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Abstract: Background and objectives: Ionizing radiation (IR) has been of immense benefit to man,
especially for medical purposes (diagnostic imaging and radiotherapy). However, the risks of
toxicity in healthy normal cells, leading to cellular damage as well as early and late side effects,
have been major drawbacks. The aim of this study was to evaluate the radioprotective effect of
hesperidin against IR-induced damage. Materials and Methods: The preferred reporting items for
systematic reviews and meta-analyses (PRISMA) were applied in reporting this study. A search
was conducted using the electronic databases PubMed, Scopus, Embase, Google Scholar, and
www.ClinicalTrials.gov for information about completed or ongoing clinical trials. Results: From
our search results, 24 studies involving rats, mice, and cultured human and animal cells were
included. An experimental case—control design was used in all studies. The studies showed that the
administration of hesperidin reduced oxidative stress and inflammation in all investigated tissues.
Furthermore, it increased 30-day and 60-day survival rates and protected against DNA damage. The
best radioprotection was obtained when hesperidin was administered before irradiation. Conclusions:
The results of the included studies support the antioxidant, anti-inflammatory, and antiapoptotic
abilities of hesperidin as a potential radioprotective agent against IR-induced damage. We recommend
future clinical trials for more insights.
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1. Introduction

Since the discovery of ionizing radiation (IR) in the early 1900s, its use has been on the increase.
Nowadays, the use of IR can be found in industrial and agricultural sectors. However, it is mostly
utilized in medicine for diagnostic as well as treatment aims. The use of IR for diagnostic purposes is
responsible for the majority of radiation doses received by man [1,2]. Moreover, radiotherapy (cancer
treatment using IR) is more utilized compared to other cancer therapeutic modalities [3].

Despite the numerous benefits of IR to man, the risks of toxicity to healthy normal cells leading to
cellular damage as well as early and late side effects have been major drawbacks. IR causes damage to
cells via direct and indirect effects. Direct effects occur when IR interacts directly with DNA. Indirect
effects take place as a result of the interaction between free radicals, including reactive oxygen species
(ROS) and reactive nitrogen species (RNS), and neighboring DNA molecules [4]. The most important
biological molecule in the cell for sustaining life, DNA, is the primary target for radiation-induced
cell death.
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In addition to radiation exposure for medical purposes, several side effects due to radiation
exposure from nuclear accidents as well as radiation disasters have been reported. The Hiroshima
and Nagasaki events during World War II led to the deaths of over 150,000 people who were exposed
to sublethal radiation doses [5]. The Chernobyl nuclear disaster was also another event that led to
chronic biological changes to the immune system as well as subsequent cancer development in exposed
persons [6].

Most radiation-induced side effects are due to the free radicals produced by IR in cells [7].
Radioprotectors (or radioprotective agents) have been proposed for preventing or reducing these side
effects. A radioprotector is most suitable for use if it has minimal toxicity while protecting healthy cells
and not cancer cells [8]. It is also important that they are easily accessible and not expensive [9]. The
use of amifostine, the first Food and Drug Administration (FDA)-approved radioprotector, has been
mostly restricted as a result of possible toxicity [10]. Therefore, recent studies on radioprotectors have
been majorly centered on natural substances such as flavonoids, due to their minimal side effects.

Flavonoids of varying phenolic structures are present in natural substances with varying phenolic
structures such as fruits, vegetables, grains, bark, roots, stems, flowers, tea, and wine [11]. It has been
shown that the potent antioxidant effects of flavonoids are a result of their high redox abilities, making
them efficient hydrogen donors and reducing agents, in addition to their metal-chelating capabilities
and singlet oxygen quenchers [12]. Some flavonoids that have been explored for radioprotection
include curcumin, sesamol, hesperidin, rutin, ocimum sanctum, quercetin, and resveratrol [13].

