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Deep learning of material transport 
in complex neurite networks
Angran Li1, Amir Barati Farimani1,2,3,4 & Yongjie Jessica Zhang1,2*

Neurons exhibit complex geometry in their branched networks of neurites which is essential to 
the function of individual neuron but also brings challenges to transport a wide variety of essential 
materials throughout their neurite networks for their survival and function. While numerical methods 
like isogeometric analysis (IGA) have been used for modeling the material transport process via solving 
partial differential equations (PDEs), they require long computation time and huge computation 
resources to ensure accurate geometry representation and solution, thus limit their biomedical 
application. Here we present a graph neural network (GNN)-based deep learning model to learn the 
IGA-based material transport simulation and provide fast material concentration prediction within 
neurite networks of any topology. Given input boundary conditions and geometry configurations, 
the well-trained model can predict the dynamical concentration change during the transport process 
with an average error less than 10% and 120 ∼ 330 times faster compared to IGA simulations. The 
effectiveness of the proposed model is demonstrated within several complex neurite networks.

The geometry of neurites is known to exhibit complex morphology which is essential for neuronal function 
and biochemical signal transmission. However, highly branched networks of neurites also make it challenging 
to mediate intracellular material transport because material synthesis and degradation in neurons are carried 
out mainly in the cell  body1, 2 which leads to a long-distance transport for the material. The disruption of this 
long-distance transport can induce neurological and neurodegenerative diseases like Huntington’s, Parkinson’s 
and Alzheimer’s  disease3–7. Therefore, it has attracted a considerable amount of attention in recent years to study 
transport mechanisms and build mathematical transport models in neurite networks. Recent studies show that 
molecular motors play fundamental roles in intracellular transport to carry the material and move directionally 
along the cytoskeletal structure like microtubules or actin  filaments8–10.

Motivated by these findings, different mathematical models based on partial differential equations (PDEs) 
have been proposed to help understand transport mechanisms and pathology of neuron diseases. For instance, 
Smith and Simmons developed a generic model of molecular motor-assisted transport of cell organelles and vesi-
cles along  filaments11. Based on this motor-assisted transport model, Friedman and Craciun presented an axonal 
transport model by considering the ability of material to bind more than one motor  protein12. Craciun et al. 
introduced pausing of the material during the transport process in the model to study slow axonal  transport13. In 
addition, several PDE models were developed to study transport impairment by accounting for traffic  jam14 and 
microtubule  swirls15 in abnormal neurons. Though the aforementioned models provide a reasonable mechanistic 
explanation of transport mechanism or formation of the transport impairment in neurites, most of these models 
were solved only in one-dimensional (1D) domain without considering the impact of complex neurite geom-
etry. Recent advances in numerical methods and computing resources allow us to simulate the detailed cellular 
process in complex geometry using 1D or three-dimensional (3D) PDE models. For instance, computational 
software based on finite element method (FEM) has been used to solve PDE models in  neuron16 and cell biologi-
cal  systems17. The FEM approach was also used to model the extracellular electrical neural microstimulation 
and presented a clearer difference of neuron response compared to the hybrid FEM-cable-equation  approach18. 
However, these tools have accuracy and computational cost issues when tackling highly branched geometry 
like neurite networks. Based on the conventional FEM, isogeometric analysis (IGA)19 was proposed to directly 
integrate geometric modeling with numerical simulation and achieve better accuracy and robustness compared 
to FEM. With the advances in IGA, one can simulate the transport process by solving PDEs in an accurately 
reconstructed neuron geometry. In our previous study, we developed an IGA-based simulation platform to solve 
a 3D motor-assisted transport model in several complex neurite networks and obtain the spatiotemporal material 
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 distribution20. However, the high computational cost to perform 3D simulations has limited its application in 
the biomedical field when fast feedback from computer simulation is needed.

