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ABSTRACT

The heritability of nicotine dependence based on family studies is substantial. Nevertheless, knowledge of the underly-
ing genetic architecture remains meager. Our aim was to identify novel genetic variants responsible for interindividual
differences in smoking behavior. We performed a genome-wide association study on 1715 ever smokers ascertained
from the population-based Finnish Twin Cohort enriched for heavy smoking. Data imputation used the 1000 Genomes
Phase I reference panel together with a whole genome sequence-based Finnish reference panel. We analyzed three
measures of nicotine addiction—smoking quantity, nicotine dependence and nicotine withdrawal. We annotated all
genome-wide significant SNPs for their functional potential. First, we detected genome-wide significant association
on 16p12 with smoking quantity (P = 8.5 × 10�9), near CLEC19A. The lead-SNP stands 22 kb from a binding site
for NF-κB transcription factors, which play a role in the neurotrophin signaling pathway. However, the signal was
not replicated in an independent Finnish population-based sample, FINRISK (n = 6763). Second, nicotine withdrawal
showed association on 2q21 in an intron of TMEM163 (P = 2.1 × 10�9), and on 11p15 (P = 6.6 × 10�8) in an intron
of AP2A2, and P = 4.2 × 10�7 for a missense variant inMUC6, both involved in the neurotrophin signaling pathway).
Third, association was detected on 3p22.3 for maximum number of cigarettes smoked per day (P = 3.1 × 10�8) near
STAC. Associating CLEC19A and TMEM163 SNPs were annotated to influence gene expression or methylation. The
neurotrophin signaling pathway has previously been associated with smoking behavior. Our findings further support
the role in nicotine addiction.
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INTRODUCTION

Smoking is a major risk factor for non-communicable dis-
eases, with the largest public health burden due to
chronic obstructive pulmonary disease, cancers and car-
diovascular diseases (USDHHS 2014). Thus, tobacco use
constitutes the most common cause of mortality, with
more than 5 million preventable deaths resulting from di-
rect tobacco use each year (WHO 2015).

For the majority of smokers, persistent tobacco use is
motivated by nicotine dependence (ND) (Moss et al.
2012). Nicotine binds to nicotinic acetylcholine receptors
(nAChRs) in the brain. Stimulation of nAChRs induces
the release of various neurotransmitters, such as dopa-
mine, which has a key role in drug-induced reward by
creating the perceptions of pleasure and reward (Nestler
2005). Repeated exposure to nicotine leads to
neuroadaptation (Wang & Sun 2005), during which the
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number of nAChRs increases, plausibly due to desensiti-
zation of the receptors (Govind et al. 2009). Desensitiza-
tion is suggested to mediate tolerance and dependence
(Dani & Harris 2005). The symptoms of craving and
withdrawal emerge during abstinence, when the
desensitized receptors again become responsive (Dani &
Harris 2005). Smoking and other forms of nicotine use
alleviate these symptoms, as nicotine re-binds to the
receptors.

When attempting cessation, nicotine withdrawal
(NW) symptoms cause powerful stimuli to sustain
smoking (Le Moal & Koob 2007). These symptoms are
strong predictors of relapse, specifically during the first
week of a quit attempt (Ashare et al. 2013). The positive
reinforcement induced by the dopamine system com-
bined with the objective of avoiding NW symptoms un-
derlies the pharmacological and physiological aspects of
ND, while social and psychological factors add multi-
dimensionality (Benowitz 2010).

Family and twin studies have suggested high (40–75
percent) heritability for ND (Rose et al. 2009). Genome
wide association study (GWAS) meta-analyses have ro-
bustly reported a smoking behavior locus on 15q24–25
harboring genes encoding nAChR subunits α5
(CHRNA5), α3 (CHRNA3) and β4 (CHRNB4). Associa-
tions have been reported for numerous smoking-related
traits (Lassi et al. 2016). A functional variant D398N
has been identified in CHRNA5 (Bierut et al. 2008); how-
ever, alleles at this locus explain less than 1 percent of the
variance in amount smoked (Thorgeirsson et al. 2008),
and about 4–5 percent of the variance in cotinine levels
(Keskitalo et al. 2009; Munafo et al. 2012). Still, the un-
derlying genetic architecture of ND remains poorly
understood.