Hesperidin (hesperetin-7-rhamnoglucoside, Figure 1) is a bioflavonoid found in citrus fruits such
as tangerine, orange, and lemon as well as in plant extracts such as tea and olive oil. Citrus fruit
peels have the highest concentrations of hesperidin. It has shown promising results in the treatment
of inflammatory as well as allergy diseases [14]. Its potential in the treatment of cardiovascular and
neurological disorders has also been investigated [15,16]. Studies have shown that hesperidin possesses
antimicrobial, anticarcinogenic, antioxidant, and anti-inflammatory effects and decreased capillary
fragility [17]. The purpose of this systematic review was to evaluate the radioprotective effect of
hesperidin against radiation-induced damage to cells and organs.

Figure 1. Chemical structure of hesperidin.

2. Materials and Methods

2.1. Search Strategy

The reporting of this systematic review was done according to the statement of preferred reporting
items for systematic reviews and meta-analyses (PRISMA) [18]. A computer-based literature search
was conducted in January 2019 using PubMed, Scopus, Embase, and Google Scholar for articles
published in English. No limit in publication year was applied. The following keywords were used for
our literature search: “hesperidin”, “radiation”, “radiation protection”, and “radioprotector”. We also
searched www.ClinicalTrials.gov for completed or ongoing clinical trials. In addition, references of
retrieved studies were manually screened to obtain relevant studies.

www.ClinicalTrials.gov
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2.2. Inclusion Criteria

The articles retrieved were based on the following inclusion criteria:

• Studies that were conducted to determine the radioprotective effect of hesperidin and were
published in the English language;

• Studies in which ionizing radiation was used; and
• Experimental and clinical studies with full texts.

2.3. Exclusion Criteria

We excluded studies based on the following criteria:

• Studies in which hesperidin was not used;
• Studies in which hesperidin was used in combination with other agents;
• Studies that made use of other forms of radiation such as ultraviolet (UV), fluorescence, cosmic, etc.;
• Studies that evaluated the effect of hesperidin with chemotherapy instead of radiation therapy; and
• Conference abstracts, simulation studies, review articles, case reports, letters, editorials,

unpublished data, articles without full texts, and non-English articles.

2.4. Study Selection

All retrieved articles from electronic as well as manual searches were entered into endnote software
(EndNote version X6, Thomson Reuters, New York, NY, USA). Thereafter, duplicates were removed.
Afterwards, two authors (A.E.M. and G.O.) independently reviewed the titles and abstracts of the
retrieved studies for eligibility. Studies were then selected based on the predetermined inclusion and
exclusion criteria. For any disagreements concerning the inclusion of studies, all authors agreed on a
consensus based on factual evidence.

2.5. Data Extraction

Data from each eligible study were extracted by A.E.M. and G.O. and checked by F.E. and D.S.
The following information was obtained: Author name, year of publication, subject, organ (or tissue) of
interest, radiation type and dose, hesperidin dose, as well as time for outcome assessment. Furthermore,
the main outcomes were summarized and included.

3. Results

3.1. Literature Search

The PRISMA flow diagram showing our search results is presented in Figure 2. Our initial
search gave a total of 229 records, with the breakdown as follows: 225 records from electronic
databases and 4 records obtained through a manual search. Our search of the online database of
www.ClinicalTrials.gov showed that there were no completed or ongoing clinical trials evaluating the
radioprotective effect of hesperidin. From these figures, 143 records were retained after removing
duplicates. Following careful examination and screening of their titles and abstracts as well as the
application of the inclusion and exclusion criteria, a further 114 records were excluded. The full texts of
the remaining 29 records were assessed. We excluded two articles for non-English language publication,
while three more records were removed for not having full texts. Finally, a total of 24 studies were
included in this systematic review.

www.ClinicalTrials.gov
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Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram
for the selection of included articles.

3.2. Study Characteristics

The summary of data showing the characteristics of included studies is presented in Table 1.
These articles, published between 2006 and 2018, employed an experimental case–control design.
Furthermore, they include 4 in vitro, 17 in vivo, 1 in vitro/in vivo, and 2 in vivo/in vitro studies using
rats, mice, and cultured human and animal cells. Gamma (γ)-radiation was utilized in 21 studies (with
1 study making use of a γ-ray from Technetium sestamibi (99mTc-MIBI) radiopharmaceuticals), and
X-ray radiation was used in 3 studies. The doses of the radiation were between 1 and 18 Gy. Hesperidin
was administered orally in 18 studies and intraperitoneally in 2 studies.
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Table 1. Summary of articles included in the systematic review.