To address limitations in the current simulation platform, we propose to build a surrogate model by com-
bining deep learning (DL) with IGA simulation. DL has been proven successful in computer vision and image 
 recognition21–23 by handling a large number of labeled datasets and providing fast end-to-end prediction. The 
practical success of DL in artificial intelligence also inspires its application in solving high-dimensional  PDEs24 
and learning the physics behind PDE  models25. In particular, deep neural networks (DNNs) are becoming 
popular in surrogate modeling because it can be far more efficient when predicting complex  phenomena26. For 
instance, Farimani et al. applied conditional generative adversarial networks (cGAN) in a data-driven paradigm 
for rapid inference, modeling and simulation of transport  phenomena27. Wiewel et al. proposed a DL-based fluid 
simulator to predict the changes of pressure fields over  time28. Li et al. developed an encoder-decoder based con-
volutional neural network (CNN) to directly predict concentration distribution of a reaction–diffusion system, 
bypassing the expensive FEM calculation  process29. While these works manage to learn the underlying physical 
models for prediction, they are limited to handle the problem in relatively simple geometry with Euclidean data 
(e.g. structured grid) available for training. Recently, many studies on graph neural networks (GNNs) have 
emerged to extend DL techniques for data defined in the graph structure. Inspired by the success of  CNNs21, a 
large number of methods were developed to re-define the convolutional operation for graph data and achieve 
great performance in computer vision tasks like graph node classification and image graph  classification30–33. 
GNNs were also applied to predict the drag force associated with the laminar flow around  airfoils34 or the prop-
erty of crystalline  materials35, understand the interaction behind physics  scenes36, solve PDEs by modeling spatial 
transformation  functions37, or learn particle-based simulation in complex physical  systems38.

In this study, we develop a GNN-based model to learn the material transport mechanism from simulation data 
and provide a fast prediction of the transport process within complex geometry of neurite networks. The use of 
GNN is motivated by the extensive topologies of neurite networks and IGA simulation data stored in the mesh 
structure. Moreover, the GNN model can achieve better computational efficiency than IGA simulation without 
sacrificing too much geometry information of neuron. For instance, our GNN model can preserve the spatial 
concentration distribution on the cross section of 3D neuron geometries. To ensure the model is applicable to 
any neurite geometry, we build a graph representation of neurons by decomposing the neuron geometry into 
two basic structures: pipe and bifurcation. Different GNN simulators are designed for these two basic struc-
tures to predict the spatiotemporal concentration distribution given input simulation parameters and boundary 
conditions. Specifically, we add the residual terms from PDEs to instruct the model to learn the physics behind 
simulation data. To reconstruct the neurite network, a GNN-based assembly model is used to combine all the 
pipes and bifurcations following the graph representation. The loss function of the assembly model is designed 
to impose consistent concentration results on the interface between pipe and bifurcation. The well trained GNN 
model can provide a fast and accurate prediction of the material concentration distribution, leading to an efficient 
DL framework for studying the transport process in complex 3D models of neurite network. The framework 
was applied to several complex neurite networks achieving an average error less than 10% and 120 ∼ 330 times 
faster compared to IGA simulations.

Results
GNN model overview. The aim of our GNN model is to learn from the material transport simulation data 
and predict the transport process in any neurite network. However, the geometry diversity of neurite networks 
makes it impossible to train the DL model directly on the entire neurite network. To address this issue, we 
introduce a graph representation of the neurite network and build the GNN model based on the graph network 
(GN)  framework36. A neurite network can be decomposed into two basic structures: pipe and bifurcation (yel-
low square and red circle in Fig. 1, respectively). Each structure can be treated as one node in the graph and 
the nodes can be connected following the skeleton of the neurite network to constitute the graph. Based on the 

Figure 1.  An overview of the GNN model to learn and predict neuron material transport process. The input 
neurite network is first decomposed into pipes and bifurcations to create the graph representation of the neurite 
network. Next, the input features xi of each pipe or bifurcation are processed by the corresponding GNN 
simulator ( Gp

S or Gb
S ) to generate intermediate concentration result xmid . Then, the GNN assembly model ( GA ) 

takes xmid as input and computes the interaction between simulators to predict concentration result xo.
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graph representation of the neurite network, two separate GNN simulators are built for the pipe ( Gp
S ) and the 

bifurcation ( Gb
S ), respectively. Given input features xi including node locations, simulation parameters and initial 

nodal concentration, the simulators can output the intermediate nodal concentration result xmid in the pipe and 
the bifurcation, respectively. To obtain a consistent global concentration result, a GNN assembly model ( GA ) is 
used to learn the interaction between different structures so that given intermediate value xmid , the model can 
assemble different structures and output the final prediction xo on the graph. In sum, our GNN model consists of

• The GNN simulators for local prediction in pipe and bifurcation structures; and
• The GNN assembly model for global prediction in the entire neurite network.

We implement our GNN model using  PyTorch39 and the ”PyTorch Geometric”  library40. The detailed results 
will be explained in the following sections.