Due to the design of the genotyping arrays and quality
control settings, most variants highlighted in the previ-
ously mentioned large-scale meta-analyses have been
common (minor allele frequency (MAF) >5 percent). Ev-
idently, common variants of at least moderate effect only
explain a fraction of the estimated heritability. Utilizing
population-specific imputation reference panels obtained
from large-scale whole-genome/exome sequencing stud-
ies is shown to increase the imputation accuracy of low
frequency (MAF 1–5 percent) and rare variants (MAF
<1 percent) (Surakka et al. 2016). This may offer a
means to shorten the gap between family-based and mea-
sured genotype-based genetic variance, i.e. for locating
and patching up the hidden heritability.

To investigate the impact of common and low-
frequency variants on three distinct measures of nicotine
addiction—smoking quantity, ND and NW—we con-
ducted a GWAS in 1715 participants from the Finnish
twin family study. Our genotype data were imputed using
both the 1000 Genomes Phase I reference panel (1000

Genomes Project Consortium et al. 2012) and an all-
Finnish reference panel from the Sequencing Initiative
Suomi (SISu) (sisuproject.fi). In this study, we identified
novel loci accounting for interindividual differences in
NW and smoking quantity.

MATERIALS AND METHODS

Participants

The sample collection has been previously described in
detail (Broms et al. 2007). Briefly, the study sample was
drawn from the population-based Finnish Twin Cohort
Study, which consists altogether of 35 834 adult twins
born in 1938–1957. Twin pairs concordant for ever-
smoking were identified and recruited along with their
family members (mainly siblings) for the Nicotine Addic-
tion Genetics (NAG) Finland study. Priority was given to
heavier smokers. The data collection took place in
2001–2005. Participants were assessed by DNA sample
collection and a structured diagnostic psychiatric inter-
view resulting in detailed phenotypic information on
multiple smoking behavior traits. The study has been ap-
proved by the Ethics Committee of the Hospital District of
Helsinki and Uusimaa in 2001 and 2016, and by the IRB
of Washington University, St. Louis, MO.

The study sample consisted of 1715 individuals with
both phenotype and genotype data available (58 percent
males, mean age 55 years, all smoked at least 100 ciga-
rettes during lifetime) from 739 families, including 796
dizygotic (DZ) twins from 398 DZ twin pairs, 182 single-
tons (DZ twins without the co-twin), 138 singletons
(monozygotic (MZ) co-twins randomly selected from a
MZ twin pair), 49 twin participants with unconfirmed zy-
gosity (due to a lack of DNA sample from the co-twin)
and 550 other family members (mainly siblings of the
twins).

Phenotypes

Participants were interviewed by trained interviewers
(non-psychiatrists) using the diagnostic Semi-Structured
Assessment for the Genetics of Alcoholism (Bucholz
et al. 1994), modified for use in the Finnish population.
The interview included a section on nicotine use and
ND, based on the Composite International Diagnostic In-
terview (Cottler et al. 1991). In this study, we assessed the
amount smoked, defined as self-reported cigarettes per
day (CPD) during the period of heaviest smoking, and
the largest number of cigarettes smoked during a 24-
hour period (MaxCigs24). During the interview, CPD
was assessed as a categorical variable of eight categories
(1–2, 3–5, 6–10, 11–15, 16–19, 20–25, 26–39, ≥40
CPD during the period of heaviest smoking); in the anal-
yses, we used class means of each category. MaxCigs24
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was assessed and analyzed as a quantitative variable. We
also assessed ND and NW based on the Diagnostic and
Statistical Manual of Mental Disorders (DSM), 4th edition
(DSM-IV) criteria (American Psychiatric Association
1994), both as binary diagnosis traits and as quantitative
symptom counts. DSM-IV ND diagnosis requires the pres-
ence of at least three out of seven criteria (during a 12-
month period). The DSM-IV NW diagnosis requires the
presence of at least four out of eight symptoms within
24 hours after an abrupt cessation of nicotine use or a de-
duction in the amount of nicotine use. DSM-IV criteria
for both phenotypes have been described in Supporting
Information Document S1. Table 1 describes the basic
statistics of the data.