First Author Subject Organ (or Tissue) of
Interest

Radiation Type and
Dose (Gy)

Hesperidin
Dose/Concentration

Time for Outcome
Assessment Main Outcomes

Katoch et al. [19] Cultured human
fibroblast cells Fibroblast cells γ-ray, 5 6.18 ± 0.26 mg/g

extract 4 h

Countered radiation-induced free radicals
post-irradiation, decreased prolonged oxidative
stress, and protected against radiation-induced

DNA damage.

Hosseinimehr et al. [20]
Cultured human

blood
lymphocytes

Lymphocytes γ-ray, 1.5 250 mg/kg body
weight 0–3 h

Significant decrease in the incidence of
micronuclei of blood lymphocytes collected 1 h

after oral administration of hesperidin compared
to those collected at 0 h. Maximum protection

and decrease in frequency of micronuclei (33%)
was observed at 1 h after ingestion of hesperidin.

Kalpana et al. [21] Cultured human
lymphocytes Lymphocytes γ-ray, 1–4 3.27–19.65 µM 30 min

Here, 16.38 µM hesperidin pretreatment prior to
irradiation had the maximum radioprotective

effect, which included a significant decrease in the
levels of MN and DC counts, as well as TBARS.
Reduction in tail length, tail moment, olive tail

moment, and % DNA in the tail. Increased levels
of enzymatic (SOD, CAT, and GPx) and

non-enzymatic (glutathione (GSH)) antioxidants
and restored DNA damage to near-normal levels.

Hosseinimehr et al. [22] Cultured human
lymphocyte cells Lymphocytes

γ-ray from
99mTc-MIBI

radiopharmaceuticals,
200 µCi

10–100 µM 3 h

Significant reduction in micronuclei frequency in
cultured lymphocytes, thereby leading to

protection against genetic damage. Optimal effect
of hesperidin was obtained at 100 µM

concentration.

Kang et al. [23] Cultured BALB/c
mice splenocytes Splenocytes γ-ray, 2 and 4 20–500 µM 24 h

Improved cell viability, prevented damage to
DNA, and hindered proinflammatory cytokines,

intracellular ROS, and NO.

Jagetia et al. [24] Swiss albino mice Skin wound γ-ray, 6 0–500 mg/kg body
weight 3–15 days

Treatment with 100 mg/kg hesperidin before
irradiation had the maximum radioprotective
effect, leading to a steady increase in wound
contraction and reduction in mean wound

healing time by 2 days.

Jagetia et al. [25] Swiss albino mice Skin wound γ-ray, 2–8 100 mg/kg body
weight 1–15 days

Enhancement of collagen, hexosamine, DNA, and
nitric oxide synthesis in the granulation tissue,

thereby improving wound healing compared to
the irradiated group.

Jagetia et al. [26] Swiss albino mice Skin wound γ-ray, 2–8 100 mg/kg body
weight 1–15 days

Significantly reduced both radiation-induced
delay in wound contraction and mean wound

healing time.

Jagetia et al. [27] Swiss albino mice Skin wound γ-ray, 6 50 and 100 mg/kg
body weight 0–48 h Reduced radiation-induced oxidative stress in the

irradiated wounds of mice.
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Table 1. Cont.

First Author Subject Organ (or Tissue) of
Interest

Radiation Type and
Dose (Gy)

Hesperidin
Dose/Concentration

Time for Outcome
Assessment Main Outcomes

Kalpana et al. [28] Swiss albino mice Liver X-ray, 4 12.5–100 mg/kg body
weight 30 days

Here, 25 mg/kg hesperidin pretreatment prior to
irradiation had the maximum radioprotective
effect, including restoring antioxidant status to

near-normal as well as decreasing the levels of the
lipid peroxidation index, DNA damage, and

comet parameters.

Lee et al. [29] ICR mice
Liver, intestine,

splenocytes, and
lymphocytes

X-ray, 15 50 and 200 mg/kg
body weight 10 and 30 days

Reduction of radiation-induced inflammation and
partial restoration of immune and nutritional

status.