GNN simulators for pipe and bifurcation. Since the pipe and the bifurcation have different geometry 
topologies, we train two separate simulators to handle different graph structures extracted from the simulation 
results. Both simulators share the same recurrent “GN block + MLP Decoder” architecture but are trained with 
pipe and bifurcation datasets, respectively. As shown in Fig. 2, the input feature vectors depicting geometry, 
parameter settings, boundary conditions and concentration values ctk at tk are first processed by a series of GN 
blocks to learn the hidden layer representations that encode both local graph structure and features of nodes. In 
our GNN simulator, the GN block includes two modules φe , φv to update the edge and node features, respec-
tively. φe computes the concentration gradient along the edge and the length of the edge. Given the spatial coor-
dinates pi , pj and concentration ci , cj of two end nodes on edge eij , φe outputs the edge attributes xeij as 
[

(cj − ci)/||pj − pi||, ||pj − pi||
]

 . φv is a multilayer perceptron (MLP) consisting of two hidden layers (with ReLU 
activations), each layer with the size of 32. The forward computation of our GN block is characterized by Algo-
rithm 1. After the GN blocks output the latent graph that encodes all the node features, a MLP is then used to 
decode the hidden layer representation and output predicted concentration values ctk+1 at the next time step tk+1 . 

Figure 2.  Results of GNN simulators. (A) The architecture of the GNN simulators adopts a recurrent “GN 
Block + MLP Decoder” scheme on the input graph to compute nodal concentration values at each time step 
from input nodal features. The input nv-node graph is stored in a nv × nv adjacent matrix. The nodal features 
include coordinate vector x, simulation parameter vector p and initial concentration values ctk at time step 
tk . The L-step “GN Block” follows Algorithm 1 to compute the interaction among nodes and generates a 
series of updated latent graphs with hidden nodal embeddings, h1 , ..., hL . The “MLP Decoder” outputs nodal 
concentration values ctk+1 at the next time step from the nodal embedding hL of the final latent graph. (B, C) The 
concentration distribution comparison of pipe and bifurcation simulators, respectively. For each simulator, we 
plot the prediction and nodal error results at three different time steps. The average errors are 3.45% and 4.97% 
for the pipe and bifurcation simulators, respectively.
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The MLP has three hidden layers (with ReLU activations), followed by a non-activated output layer, each layer 
with the size of 32.

The input graph of the simulator is created by extracting certain nodes from each cross section of a hexahedral 
mesh following the templates (Supplementary Fig. S1). For each pipe structure, we use a circular plane template 
(Supplementary Fig. S1C) to extract 17 nodes from each cross section. For each bifurcation structure, we use 
another template (Supplementary Fig. S1D) to extract 23 nodes from the cross section at the bifurcation branch 
point. We also use the same circular plane template to extract 3 circular cross sections on each branch of the 
bifurcation. For each node, we collect the geometry information and simulation parameters in an input feature 
vector. Here, the geometry information of each node is encoded by its coordinates and the radius of the cross 
section on which the node is located. The nodal concentration value is set to be the target prediction.

To encourage the model to learn the physics underlying the simulation data, we add the residuals of the 
governing equation (Eq. 3 in Methods) to the mean squared error (MSE) loss function as

where c0 , c+ and c− are the spatial concentrations; D is the diffusion coefficient of materials; u+ and u− are veloci-
ties of materials; k± and k′± are filament attachment and detachment rates (See Eq. 3 in Methods for the detailed 
physical meaning of the aforementioned variables); N denotes the number of nodes on the graph; and superscripts 
P and G denote the prediction and the ground truth value on the graph, respectively.

To create the training dataset for two simulators, we first use our IGA solver to run the material transport 
simulation (see Methods for details) in two complex zebrafish neurons from the NeuroMorpho.Org  database41 
(NMO_66731 and NMO_66748 in Fig. 3B,D). Regarding the simulation setting, we use 200 different boundary 
condition values and set constant parameters in Eq. (3) and Eq. (5) as D = 1.0 µm2/s , k± = 1.0 s−1 , k′± = 0.5 s−1 
and ui = 0.1 µm/s . The time step for each simulation is set to be 0.1 s . We simulate until the transport process 
is steady and then extract the spatiotemporal simulation results of 100 different geometries for each simulator 
from these two neurons. Note that for each geometry, we extract all the time-sequence simulation results until 
the steady state point as the training data. The nodal feature vectors and nodal concentration values are stored 
for each geometry to build the training dataset that contains 20,000 samples for each simulator. After establishing 
the architecture of two simulators, we train each simulator by randomly selecting 75% samples as the training 
data. The Adam  optimizer42 is used to optimize the model with the step learning rate decay ranging from 10−3 to 
10−6 . Our simulators are trained for 200 epochs and we evaluate the performance of the model using the rest 25% 
samples as the test dataset. At the end of training, the test loss for the pipe and bifurcation simulators converges 
to 0.265 and 0.111, respectively (Supplementary Fig. S2).