Genotyping and imputation

Genotyping was performed with the Human670-
QuadCustom Illumina BeadChip (Illumina, Inc., San
Diego, CA, USA) (batch1) at the Wellcome Trust Sanger
Institute, and with the Illumina Human Core Exome
BeadChip (Illumina) (batch2) at the Wellcome Trust
Sanger Institute and at the Broad Institute of MIT and
Harvard (batch3). Genotype quality control thresholds
have been previously described (He et al. 2016) and listed
in Supporting Information Table S1. Pre-phasing of the
data was done with SHAPEIT2 (Delaneau et al. 2013).
The pre-phased genotype data were imputed with IM-
PUTE version 2.3.1 (Howie et al. 2009) using a combined
reference panel consisting of 1000 Genomes Phase I
(haplotype released in September 2013) and 1941 Finn-
ish low-pass whole genome sequences from the SISu pro-
ject. The two panels consist of 37 878 799 and
13 625 209 variants, respectively. Following post-
imputation, exclusion criteria were applied for SNPs: ef-
fect allele frequency <0.01 and >0.99, SNP call rate-
0.95, HWE P < 1.0 × 10�6, and imputation info <0.8.
For batches 1, 2 and 3, the number of variants that
passed the quality control procedure was 521 529,
342 853 and 322 926, respectively. Quality controls
and imputation for the GWAS data were done centrally

at the Institute for Molecular Medicine Finland (FIMM),
University of Helsinki, Helsinki, Finland.

Replication analysis in the FinnTwin12 sample

We attempted to replicate the genome-wide significant
association signals detected with CPD on 16p and with
MaxCigs24 on 3p and 16p, in a population-based sample
of young Finnish twins (FinnTwin12) born 1983–1987
(Kaprio 2006; Kaprio 2013). FinnTwin12 study has been
approved by the IRB of Indiana University at Blooming-
ton, Indiana, USA. The self-reported CPD was assessed
as a categorical variable of eight categories (1–2, 3–5,
6–10, 11–15, 16–19, 20–25, 26–39, ≥40 CPD during
the period of heaviest smoking) at a mean age of 14.2
(standard deviation (SD) 0.1). In the analyses, we used
class means of each category. MaxCigs24 was assessed
and analyzed as a quantitative variable. Altogether 581
participants were ever smokers (smoked at least 100 cig-
arettes during lifetime) and were included in the analysis
of CPD and MaxCigs24. DSM-IV ND and NW phenotypes
were not available in the FinnTwin12 sample.

Genotyping of the FinnTwin12 sample was done
within the same genotyping batches as for the discovery
sample, with identical quality controls and imputation
procedures.

Replication analysis in the sample drawn from the
National FINRISK survey

We attempted to replicate the genome-wide significant
association signals detected with CPD on 16p in a sample
that was drawn from a large population-based study, the
National FINRISK survey. The study has been initiated in
1972 and carried out since then every 5 years using in-
dependent, random and representative samples from four
to six different parts of Finland depending on the year of
the survey (Borodulin et al. 2015).

We used data from cohorts 1992, 1997, 2002, 2007
and 2012. The replication sample comprised of 6763 ge-
notyped subjects (56 percent males) with self-reported

Table 1 Descriptive statistics of the sample and phenotypes.

Mean (min-max; SD) or % for binary variables n (with genotype information)

% males 57.8% 1715
Age 55.2 (30–91; 7.2) 1715
CPD 18.9 (1.5–45; 10.2) 1715
MaxCigs24 28.7 (1–80; 13.9) 1711
DSM-IV NW symptoms 2.3 (0–8; 2.1) 1703
DSM-IV-NW diagnosis 31.7% 540 (cases), 1163 (controls)
DSM-IV ND symptoms 2.9 (0–7; 1.7) 1715
DSM-IV-ND diagnosis 50.9% 873 (cases), 842 (controls)
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information on tobacco use and smoking amount. Mean
age for the sample was 45 years. The smoking quantity
trait was derived from quantitative self-reported measure
of cigarettes smoked per day (CPD), restricted to current
smokers. The continuous CPD was further transformed
to log scale (natural log) in order to roughly achieve a
better correspondence of the distribution of the pheno-
type to the discovery sample’s trait distribution. Compar-
ison of the sample distributions between the discovery
and replication samples is illustrated in Supporting Infor-
mation Figure S1.