Hosseinimehr et al. [30] NMRI mice Bone marrow cells γ-ray, 2 10–160 mg/kg body
weight 24 h

Hesperidin dose of 80 mg/kg had the maximum
reduction in the frequencies of MnPCEs.

Significant increase in PCE/PCE + NCE ratio in
mice bone marrow compared to nondrug-treated

irradiated control.

Haddadi et al. [31] Sprague-Dawley
rats Skin γ-ray, 22 100 mg/kg body

weight 24 h

Initiated angiogenesis by inducing VEGF gene.
Stimulated epithelialization and collagen

deposition and enhanced cellular proliferation,
thereby aiding wound healing and protecting

skin from radiation damage.

Haddadi et al. [32] Sprague-Dawley
rats Lung γ-ray, 18 100 mg/kg body

weight

24 h and 8 weeks for
acute and chronic
histopathological

evaluations,
respectively.

Hesperidin administration led to significant
decrease in radiation-induced inflammation and

inflammatory cells at 24 h post-irradiation.
Furthermore, there was a reduction in radiation
pneumonitis and radiation fibrosis in the lung

tissue at 8 weeks post-irradiation.

Shaban et al. [33] Sprague-Dawley
rats Testes γ-ray, 8 200 mg/kg body

weight 8 and 14 days

Reduction in OS, LPO, and apoptosis.
Improvement in structure of testes and better

protection of testes was observed when
hesperidin was administered before irradiation

compared to after irradiation.

Karimi et al. [34] Rats Lens γ-ray, 15 100 mg/kg body
weight 2 days

Significant increase in the GSH level and decrease
in MDA level, and hence, a reduction in oxidative

stress.

Abd El-Rahman et al. [35] Albino rats Blood, lung, and
dorsal aorta γ-ray, 6 40 mg/kg body weight 21 days

Significantly reduced lipid variation, decreased
oxidative stress, improved blood cell counts, and

attenuated lung and dorsal aorta tissue injury.

Rezaeyan et al. [36] Rats Lung γ-ray, 18 100 mg/kg body
weight 24 h

Significant reduction in macrophages and
neutrophils, as well as mild reduction in

inflammation and lymphocytes.
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Table 1. Cont.

First Author Subject Organ (or Tissue) of
Interest

Radiation Type and
Dose (Gy)

Hesperidin
Dose/Concentration

Time for Outcome
Assessment Main Outcomes

Fardid et al. [37] Rats Peripheral blood
lymphocytes γ-ray, 2 and 8 50 and 100 mg/kg

body weight 24 h Pretreatment with hesperidin significantly
reduced apoptosis in irradiated rats.

Rezaeyan et al. [38] Rats Heart X-ray, 18 100 mg/kg body
weight

24 h (for biochemical
assay and acute

histopathological
evaluation) and 8
weeks (for chronic
histopathological

evaluation)

Decreased inflammation, fibrosis, mast cell, and
macrophage numbers and myocyte necrosis.

Ahmed et al. [39] Albino rats Bone γ-ray, 2 160 mg/kg body
weight 24 h

Improvement in antioxidant activities as well as
biomechanical properties of bone and prevention

of endothelial dysfunction.

Pradeep et al. [40] Sprague-Dawley
rats

Liver, heart, and
kidney γ-ray, 5 50 and 100 mg/kg

body weight 7 days Reduction in necrotic and cellular damage, as
well as oxidative stress.

Said et al. [41] Albino rats Brain γ-ray, 5 50 mg/kg body weight 14 days

Significant reduction in oxidative stress,
monoamine alterations, and mitochondrial

damage, and hence a reduction in the severity of
radiation-induced biochemical brain disorders.

Park et al. [42] Sprague-Dawley
rats Heart and kidney γ-ray, 5 50 and 100 mg/kg

body weight 7 days

Treatment with hesperidin post-irradiation led to
significant reduction in levels of lipid

peroxidation, improvements in activities of
endogenous antioxidants (SOD, CAT, GPx, and

GSH), and minimal damage to the heart and
kidney tissues.