To demonstrate the performance of our GNN simulators, we select three prediction results of a pipe and a 
bifurcation from the test dataset and compare them with their corresponding IGA simulation results in Fig. 2. 
For the pipe simulator, we find the model can accurately capture the boundary conditions and predict the con-
centration distribution at each time step, which indicates that the GNN simulator manages to learn the time-
dependent behavior of the transport equations. By comparing nodal error at t = 2.6 s and t = 3.4 s in Fig. 2B, 
we find the error increases along with the front of material propagation through the pipe, which suggests that the 
pipe simulator is sensitive to the sudden distribution change during the material propagation and needs further 
improvement. For the bifurcation simulator, the predicted result has higher accuracy around the branch region 
which suggests that the bifurcation simulator learns to transport the material in correct directions at the branch 
point. However, the boundary condition is not preserved as well as the pipe simulator performs. The possible 
reason is that the boundary nodes have fewer neighboring nodes for edge feature aggregation compared to the 
interior nodes and the lack of neighboring information leads to higher error. Therefore, our bifurcation simula-
tor can be further improved to balance the neighborhood between the boundary and interior nodes to better 
preserve the boundary condition.

(1)
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1
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We perform 4-fold cross validation and the mean relative error (MRE) results for both simulators are shown 
in the second column of Table 1. The well-trained GNN simulators can provide concentration prediction with an 
error of less than 8% on average. With a standard deviation less than 1.3%, the model shows good performance 
when being generalized to unknown data. To study the impact of the PDE residuals in Eq. (1) on the predic-
tion performance, we compare our simulators with the model trained using the standard MSE loss function. 
We perform cross validation with the same dataset for each comparison and the results are shown in Table 1. 
The comparison shows that the model achieved better accuracy when trained with the “MSE + PDE residuals” 
loss function, which indicates the physics information contained in PDE residuals is learned by the model and 
improves its performance.

GNN assembly model. The objective of the GNN assembly model is to assemble local prediction from 
simulators and output an improved continuous concentration distribution on the entire geometry. An overview 
of the GNN assembly model is shown in Fig. 3. The assembly model needs to learn the interaction between two 
simulators. Here the assembly model includes three components to cover all the assembly scenario in a decom-
posed neurite network: (a) pipe and pipe Gp−p

A  ; (b) pipe and bifurcation Gp−b
A  ; and (c) bifurcation and bifurcation 

Gb−b
A  . During assembly, the model loops each simulator node on the decomposed neurite network and utilizes 

the “message-passing” scheme to gather predicted results from its neighboring simulator nodes (green arrows in 
Fig. 3A). In particular, the nodal predicted results on the interface between two simulator nodes are collected. 

Figure 3.  Results of the GNN assembly model. (A) The GNN assembly model takes the intermediate prediction 
X from individual GNN simulators as input and outputs the final concentration prediction X ′ . The GNN 
assembly components Gp−p

A  , Gp−b
A  and Gb−b

A  adopt the “message-passing” scheme to aggregate the intermediate 
prediction from the neighboring nodes to update the concentration prediction. The green arrows show the 
message-passing process during the assembly. (B, C) The predicted concentration and the nodal prediction error 
of NMO_66731 at steady state ( t = 25 s ). (D, E) The predicted concentration and the nodal prediction error of 
NMO_66748 at steady state ( t = 31 s ). In (B) and (D), the black arrows point to the inlet of material. Scalar bar: 
20 µm . Unit for color bars: mol/µm3.
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Then, all the collected values from their neighboring simulator nodes are concatenated with values from the 
current simulator node and processed by a MLP to improve the prediction. While Gp−p

A  , Gp−b
A  and Gb−b

A  have dif-
ferent numbers of input and output values, they share the same MLP architecture with three hidden layers (with 
ReLU activations), followed by a non-activated output layer, each layer with the size of 32.

To ensure the concentration result is consistent on the interface between two simulators, we add a penalty 
term to the MSE loss function as

where N denotes the number of nodes on two assembled simulators, M denotes the number of nodes on the 
interface, superscript P and G denote the prediction and the ground truth value on the graph, respectively. Super-
scripts s1 and s2 denote the prediction value from the first and second simulators, respectively. α is the penalty 
strength which is set to be 10 in this study.