Genotyping of the replication sample was performed
in several batches using Illumina 610-quad BeadChip
(Illumina, Inc., San Diego, CA, USA) and the Illumina
Human Core Exome BeadChip (Illumina) at several
genotyping centers which are listed in Supporting Infor-
mation Table S2. Genotype quality control thresholds
have also been listed in Table S2. Pre-phasing of the data
was done with Eagle version 2.3 (Loh et al. 2016). The
pre-phased genotype data were imputed with IMPUTE
version 2.3.2 (Howie et al. 2009) using an all-Finnish ref-
erence panel generated from the SISu project. Altogether,
the reference panel consists of 15 490 261 variants from
2690 high-pass whole genome sequences, and 184 117
variants from 5092 high-pass-whole exome sequences.
The same post-imputation exclusion criteria were applied
for SNPs in the replication sample as in the discovery
sample: effect allele frequency <0.01 and >0.99, SNP
call rate < 0.95, HWE P < 1.0 × 10�6, and imputation
info <0.8.

Statistical analyses

GWAS analyses

The analyses were performed using the software tool
genome-wide efficient mixed-model association (Zhou &
Stephens, 2012). Allelic dosage datawere used to account
for genotype uncertainties. The genetic associations were
modeled using a linear mixed model in which the pheno-
type was the dependent variable and the coded allele dose
(represented by the posterior mean genotypes) was the in-
dependent variable. Themodel included age and sex as co-
variates. In addition, population stratification and
relatedness within the sample were accounted for by the
covariancematrix, whichwas determined bya relatedness
matrix calculated from genome-wide genotype data,
representing genetic similarity across individuals. The
number of markers included in the analyses was
9 469 131. P-values below 5.0 × 10�8 were considered
as genome-wide significant, and P-values below
5.0 × 10�7 were considered as approaching genome-wide
significance. For ease of interpretation of the results, beta
coefficients are reported for the minor alleles.

Linear mixed models were used for both quantitative
and binary traits, since the covariance structure of the
data cannot be fully adjusted for in a logistic model. For
binary traits, the obtained effect sizes were then trans-
formed to the odds-scale for more meaningful interpreta-
tions using a previously suggested formula (Pirinen et al.
2013). This has been shown to yield accurate estimates
of the effect sizes when genetic effects are small, the
case–control ratio is balanced and the minor allele fre-
quency is above 0.05 (Pirinen et al. 2013). Odds ratios
(OR) have been presented along with beta coefficients
whenever at least one of the three criteria was met in or-
der to facilitate interpretation of the effect sizes, but we
emphasize that this must be done with caution.

Conditional analyses

Genomic loci exceeding genome-wide significance were
further targeted with conditional analyses to estimate
the number of independent signals. We ran association
analyses for loci of interest conditioning on the SNP with
the lowest P-value. The next signal was identified from
the conditional analysis and included in the second
round of conditional analyses. This process was repeated
in an iterative fashion until no residual genome-wide sig-
nificant signal (P < 5.0 × 10�8) remained.

Replication analyses

For FinnTwin12-replication sample, the analyses were
performed using the same tool and method that was used
for our discovery sample. For FINRISK-replication sam-
ple, the analyses were performed using RVTEST (Zhan
et al. 2016), which utilizes linear mixed model to gener-
ate associations between the phenotypic variable and ge-
netic variable. The analyses were adjusted for age, sex
and first 10 principal components.

Annotation of genome-wide significant SNPs

In order to infer the functional potential of the SNPs, we
used publicly available databases to annotate the expres-
sion quantitative trait loci (eQTL) and methylation quan-
titative trait loci (meQTL) associated with the genome-
wide significant SNPs. Please refer to the Supporting In-
formation Document S2 for detailed description of the
methodology.

RESULTS

Smoking quantity during the period of heaviest smoking

We detected genome-wide significant association on
16p12.3 for CPD (min P = 8.5 × 10�9, beta = 4.75 for
rs4300632) and MaxCigs24 (min P = 7.0 × 10�9,
beta = 6.03 for rs2353663). Manhattan and QQ plots
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for CPD are presented in Figure 1. Results for MaxCigs24
were very similar to CPD and are available in Supporting In-
formation Figure S2. For CPD, altogether 23 SNPs exceeded
the genome-wide significance threshold (Figure 2). The as-
sociation signal emerged 28 kb from CLEC19A (C-type lectin
domain family 19 member A). For both CPD and
MaxCigs24, conditional analysis revealed the presence of
only one independent locus within the region.

