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Abstract: Over the past few decades, the application of new novel materials in energy storage
system has seen excellent development. We report a novel MnCo2O4/NiO nanostructure prepared
by a simplistic chemical bath deposition method and employed it as a binder free electrode in the
supercapacitor. The synergistic attraction from a high density of active sites, better transportation
of ion diffusion and super-most electrical transportation, which deliver boost electrochemical ac-
tivities. X-ray diffraction, field-emission scanning electron microscopy, and X-ray photoelectron
spectroscopy have been used to investigate the crystallinity, morphology, and elemental composition
of the as-synthesized precursors, respectively. Cyclic voltammetry, galvanostatic charge/discharge,
and electron impedance spectroscopy have been employed to investigate the electrochemical proper-
ties. The unique nanoparticle structures delivered additional well-organized pathways for the swift
mobility of electrons and ions. The as-prepared binder-free MnCo2O4/NiO nanocomposite electrode
has a high specific capacity of 453.3 C g−1 at 1 Ag−1, and an excellent cycling reliability of 91.89 per-
cent even after 4000 cycles, which are significantly higher than bare MnCo2O4 and NiO electrodes.
Finally, these results disclose that the as-fabricated MnCo2O4/NiO electrode could be a favored-like
electrode material holds substantial potential and supreme option for efficient supercapacitor and
their energy storage-related applications.

Keywords: MnCo2O4/NiO; electrode; supercapacitor; nanostructure; chemical bath deposition;
specific capacity

1. Introduction

With the advancements in the world’s energy sector, there has been a rapid enhance-
ment in the evolution of various energy storage devices, namely rechargeable batteries
and supercapacitors (SCs). Some of the most attractive features of SCs that make them
unique are the increased specific power and the predominant charge/discharge cycles
with excellent life span [1–4]. SCs are categorized into electrochemical double-layer capaci-
tors (EDLCs) and pseudocapacitors. EDLCs implement a non-faradaic process where the
charge separation takes place at the electrode/electrolyte interface and leads to the charge
storage. Contrarily, pseudocapacitors store charge by the faradaic process at the surface of
the electrode. In general, the electrode material is critical in defining the performance of

Nanomaterials 2021, 11, 1424. https://doi.org/10.3390/nano11061424 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4399-0123
https://orcid.org/0000-0002-5383-8240
https://orcid.org/0000-0002-7240-7139
https://orcid.org/0000-0002-8701-1137
https://orcid.org/0000-0002-3620-0739
https://www.mdpi.com/article/10.3390/nano11061424?type=check_update&version=1
https://doi.org/10.3390/nano11061424
https://doi.org/10.3390/nano11061424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11061424
https://www.mdpi.com/journal/nanomaterials


Nanomaterials 2021, 11, 1424 2 of 10

SCs [5–9]. Hence, it is highly essential to fabricate high-performance SCs by developing
advanced electrode materials with a unique morphology [10–12].

Recently, mixed metal oxides based on first-row transition metals such as NiO, Co3O4,
NiCo2O4, MnCo2O4, and MnO2 (TMOs) have attracted much attention for both battery-
type and pseudocapacitive SC applications due to their enhanced capacities [5–9]. Due to
their strong electrochemical conductivity, rapid redox activity, high theoretical power, and
low cost, pseudocapacitive electrodes (e.g., MnO2 and RuO2), and battery-type electrode
materials exhibit higher energy storage [13–16]. MnCo2O4 has the best physicochemical
and electrochemical properties of all the TMOs because cobalt has a higher oxidation
potential and manganese can hold a huge number of electrons, resulting in a higher
power [17,18]. However, the MnCo2O4 exhibits lower electrical conductivity, which is an
obstacle for its practical application. Various MnCo2O4 composites, such as C@MnCo2O4,
MnCo2O4@MnO2, MnCo2O4@Ni(OH)2, nanoflakes, and MCO/graphene nanoplates, have
been widely prepared and used for SC applications to improve the energy storage effi-
ciency of MnCo2O4 material [17–19]. Nickel oxide (NiO) on the other hand, due to its
strong theoretical basic capacitance, excellent redox ability, and good thermal stability, is a
promising electrode material [20]. However, the practical application of NiO is limited due
to its poor cyclic stability [21]. By utilizing the advantages of both the MnCo2O4 and NiO
materials, the MnCo2O4 is integrated with NiO in the present study.