We use the same IGA simulation results in two complex geometries of zebrafish neurons (NMO_66731 and 
NMO_66748 in Fig. 3B,D) to create a training dataset for the assembly model. Based on the graph representation 
of these two trees, we follow three basic assembly structures and extract 30 different geometries for each type 
of assembly. The simulation results of these geometries are output and create 6,000 samples for each assembly 
structure. The model is trained using 75% samples as the training dataset and we evaluate the performance 
of the model using the rest 25% samples as the test dataset. At the end of training, the test loss for the GNN 
assembly model converges to 0.1492 (Supplementary Fig. S3). To test the performance of the assembly model, 
we use these two complex geometries and compare the concentration prediction at steady state (Fig. 3B–E). The 
prediction MREs are 6.7% for NMO_66731 and 7.3% for NMO_66748, respectively. We find that the assembly 
model manages to generate a continuous global concentration distribution for each geometry. The comparison 
of predicted concentration between nodal error for each geometry also shows that high concentration regions 
are predicted accurately. This indicates that our GNN model can capture the locations that are easier to develop 
transport disruption due to material accumulation.

Results for complex neurite networks. After the simulators and the assembly model in the GNN 
framework are well trained, we use our GNN model to predict the concentration distribution in several complex 
neurite networks and compare with the simulation results from our IGA solver. All complex neurite networks 
selected from the NeuroMorpho.Org database are shown in Figs. 4 and 5. Since the GNN model is trained with 
the simulation data in zebrafish neurons, we pick another two zebrafish neurons (Fig. 4A,B) to test the model 
performance in the neurons from the same species. We also pick another six mouse neurons (Fig. 4C,G,H, 5) 
from a different species to validate the model. We choose neurons with the number of bifurcations ranging from 
9 to 356. For each neuron, we first run IGA simulation to get the ground truth concentration results and then 
compare with the predicted concentration obtained from our GNN model. Fig. 4 shows the prediction results 
for the neurons with longer branches and Fig. 5, shows neurons with more bifurcations and shorter branches. 
We observe that the model performance gets worse in longer branches or regions with a high density of bifurca-
tions. The possible reason is that the increasing complexity of the geometry leads to a larger graph representation 
which affects the prediction accuracy due to the complicated assembling process on more simulators.

The detailed geometry information, computation statistics and error comparison are summarized in Table 2. 
By comparing the prediction MRE of zebrafish neurons (top four rows in Table 2), we find the MRE only increases 
by around 0.8% for all the tested zebrafish neurons, which validates the applicability of the model among neurons 
from the same species. In addition, we find that the average prediction MREs of zebrafish and mouse neurons 
are comparable with 7.18% and 8.23%, respectively, indicating that the trained model can also work for neurons 
from other species.

To evaluate the computation performance, we define a speedup ratio as the ratio between the IGA computa-
tion time and the GNN prediction time. We run the code and measure the computation time on the XSEDE 
(Extreme Science and Engineering Discovery Environment) supercomputer  Bridges43 in the Pittsburgh Super-
computer Center. For each geometry, we perform the IGA simulation through parallel computing on CPU and 
perform GNN prediction on GPU. The speedup ratio for each geometry is shown in Table 2 and we find that our 
GNN model can achieve up to 330 times faster compared to IGA simulation. We also observe that the speedup 
ratio decreases when the neuron geometry becomes complicated with more bifurcations. The ratio converges 
to around 120 when the bifurcation number reaches 356, which is still a significant improvement by reducing 
computation time from hours to minutes.

(2)
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Table 1.  MRE comparison between simulators using different loss functions.

Loss function MSE MSE + PDE residuals

Pipe simulator 10.9 ± 3.45% 6.10 ± 1.25%

Bifurcation simulator 13.5 ± 2.47% 7.20 ± 0.78%
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Discussion
In this paper, we present a GNN-based DL model for predicting the material transport process in complex 
geometry of neurons. Our strategy utilizes a graph representation of neurons to overcome the difficulty in 
handling different neuron geometries with the DL model. The underlying assumption of our approach is that 
the material concentration distribution can be predicted locally in simple geometries and then be assembled 
following the graph representation to restore the concentration distribution in any complex geometry. Two GNN 
models are developed to validate our assumption. The first GNN-based model serves as the simulator to predict 
dynamic concentration results locally on the mesh of two basic structures: pipe and bifurcation. We adopt GNN 

Figure 4.  The concentration prediction of material transport in the neurite network geometry of NMO_06846, 
NMO_06840, NMO_112145, NMO_32235 and NMO_32280. (A–C, G, H) The predicted concentration results 
of steady state at t = 15 s , 26 s , 19 s , 28 s and 32 s , respectively. The white arrows point to the inlet of material. 
Scalar bar: 20 µm . Unit for color bars: mol/µm3 . (D–F, I, J) The nodal errors between the ground truth and 
predicted concentration. Logarithmic scale is used to highlight the distribution pattern.
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Figure 5.  The concentration prediction of material transport in the neurite network geometry of NMO_54504, 
NMO_54499 and NMO_00865. (A, C, E) The predicted concentration results of steady state at t = 12 s , 41 s , 
and 63 s , respectively. The black arrows point to the inlet of material. Scalar bar: 20 µm . Unit for color bars: 
mol/µm3 . (B, D, F) The nodal errors between the ground truth and predicted concentration. Logarithmic scale 
is used to highlight the distribution pattern.