Another genome-wide significant locus was detected
on 3p22.3 for MaxCigs24 (min P = 3.1 × 10�8,
beta = 12.49 for rs73064179). The association signal
peaks at an intergenic region, approximately 183 kb up-
stream of STAC (SH3 and cysteine rich domain). How-
ever, five additional SNPs in the region were
approaching genome-wide significance (rs56027566,
rs12495177, rs73052216, rs73052223, rs73052229),
located adjacent to STAC, the closest one being
rs73052229 located approximately 10 kb upstream of
the transcription start site (Figure S3). Conditional anal-
ysis suggested that the signal is driven by a single locus
within the region. Top-3 SNPs for each highlighted loci
are presented in Table 2. Supplemental Tables S3 and
S4 enclose the top-100 SNP results for CPD and
MaxCigs24, respectively.

DSM-IV Nicotine Dependence

No genome-wide significant association was detected for
DSM-IV ND. Manhattan and QQ plots for DSM-IV ND di-
agnosis and DSM-IV ND symptom count are presented in
the Supplemental Figures S4 and S5, respectively. Top-
100 SNP results for DSM-IV ND diagnosis and DSM-IV
ND symptom count are presented in Supplemental Tables
S5 and S6, respectively.

DSM-IV Nicotine Withdrawal

DSM-IV NW diagnosis showed genome-wide significant
association on 2q21.3 (min P = 2.1 × 10�9, beta = 0.16

for rs62171406), in an intron of TMEM163 (transmem-
brane protein 163) (Supporting Information Figure S6).
Manhattan and QQ plots are presented in Supplemental
Figure S7. Conditional analysis suggested that the signal
is driven by a single locus within the region.

The results for DSM-IVNW symptom count pinpointed
loci on 11p15.5 and 18q12.3. Manhattan and QQ plots
are presented in Supplemental Figure S8. On 11p15.5,
an association signal approaching genome-wide signifi-
cance highlighted AP2A2 (adaptor related protein com-
plex 2 alpha 2 subunit) (min P = 6.6 × 10�8,
beta = 1.61 for rs369708413) andMUC6 (mucin 6, olig-
omeric mucus/gel-forming) (min P = 4.2 × 10�7,
beta = 1.40 for rs201137338) (Figure 3). DRD4
(dopamine receptor D4) is located approximately 343 kb
upstream from the 11p15.5 association locus but showed
no significant association. On 18q12.3, a SNP in an intron
of SLC14A2 (solute carrier family 14 member 2) exceeded
the genome-wide significance threshold (P = 3.5 × 10�8,
beta = 1.31 for rs117354958) (Figure S9). Top-3 SNPs for
each highlighted loci are presented in Table 2. Supplemen-
tal Tables S7 and S8 enclose the top-100 SNP results for
DSM-IV NW diagnosis and DSM-IV NW symptom count,
respectively.

Replication analyses for smoking quantity

The association between CPD and 16p12 locus was not rep-
licated in the FinnTwin12 replication sample (n = 581).
Also, no replication was observed with CPD on 16p12.3
with the FINRISK replication sample (n=6763). The results
for discovery and FINRISK-replication samples concerning
16p12.3 region are described and compared in more detail
in Supplemental Table S9.

The CHRNA5-CHRNA3-CHRNB4 gene cluster

The most well-established locus associated with smoking-
related traits, the CHRNA5-CHRNA3-CHRNB4 gene

Figure 1 Manhattan and QQ plots of the GWAS results for CPD. Horizontal line in the Manhattan plot depicts the P < 5 × 10�8 threshold
for genome-wide significance. Genomic inflation factor λ = 1.026
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cluster on 15q25.1, showed no genome-wide significant
association with any of the included traits. In our data,
the locus was tagged by rs1051730—a SNP in perfect
LD with the functional variant D398N (rs16969968).
This SNP showed negligible association with CPD
(P = 0.06, beta = 0.68), DSM-IV ND symptom count
(P = 0.001, beta = 0.20), and DSM-IV NW symptom
count (P = 0.009, beta = 0.19). DSM-IV diagnosis of
ND and NW showed similar results compared to the cor-
responding symptom counts.