OS: Oxidative stress, LPO: Lipid peroxidation, GSH: Glutathione, MDA: Malondialdehyde, ROS: Reactive oxygen species, NO: Nitric oxide, VEFG: Vascular endothelial growth factor,
MN: Micronuclei, DC: Dicentric aberration, 99mTc-MIBI: Technetium sestamibi, ICR: Institute of Cancer Research, NMRI: Naval Medical Research Institute, BALB: Bagg Albino, TBARS:
Thiobarbituric acid reactive substances, SOD: Superoxide dismutase, CAT: Catalase, GPx: Glutathione peroxidase, MnPCEs: Micronucleated polychromatic erythrocytes, and NCE:
Normochromatic erythrocyte.
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3.3. Hesperidin Dosage

A hesperidin dose of 100 mg/kg body weight was mostly used in the included studies to assess
its radioprotective effect. In addition, this dose has been shown to be the most effective in reducing
the healing time of radiation-induced wounds by two days [24]. Results from another study by
Haddadi et al. also showed that this same oral dose of hesperidin was effective in accelerating wound
healing from radiation-induced skin damage [31].

Different effective hesperidin doses have also been reported in several studies. In a study
by Hosseinimehr and Nemati, a hesperidin dose of 80 mg/kg showed a maximum reduction in
the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) [30]. In a later study by
Hosseinimehr et al., they observed that maximum radioprotection was obtained 1 h after oral ingestion
of 250 mg/kg hesperidin [20].

Kalpana et al. detected maximum protection against radiation-induced reproductive death
for a hesperidin concentration in a cell medium of 16.38 µM (9.99 mg/L) [21]. In another study,
25 mg/kg hesperidin was the most effective dose, restoring antioxidant status to normal levels as well
as decreasing lipid peroxidation and preventing DNA damage [28]. Furthermore, Shaban et al. showed
that the best radioprotection by hesperidin was obtained when administered before irradiation [33].

3.4. Toxicity and Survival Analysis

In all included studies, there was no reported case of toxicity or side effects following the
administration of hesperidin. In an in vivo/in vitro study by Hosseinimehr et al., five human subjects
each received a hesperidin dose of 250 mg/kg orally before collection of their blood samples. They
showed no adverse signs 0 (before), 1, 2, and 3 h post-hesperidin ingestion [20].

In a study by Rezaeyan et al., rats treated with 100 mg/kg hesperidin before exposure to an 18-Gy
single-dose X-ray showed significant improvement in survival rates compared to those in the radiation
group (with a median survival period of 55 days). A 60-day follow-up indicated that five rats survived
in the radiation group, while eight survived in the hesperidin-pretreated group [38].

Hesperidin also improved survival in a study investigating its protective effect against
radiation-induced lung damage. Rats were administered 100 mg/kg hesperidin orally for seven
consecutive days before exposure to 18-Gy γ-rays. After a 60-day period of observation, 4 out of 10 rats
in the radiation group survived, while 7 out of 10 rats survived in the hesperidin + radiation group [32].

In evaluating the radioprotective effect of hesperidin against radiation-induced hepatic damage,
Kalpana et al. showed that mice pretreatment with 25 mg/kg hesperidin before exposure to 10-Gy
γ-rays increased the median survival period to 15 days compared to the nontreated groups (6 days)
exposed to the same radiation dose. Daily monitoring of these rats was done for 30 days [28].

4. Discussion

Exposure to IR can affect cellular components of living tissues, leading to early and late side
effects. The severity of IR-induced complications on normal tissues varies with radiation dose as
well as cell or organ type [43]. Early effects such as apoptosis, lymphocyte adhesion and infiltration,
vascular permeability, increased endothelial cell swelling, and edema occur within hours after radiation
exposure [44]. Late effects including necrosis, organ dysfunction, death, cancer, etc., occur months to
years following exposure [45]. These radiation effects pose serious concerns to humans, especially to
children, who are more radiosensitive [46]. If adequate protective measures are not put in place, they
may also negatively impact the quality of life of patients exposed to either diagnostic or therapeutic
doses of IR.