Table 2.  Statistics of all tested complex neurite networks. Each node in Bridges has 28 cores.

Species Model name
Mesh (vertices, 
elements) Bifurcation number

IGA computation 
(nodes, time (mins))

GNN prediction time 
(mins)

Speedup ratio (IGA 
vs GNN)

GNN prediction 
MRE (%)

Zebrafish

NMO_66731 (Fig. 3B) (127,221, 112,500) 15 (8, 468) 1.6 293 6.7

NMO_66748 
(Fig. 3D) (282,150, 249,660) 35 (10, 672) 3.9 172 7.3

NMO_06846 
(Fig. 4A) (116,943, 101,880) 20 (8, 413) 2.1 197 7.2

NMO_06840 (Fig. 4B) (280,434, 248,040) 35 (10, 705) 4.4 160 7.5

Mouse

NMO_112145 
(Fig. 4C) (110,985, 98,460) 9 (8, 350) 1.2 291 7.4

NMO_32235 
(Fig. 4H) (96,714, 85,680) 9 (6, 320) 1.3 246 7.8

NMO_32280 (Fig. 4I) (131,967, 117,000) 12 (8, 493) 1.5 329 8.1

NMO_54504 
(Fig. 5A) (116,943, 101,880) 32 (8, 436) 3.1 140 8.3

NMO_54499 
(Fig. 5C) (524,871 459,360) 127 (20, 759) 6.1 124 8.7

NMO_00865 (Fig. 5E) (1,350,864, 1,179,900) 356 (40, 908) 7.1 127 9.1
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to directly handle the IGA simulation data stored in the unstructured mesh. Given input boundary conditions 
and geometry information of a pipe or bifurcation, the well trained simulators are able to provide high accuracy 
results (MRE < 7% ). The second GNN-based assembly model then collects all the local predictions and follows 
the graph representation of the neurite network to update the global prediction. As shown in Figs. 4, 5, the 
model is evaluated on complex neurons from mouse and zebrafish and shows its applicability with consistent 
performance in different neuron geometries. In particular, the model is capable of providing the spatiotemporal 
concentration prediction with MRE < 10% and over 100 times faster than the IGA simulation. Furthermore, the 
accurate distribution prediction can help us determine high concentration regions, which is essential to infer 
possible locations to develop transport disruption.

Our study shows that the complex and diverse geometry of neurons has a major impact on the material 
concentration distribution and further affects the prediction accuracy of our GNN model. As shown in Figs. 4 
and 5, the radius of most complex neurons is larger around the inlet region and decreases downstream, which 
contributes to material accumulation at the inlet region. The increase of bifurcations can also aggravate the 
accumulation when there is a sharp decrease of radius in the downstream branches (Fig. 5E). These geometry 
features contribute to the complicated concentration distribution and thus bring challenges to improve the per-
formance of our GNN model. One challenge we have for the most complex neuron NMO_00865 is that MRE 
gets worse to 12.5% when it was initially tested using the model trained with the zebrafish neuron dataset. We 
plot the nodal error and find the error is higher at regions with high curvature or sharp radius change (Supple-
mentary Fig. S5). The possible reason is that the GNN model lacks the knowledge of these scenarios since they 
are not common in the training dataset obtained from zebrafish neurons. To address this issue, we extract 20 
geometries for each scenario from NMO_00865 and include them in the training dataset. We adopt the transfer 
learning  method44 to reuse the pre-trained GNN model as the starting point and obtain an improved model by 
training with the new dataset. The new model achieves the MRE of 9.1% on NMO_00865 which is comparable 
to the other testing neurons. This indicates that our GNN model can be further optimized with transfer learning 
on a better training dataset and an optimal dataset with a variety of geometries considered is quite essential to 
improve the applicability of the model.