We tested association between CPD and chromosome
15 in our FINRISK-replication sample and detected sig-
nificant association in and within close vicinity of the nic-
otinic receptor gene cluster (min P = 7.06 × 10�11,
beta = 0.08 for rs8040868). Variant rs1051730, along
with other highly correlated variants, provided signifi-
cant association with CPD (P = 1.32 × 10�9,
beta = 0.08). These results are illustrated in Supporting
Information Figure S10. Chromosome 15 association re-
sults from discovery and FINRISK-replication samples are
further compared in Supporting Information Table S10.

Annotation of genome-wide significant SNPs

Since most of the 27 genome-wide significant SNPs were
in the intergenic or intronic regions, we annotated their
functional potential using publicly available databases.
According to Ensembl Variant Effect Predictor, CLEC19A
SNP rs1004892 is present in an open chromatin region
and may have regulatory potential (Supplemental Table
S11). CLEC19A was insufficiently expressed in GTEx

and BRAINEAC data and could not be tested for eQTLs.
Instead, we tested CLEC19A SNPs as eQTLs for the
flanking genes SYT17 (18.5 kb upstream of CLEC19A)
and TMC5 (125 kb downstream of CLEC19A). No eQTLs
were seen in GTEx blood-derived data. In contrast, brain-
derived data from both GTEx and BRAINEAC showed sev-
eral eQTLs: BRAINEAC data revealed 21 eQTLs for SYT17
in frontal, temporal and occipital cortex, and two eQTLs
for TMC5 in cerebellar cortex, while GTEx data revealed
16 eQTLs for SYT17 in cerebellar hemisphere and hypo-
thalamus (all overlapping with the 21 eQTLs from
BRAINEAC) (Supplemental Table S12). Further, GTEx
data revealed eQTLs for rs62171406 in TMEM163 in
both blood and brain (frontal cortex).

We also examined the genome-wide significant SNPs
for meQTLs in blood- and brain-derived data. No cis-
meQTLs were detected in the mQTLdb which contains
blood derived data in mother–child pairs. However, the
BIOSqtl browser reported rs62171406 as cis-meQTLs
with two TMEM163 methylation probes in blood
(Supplemental Table S13) (the same SNP was also identi-
fied as an eQTL in GTEx). None of the genome-wide
significant SNPs were reported as meQTLs in the fetal
brain database.

DISCUSSION

Despite all the work invested in current genome-wide ap-
proaches, the high heritability estimates of smoking be-
havior are nowhere near to be explained. This urges for
more thorough scanning through the genome with

Figure 2 Regional plot of 16p12.3 results for CPD. The plot was generated with LocusZoom (Pruim et al. 2010), and the LD information has
been obtained from hg19/1000 Genomes Nov 2014 EUR build
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alternative approaches. In this study, we performed a
GWAS in a Finnish twin family sample (n= 1715) selected
and enriched for smoking, with three distinct measures of
nicotine addiction—smoking quantity, ND and NW. We
aimed to improve imputation accuracy by combining the
1000 Genomes Phase I September 2013 release reference
panel with a population-specific reference panel of 1941
Finnish whole genome sequences, to allow for reliable
scrutiny of low frequency variants.

Our study yielded genome-wide significant association
with CPD and MaxCigs24 on 16p12.3 near CLEC19A,
and thus strengthened our previously reported GWAS
findings (min P = 1.02 × 10�7) in a subset of 1114 indi-
viduals from the current sample (Loukola et al. 2014).
CLEC19A has an unknown function and low expression
levels in various tissues (gtexportal.org). It is plausible
that the associating SNPs tag causal variants or regula-
tory motifs within this region. Interestingly, several of
the genome-wide significant SNPs were identified as
eQTLs for neighboring genes SYT17 and TMC5 in pub-
licly available brain tissue databases. However, no replica-
tion on 16p12.3 was observed in an independent
adolescent Finnish twin sample (n = 581) FinnTwin12
replication sample, or in an independent Finnish
population-based sample (n = 6763) drawn from the Na-
tional FINRISK Survey.