In this work, the chemical bath deposition (CBD) method was employed to fabricate
a novel flower-like MnCo2O4/NiO on Ni foam surface to be effectively used as a poten-
tial electrode for supercapacitors. CBD method is a cost-effective and straightforward
deposition method where the deposition is possible for a wider area. The as-synthesized
precursors had a high-energy storage capacity of 453.3 C g−1 at 1 A g−1 and strong cy-
cling stability. Due to the faster rate of electrolytic diffusion and faster electron paths, the
composite electrode has a greater energy storage capacity. As a result, the MnCo2O4/NiO
nanocomposite electrode may be a potential supercapacitor electrode material.

2. Experimental Details
2.1. Materials

The nanocomposites of MnCo2O4/NiO fabricated using high pure analytical grade
reagents and all the chemicals were purchased from Sigma-Aldrich. Cobalt nitrate hexahy-
drate (Co(NO3)2·6H2O), manganese acetate (Mn(CH3CO2)2·4H2O), ammonium fluoride
(NH4F), aqueous ammonia (NH4OH), nickel nitrate (Ni(NO3)2·6H2O), CH4N2O, thioac-
etamide (C2H5NS), hydrochloric acid (HCl), and potassium hydroxide (KOH).

2.2. Fabrication of the Flower-Like MnCo2O4/NiO Electrode

The fabrication of electrode supercapacitor started by cleaning nickel foams (1 × 2 cm2)
in 2 M HCl followed by acetone, ethanol, and distilled (DI) water sonication for 15 min. The
MnCo2O4/NiO composite was fabricated by implementing the CBD technique. Typically,
0.2 M Co(NO3)2·6H2O, 0.1 M Mn(CH3CO2)·4H2O, 0.2 M Ni(NO3)2·6H2O, 0.4 M CH4N2O,
0.24 M NH3, and 0.4 M NH4F were mixed in 80 mL of DI water and kept under magnetic
stirring for about 30 min. The washed nickel foams were soaked in the chemical solution
prepared above and dried at 70 ◦C for 12 h. The foams were washed again with ethanol and
DI water before being dried in the oven at 70 ◦C for another 10 h. A similar technique was
used to make MnCo2O4 and NiO, but without the inclusion of Ni sources for MnCo2O4
and Mn and Co sources for NiO. MCO and MCO/NiO are the abbreviations for MnCo2O4
and MnCo2O4/NiO, respectively. On Ni foam substrates, the average weights of MCO,
NiO, and MCO/NiO electroactive materials were found to be 4.18, 4.37, and 4.55 mg cm−2,
respectively.

2.3. Characterization

Powder X-ray diffraction (XRD, D/Max-2400 Rigaku, Pusan National University,
Busan, Korea), energy-dispersive X-ray spectroscopy (XPS, VG Scientific ESCALAB 250,
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Busan center of KBSI, Busan, Korea), and scanning electron microscopy (FE-SEM, S-2400,
Hitachi, Pusan National University, Busan, Korea) were used to investigate the phase
structure, the elemental composition and the oxidation states, and the morphology of the
composite electrode, respectively.

2.4. Electrochemical Measurements Using Cyclic Voltammetry

The electrochemical experiments were carried out on a BioLogic–SP150 workstation
in an aqueous 3 M KOH electrolyte solution. Pt wire was used as the counter electrode,
Ag/AgCl was used as the reference electrode, and the synthesized precursors were used as
the operating electrodes in a three-electrode setup.

In the voltage range of 0–0.55 V, cyclic voltammetry (CV) measurements were taken at
different scan frequencies (10, 20, 50, and 75 mV s−1). A galvanostatic charge–discharge
(GCD) test was also carried out to determine the specific capacity (CS, C g−1) using
Equation (1) [22]:

CS =
i × ∆t

m
(1)

Here, Cs denotes the specific capacity of C g−1; i denote the discharge current in
ampere (A); t denotes the difference in discharge time in seconds; m denotes the mass (g)
of active materials.