The integration of the governing equations with the GNN model also plays a critical role in guiding the 
GNN model to learn the underlying physics behind the simulation data. By including the PDE residuals as the 
physics loss in the loss function of the GNN simulator (Eq. 1), superior performance is achieved over the model 
trained with the standard MSE loss function. The interface loss is also considered in the loss function of the GNN 
assembly model (Eq. 2) to minimize the noncontinuous concentration gap between the assembled geometries, 
which enables a continuous global concentration prediction. The results indicate that the physics-based loss 
function serves as an explainable component of the GNN model and teaches the model to utilize the simulation 
data more efficiently.

Our method, directly learning the transport mechanism from numerical simulation data in mesh format, 
makes it flexible to design data-driven DL models and further explore the value of simulation data. The model 
can also be extended to a general GNN framework for learning other PDE models in any complex geometry. 
Specifically, we can modify the PDE residuals in the simulator loss function to create a physics-guided data-driven 
DL model for any PDE solver. Our study also has its limitations, which we will address in our future work. In the 
current model, we only consider different geometries and boundary conditions as input features, while fixing 
the simulation parameters. In addition, there are still many more neurite networks with different topologies that 
are not considered in our dataset. To further improve the performance of our GNN model, we will optimize the 
training dataset by including different simulation parameter settings and different geometries to generalize its 
application in neurons of broader morphology. We will also study how to combine GNN with physics-informed 
neural network so that the geometry information of the data can be fully encoded and utilized in the DL frame-
work. Despite these limitations, our GNN model efficiently and accurately predicts the dynamic concentration 
distribution within complex neurite networks and provides a powerful tool for further study in this field.

Methods
IGA-based material transport simulation on complex neuron geometries. In our previous study, 
we developed an IGA-based solver to perform dynamic material transport simulation in large and complex neu-
rite  networks20. IGA is an advanced finite element technique that differs from conventional finite element analy-
sis (FEA) for its direct integration of geometrical modeling with numerical solutions. With the same smooth 
spline basis  functions45 utilized as the basis for both geometrical modeling and numerical solution, IGA can 
accurately represent a wide range of complex geometry with high-order continuity while offering superior per-
formance over FEA in numerical accuracy and  robustness19. Due to its many performance advantages, IGA has 
been adopted in a wide variety of research areas, such as linear  elasticity46, shell  analysis47–49, cardiovascular 
 modeling50–55 and fluid-structure  interaction56–58, as well as  collocation59, 60. Truncated T-splines61, 62 were devel-
oped to facilitate local refinement over unstructured quadrilateral and hexahedral meshes. Blended B-splines63 
and Catmull-Clark subdivision basis  functions64 were investigated to enable improved or even optimal conver-
gence rates for IGA.  Our geometric modeling and IGA simulation  pipeline20 is shown in Supplementary Fig. S4. 
To reconstruct the geometry of different neurite networks for the simulation, we first obtain their morphologies 
stored in the SWC format from the NeuroMorpho  database41. With the skeleton and diameter information 
provided in the SWC files, we adopt the skeleton-sweeping  method50 to generate the hexahedral control mesh of 
the neurite network, and then build trivariate truncated hierarchical B-splines over it. Regarding the governing 
equations of the simulation, we generalize the 1D motor-assisted transport  model11 to 3D geometry to accurately 
account for the actual morphology of the neurite. The model is described as a group of “reaction–diffusion-
transport” equations, we have
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where the open set � ⊂ R
3 represents the internal space of the single neurite; c0 , c+ and c− are the spatial 

concentrations of free, incoming (relative to the cell body; retrograde), and outgoing (anterograde) materials, 
respectively; D is the diffusion coefficient of free materials; u+ and u− are velocities of incoming and outgoing 
materials, respectively; k± and k′± are rates of cytoskeletal filament attachment and detachment of incoming and 
outgoing materials, respectively; and � , �̃ represent the degree of filament attachment at both ends and are also 
referred to as the “degree of loading”11. Regarding the boundary condition, we assume stable concentrations of 
free and incoming materials at both the incoming end and the outgoing end and set constant values to � and �̃ . 
In this study, we assume the filament system is unipolar that leads to a unidirectional material transport process 
and ignore c− , u− , k− , k′− terms in Eq. (3).

To obtain a physically realistic transport process in 3D, we assume that the flow of transport is incompress-
ible and solve the steady-state Navier–Stokes equation to derive a physically realistic velocity field inside the 
single neurite

where the open set � ⊂ R
3 represents the incompressible fluid domain, u is the flow velocity, p is the pressure, f  

is the given body force per unit volume, ν is the kinematic viscosity, and ⊗ denotes the tensor product. Regard-
ing boundary conditions, we impose non-slip condition at the neurite wall and apply a parabolic profile inlet 
velocity for each point on the circular cross section as

where ui is the inlet transport velocity defined in our material transport model, r is the distance from the center 
of the circular cross section to the point, and R is the radius of the circular cross section. The direction of the 
velocity is perpendicular to the inlet cross section. We utilize IGA to solve Eq. (4) and get the velocity field u . 
Based on the unidirectional transport assumption, the velocity field is used as u+ = u to solve Eq. (3). As a 
result, we obtain the material concentration at every time step stored in the truncated hierarchical B-spline of 
the neurite network. These simulation results are then collected and processed as the training data for this study.