In the discovery sample, the detected effect sizes for lo-
cus 16p12.3 are impressive when compared to themodest
effect sizes of the most well-established smoking quantity
locus on 15q25. However, due to the relatively low MAFs
of the associating SNPs on 16p12.3, the population level

impact is less notable than that of the robust smoking
quantity locus on 15q25 (MAFabout 0.34). Our discovery
sample detected no genome-wide significant association
on 15q25, in line with our previous GWAS with a smaller
but overlapping sample (Loukola et al. 2014). The effect
size for D398N was consistent with prior reports of less
than one CPD per allele. It is generally acknowledged that
in order to detect association signal at the 15q25 locus
(harboring the CHRNA5-CHRNA3-CHRNB4 nAChR gene
cluster), large samples are required, due to the small effect
sizes of the associating variants. Our FINRISK-replication
sample provides ideal conditions for testing this dilemma,
being a fairly large and independent sample (n = 6763).
We detected significant association (P = 7.06 × 10�11,
beta = 0.08 for rs8040868) on 15q25 in the FINRISK-
replication sample.

As the signal on 16p12.3 locus was not replicated, we
cannot rule out the possibility of a false positive finding.
However, 16p12.3 locus remains of interest due to evi-
dence pointing to a co-morbidity driven association. The
locus has previously been linked to ADHD (Romanos
et al. 2008). Also, nominally significant linkage with
maximum number of cigarettes smoked (MaxCigs24)
was found on 16p12.3 in a linkage meta-analysis (Han
et al. 2010). This locus was not found in a large-scale
GWAS meta-analysis of CPD nor in a recent GWAS
meta-analysis of cotinine (Ware et al. 2016), the primary
metabolite of nicotine which is a reliable biomarker of
smoking quantity (Keskitalo et al. 2009). Thus, our sig-
nal on 16p12.3 may not be specific to smoking quantity
but rather reflect co-morbidity between ADHD liability or

Figure 3 Regional plot of 11p15.5 results for continuous DSM-IV nicotine withdrawal. The plot was generated with LocusZoom (Pruim et al.
2010), and the LD information has been obtained from hg19/1000 Genomes Nov 2014 EUR build
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some other neuropsychiatric condition and smoking. Un-
fortunately, we were unable to test this hypothesis in the
available cohorts.

In addition, it needs to be stressed that our discovery
sample is highly enriched for heavy smoking, and thus,
ND, and this phenotypic selection could have an entirely
sample-specific effect on the results based on genotypic
drifting (1000 Genomes Project Consortium et al. 2015;
Moltke et al. 2014). We observed a significant difference
(P = 3.83 × 10�5) in the MAFs between the discovery
and replication sample using a simple two-sample Stu-
dent’s t-test. The difference is described in Supporting In-
formation Table S9.

Within the LD block on 16p12.3 harboring variants
showing association with CPD stands an established tran-
scription factor binding site (at chr16:19,328,414–
19,328,427). This may provide one mechanism for the
detected association. According to the UCSC Genome
Browser (genome.ucsc.edu), this locus serves as a binding
site for nuclear factor kappaB (NF-κB) transcription fac-
tors. NF-κB is a pleiotropic and highly conserved transcrip-
tion factor family, which has roles in complex pathways
regulating the developmental and synaptic plasticity, such
as the neurotrophin signaling pathway (Mattson &
Meffert 2006). Neurotrophins are a family of trophic fac-
tors involved in differentiation and survival of neural cells
(Bibel & Barde 2000). Signals produced by this pathway
have also been linked to mechanisms underlying learning,
memory and drug addiction (Bolanos & Nestler 2004).
The neurotrophin signaling pathway has previously been
associated with smoking initiation, progression and cessa-
tion (Lang et al. 2007; The Tobacco and Genetics Consor-
tium 2010; Wang & Li 2010), and the associations have
mostly highlighted two members of the pathway: brain-
derived neurotrophic factor (BDNF) and neurotrophic ty-
rosine kinase receptor 2. In the current study, however,
we detected no associationwithBDNF or neurotrophic ty-
rosine kinase receptor 2 with our studied phenotypes. The
association of smoking with BDNF is primarily with initia-
tion and the effect size modest.