One of the strategies for countering radiation-induced damage is the use of radioprotectors. The
efficacy of natural radioprotective agents such as hesperidin has been explored in recent times. Thus,
in the present study, using a systematic review design, we searched for studies that made use of
hesperidin as a radioprotective agent against IR-induced damage.
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Results from the included studies showed that hesperidin demonstrated a protective effect against
both gamma and X-rays in the healthy tissue of mice, rats, and cultured human and animal cells (Table 1).
These effects were observed in hesperidin doses as low as 10 mg/kg administered orally. Furthermore,
hesperidin treatment reduced biochemical markers of oxidative stress and improved histopathological
outcomes of exposed tissues [27]. Moreover, its antiapoptotic activities were demonstrated in mouse
testes exposed to IR [33].

Skin, the body’s largest organ, is inevitably exposed to IR during radiotherapy. It has been
observed that bone marrow and skin epithelia have high susceptibility to IR-induced side effects [47].
It has been estimated that 90–95% of patients who receive radiotherapy show varying grades of
radiation-induced skin reactions [48,49]. Skin complications arising after radiotherapy are referred
to as radiodermatitis. Radiodermatitis is a common side effect after radiotherapy for breast cancer.
Furthermore, acute radiodermatitis, with indications including scaling, edema erythema, erosion,
and ulcers, could arise 90 days after radiotherapy. Chronic radiodermatitis can be observed a
few months after radiotherapy, with symptoms such as changes in skin texture, hypopigmentation
or hyperpigmentation, teleangiectasis, and poikiloderma. Hesperidin has been shown to prevent
radiation-induced skin burns via initiating the formation of new vessels and a microvascular network
through vascular endothelial growth factor (VEGF) gene induction [31].

Cardiovascular diseases are the leading causes of mortality worldwide [50]. It has been projected
that by the year 2030, cardiovascular diseases will account for an annual mortality of more than
23.3 million people [51]. The risk of radiation-induced heart diseases increases with IR doses to heart
tissues after radiotherapy for lung, breast, or esophageal cancers (due to the close proximities of these
organs to the heart), as well as in nuclear disasters. The functionalities of coronary vessels, valves, the
pericardium, and the myocardium are adversely affected after irradiation [52]. Our investigation of the
included studies showed potent radioprotective and anti-inflammatory effects of hesperidin on heart
tissues. The administration of hesperidin before irradiating the thorax with a high dose of gamma
radiation showed an improvement in survival as well as a reduction in oxidative damage, vascular
leakage, inflammation, the fibrosis and infiltration of macrophages, lymphocytes, and mast cells [38].
It was also effective in ameliorating serum heart disease markers [42] and preventing cellular damage
to the heart [40]. Similar outcomes were obtained for lung tissues [32,35,36].

Promising radioprotective effects have been observed for some natural antioxidants, such as
melatonin, selenium, Coenzyme Q10, α-tocopherol, caffeic acid, and ascorbic acid. [13]. Various clinical
trials have also confirmed the efficacy of some of these natural products [53,54]. Since experimental
findings have shown encouraging radioprotective results for hesperidin, it would be interesting to see
how it competes with other radioprotectors.

The present review has some limitations. First, we reviewed studies that used animals as well
as cultured human and animal cells due to the nonavailability of clinical trials. Furthermore, in the
studies included, the radioprotective effect of hesperidin was only investigated in healthy tissues. It
would be desirable to observe these effects in tumor cells.

5. Conclusions

In the results of the included studies in this review, it was shown that hesperidin has the potential
to be an effective radioprotector against IR-induced damage to cellular components of healthy tissues.
It showed promising antioxidant, anti-inflammatory, and as antiapoptotic abilities. There were no
reported side effects due to its administration. We suggest future clinical trials to further assess its
efficacy as well as its optimal dose. This is necessary in order to assess the clinical effects of experimental
melatonin doses as well as for more insight into possible variations between experimental outcomes
using cells or animals and those in humans. Comparative studies with other radioprotectors will
be required in order to investigate its effectiveness. The effects of hesperidin treatment on cancer
cells exposed to ionizing radiation should also be investigated. Lastly, more studies of the molecular
mechanisms of radioprotection by hesperidin would be desirable.
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