A review of GNNs. GNN is a machine learning technique that was first proposed to generalize existing 
neural networks to operate on the graph  domain65. It has been widely used to perform graph analysis in social 
 networks31, 66, traffic  networks67 and  physics68, 69. In the following, we explain the basic idea of GNN by using the 
original GNN  framework65.

A graph G is a pair (V ,E ) , where V is the set of nodes and E is the set of edges. Given the node features XV , 
the edge features XE and outputs O , the GNN is trained to learn the embedding state S to establish the global 
mapping between all the features and outputs. Since each node is naturally defined by its features and the related 
nodes in a graph, the nodal embedding state sv and the nodal output ov can be produced locally as

where xv , xe , sne[v], xne[v] are the features of node v, the features of its edges, the embedding states and the features 
of nodes in the neighborhood of v, respectively. ft is the local transition function and fo is the local output func-
tion. Both ft and fo are parametric functions including the parameters to be trained and shared among all nodes.

Let Ft (the global transition function) and Fo (the global output function) be stacked versions of ft and fo for 
all nodes in a graph, respectively. Then, we get a compact form of the global mapping:

Based on Banach’s fixed point  theorem70, GNN uses the following iterative scheme to compute the embedding 
states:

where Sk is the k-th iteration of S . The training of the aforementioned GNN model is straightforward. With the 
target output õv for the supervision, the loss function can be defined as

(3)



























∂c0

∂t
− D∇2c0 = −(k+ + k−)c0 + k′+c+ + k′−c− in�,

∂c±

∂t
+ u± · ∇c± = k±c0 − k′±c± in�,

c0 = c, c+ = �c at incoming end,

c0 = c̃, c− = �̃c̃ at outgoing end,

(4)
{

∇ · u = 0 in�,
∇ · (u⊗ u)+∇p = ν�u+ f in�,

(5)u(r) = ui(1− (r/R)2),

(6)sv = ft(xv , xǫ , sne[v], xne[v]),

(7)ov = fo(sv , xv),

(8)S = Ft(S,XV ,XE ),

(9)O = Fo(S,XV ).

(10)S
k+1 = Ft(S

k ,XV ,XE ),
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where p is the number of supervised nodes. Then the gradient-descent strategy is used to update and learn the 
parameters in ft and fo.

The original GNN framework has the limitation that they can only handle the nodes embedded in fixed 
graphs and have to be re-trained whenever the graph structure changes. To address this limitation,  GraphSAGE31 
was proposed to generalize the GNN algorithms to learn the nodes embedded in dynamic graphs. The key 
idea of GraphSAGE is to learn how to aggregate feature information from a node’s local neighborhood. When 
the aggregator weights are learned, the embedding of an unseen node can be generated from its features and 
neighborhood. To further generalize the concept of GNN, several different GNN frameworks were proposed 
to integrate different DL models into one framework, such as the message passing neural network (MPNN)71, 
the non-local neural network (NLNN)72 and the graph network (GN)36. In our study, the extensive geometry of 
neurite networks contributes to different mesh structures for prediction. In particular, different lengths of the 
pipe lead to different numbers of cross sections along the pipe skeleton. Therefore, we implement GN in our 
GNN model to ensure the model is suitable for any neuron geometry.

Model evaluation. Two performance metrics were used to evaluate the accuracy of the predicted concen-
tration distributions from our algorithm: mean absolute error (MAE) and mean relative error (MRE). For each 
predicted result, the MAE is defined by

where N denotes the number of elements in the output, cPi  and cGi  denote the predicted and ground truth con-
centration values of the ith node in a given mesh, respectively. For each predicted result, the MRE is defined by

where max
∣

∣

∣

∣cG
∣

∣

∣

∣ and min
∣

∣

∣

∣cG
∣

∣

∣

∣ denote the maximum and minimum nodal concentration values from the ground 
truth result, respectively.

Data availability
All data generated during this study can be reconstructed by running the source code.

Code vailability
The source code for our model and all input data are available for download from a public software repository 
located at https:// github. com/ truth live/ Neuro nTran sport Learn ing.
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