The neutrotrophin signaling pathway was also
highlighted in our GWAS of DSM-IV NW symptom count.
We detected an association signal approaching genome-
wide significance on 11p15.5 harboring AP2A2 and
MUC6. Interestingly, the 11p15 locus has previously
shown genome-wide significant linkage with DSM-IV
NW in a subset of 505 individuals from the current sam-
ple (Pergadia et al. 2009). The adaptor-protein 2 plays a
key role in clathrin-mediated endocytosis (Smythe
2002), which is a major route for receptor distribution
and internalization involved in the retrograde
neurotrophin signaling pathway (Beattie et al. 2000). Ev-
idence suggests that this process is involved in opiate
drug, such as cocaine, addiction (Whistler et al. 1999).

MUC6 is upregulated by NFκB1 (Sakai et al. 2005), one
of the NF-κB proteins involved in the neurotrophin sig-
naling pathway (Mattson & Meffert 2006). We detected
no association with DRD4 located on the 11p15.5 locus.

Besides findings related to the neurotrophin signaling
pathway our analyses revealed other interesting signals.
First, we detected genome-wide significant association
for MaxCigs24 on 3p22.3, in close vicinity of STAC,
encoding a neuron-specific protein consisting of a
cysteine-rich domain and a SH3 domain (Kawai et al.
1998). Little is known about the function of the gene. El-
evated gene expression levels have been detected in ar-
tery tissues, mainly in the aorta, brain and lungs
(gtexportal.org), all tissues affected by smoking and nico-
tine. Associating SNPs within the region are low-
frequency variants (MAF~ 0.01) with remarkably large
effect sizes in this study (e.g. beta = 12.49 for
rs73064179); however, the sample is moderately sized
(n = 1715), which can lead to false positive findings. Sec-
ond, a single SNP on 18q12.3 showed genome-wide sig-
nificant association with DSM-IV NW symptom count.
The signal emerges in an intron of SLC14A2 which is a
member of the urea transporter family. This finding, how-
ever, is not supported by other variants within the region.
Third, we detected genome-wide significant association
for DSM-IV NW diagnosis on 2q21.3, highlighting
TMEM163, a zinc ion binder that shows high expression
levels in the brain. The genome-wide significant SNP in
TMEM163 (rs62171406) was identified as an eQTL in
both blood and frontal cortex, and as a meQTL in whole
blood, suggesting that this SNP can affect expression
and methylation levels of TMEM163.

For the current study, we applied a stochastic ap-
proach by simultaneously utilizing the 1000Genomes
Phase I reference panel and an all-Finnish reference set
based on 1941 Finnish whole genome sequences from
the SISu project (sisuproject.fi). Owing to its population
history of founding bottlenecks approximately 100 gener-
ations ago, the Finnish population offers substantial ad-
vantages in the study of rare and low frequency DNA
variation by enabling more precise imputation of these
variants. This approach showed improvement in our ven-
ture of finding susceptibility variants predisposing indi-
viduals to smoking behavior. As an example, our
association of DSM-IV NW symptom count on 11p15.5
is driven by a low-frequency variant in AP2A2 enriched
in Finns. The MAF of the lead SNP (rs369708413) is
0.017 in the study sample, whereas in the general Euro-
pean population (Ensembl GRCh37 release 84—July
2016), it is 0.003, in other words, over five times smaller.
This SNP is not included in the 1000 Genomes Phase I
reference, and it was imputed to the data from the SISu
reference panel. Had we only used the 1000 Genomes
Phase I reference, many low-frequency variants,
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including rs369708413, would have been left out from
the analyses, as has been previously reported (Surakka
et al. 2016). Comparison of results obtained using
HapMap2 (rel#24 CEU—NCBI Build 36), 1000 Genomes
Phase I (1000 Genomes Project Consortium et al. 2012)
and 1000 Genomes Phase I + SISu (Surakka et al.
2016) imputed data in the discovery sample is presented
in the Supporting Information Document S3.

To conclude, our study yielded genome-wide signifi-
cant association on 16p12.3 (near CLEC19A) for CPD.
The associating SNPs were identified as eQTLs for neigh-
boring genes SYT17 and TMC5. However, more work is
needed in order to verify the association, as the signal
did not replicate. In addition, we detected an association
signal approaching genome-wide significance on
11p15.5 for DSM-IV NW, in a locus previously linked to
NW in a subset of individuals from the current sample
(Pergadia et al. 2009). Our findings on both 16p12.3
and 11p15.5 highlight the neurotrophin signaling path-
way. The role of neurotrophin signaling in nicotine addic-
tion and co-morbid traits remains to be confirmed and
extended in further studies.
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