 and ITC31,36 employed binding force detection methods to 
identify the receptor–ligand interaction in a single molecule and the energy level because of their accuracy in 
binding force detection37–39. AFM also provides information on the binding mechanisms, dynamics of recogni-
tion processes, and interaction-energy landscapes between the interacting biomolecular pairs40. ITC measures the 
generation or consumption of heat following the titration of a ligand onto a protein (or vice versa)41. The ability 
to detect or predict both the binding affinity and the specificity remain limited in methodology36. Therefore, this 
study introduced the combination of multi-test methods to improve the accuracy of binding force detection. 
Our results suggested that peptidomimetics have a more favorable specific binding force (Figs 3 and 4). The cell 
labeling (Fig. 5) and optical imaging (Figs 6 and 7) experiments demonstrated a specific targeting of peptidomi-
metics to MT1-MMP-expressing cells and tumors in a key amino acid-dependent manner, thereby contributing 
nearly the entire binding force. For the clinic applicable purpose, the more precise quantitative data on pharma-
cokinetics will require radiolabeled MT1-AF7p-H4R in positron emission tomography (PET) and single-photon 
emission (SPECT) in a subsequent study.

This study is focused on investigating the specific protein–peptide interactions between the ligand–recep-
tor proteins to try to gain insight into the peptide affinity to MT1-MMP and the critical binding amino acid 
residues to provide a vehicle for near-infrared fluorescence tumor optical imaging in vivo. A novel peptide 
MT1-AF7p-H4R (HWKHLHNTKTFL) is an ideal bioprobe for the diagnosis and intraoperative fluoroscopic 
imaging of human malignant tumors. The findings suggested that the application of computer-aided techniques 
may be a useful approach in the design and development of tumor targeting, detecting, and inhibiting peptide 
ligands.

Figure 7.  Biodistribution of the peptide ligands in vivo. (A) Ex vivo images of dissected organs of mice bearing 
breast tumor sacrificed 4 h after intravenous injection of MT1-MMP affinity peptides. (B) Analysis of the 
fluorescent intensity of the formulations in different organs and tumor. Significant fluorescent signals were 
observed in tumor due to Cy5.5-MT1-AF7p-H4R specific accumulation. The colored bars represent mean 
values and the error bars represent standard deviation. ***Represents P ≤ 0.001.
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