3. Results and Discussion

XRD was used to analyze the composition and phase structure of the as-synthesized
composite. As can be seen in Figure 1, the XRD patterns of the as-prepared MCO precursor
illustrated the corresponding peaks at (311), (400), and (511) that were correlated with the
JCPDS: 23-1237 [23]. At the same time, the NiO precursor peaks were observed at (111),
(200), and (311) and well matched with the JCPDS: 78-0429 [24]. Further, the MCO/NiO
composite strongly displayed all the peaks of both MCO and NiO samples, which suggest
that the as-synthesized composite has pure phases and is crystalline in nature.
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Figure 1. Powder X-ray diffraction pattern of the MCO, NiO, and MCO/NiO electrode materials
deposited on Ni foam.

The XPS analysis verified the chemical structure and oxidation states of the as-
fabricated electrode, and the findings are seen in Figure 2. The elements of Ni 2p, Co
2p, and Mn 2p were identified in the MCO/NiO electrode based on the XPS survey spec-
trum (Figure 2a). C and O are two components that are commonly found in the air. The
two dominant peaks of Mn 2p3/2 at a binding energy of 643.7 eV and Mn 2p1/2 at a binding
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energy of 652.2 eV in the Mn 2p XPS range are ascribed to the Mn2+ binding energy, as seen
in Figure 2b. The peaks at 777.84 eV and 787.15 eV in the Co 2p high-resolution range seen
in Figure 2c belong to Co 2p3/2 and Co 2p1/2, respectively [25]. Further, Ni 2p peaks are
illustrated in Figure 2d for Ni 2p1/2 and Ni 2p3/2 at 875.2 eV and 856.4 eV, respectively.
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Figure 2. (a) XPS survey spectrum of the MCO/NiO composite. High resolution XPS spectra of the
(b) Mn 2p, (c) Co 2p, and (d) Ni 2p.

Furthermore, the morphology of the as-prepared electrodes was investigated by SEM
characterization. Figure 3a,a1,a2 depicts the SEM images of MCO at different magnifica-
tions, and nano rice-like morphology is observed in the images due to the interlinking
of the nanoparticles. Figure 3b,b1,b2 shows SEM photographs of NiO that display the
integration of several uniformly sized nanosheets with absolute coherence. SEM images of
MCO/NiO nanoparticles at various magnifications, where flower-like nanoparticles are
densely deposited on the Ni foam substrate, are seen in Figure 3c,c1,c2. The full interaction
between electrode materials and electrolytes and the transportation of electrons during
charge and discharge cycles are aided by this special arrangement, which improves the
electrochemical efficiency of the MCO/NiO electrode as-prepared. This unusual configura-
tion benefits complete interaction between electrode materials and electrolytes and electron
transportation during charge and discharge cycles, enhancing the electrochemical stability
of the as-prepared MCO/NiO electrode.
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CV, GCD, and electrochemical impedance spectroscopy (EIS, 0.01–100 kHz) experi-
ments were performed with a three-electrode system in an aqueous 3 M KOH electrolyte
to investigate the electrochemical activity of the as-prepared electrodes. The CV curves of
the as-prepared electrodes at a scan rate of 10 mV s−1 with a potential window from 0.0 to
0.55 V are shown in Figure 4a. As seen in these CV plots, each one of the as-prepared three
electrodes (MCO, NiO, and MCO/NiO) delivered a pair of redox peaks with a higher cur-
rent response, signaling battery-type activity. Furthermore, when compared to bare MCO
and NiO electrodes, the flower-like MCO/NiO electrode exhibited the highest peak current
and loop field, suggesting a significant improvement in electrochemical Faradaic reaction
kinetics and basic power. The MCO, NiO, and MCO/NiO electrodes in Figure 4b–d were
obtained at the scan rates of 10, 20, 50, and 75 mV s−1, respectively. This study revealed
that there were two pairs of redox peaks with an enhanced current response, indicating
that the battery-type electrode exhibits reversible faradaic activity. Furthermore, as the scan
speeds increased, the anodic and cathodic peaks changed to more positive and negative
potential areas, owing to the excellent ion diffusion rate and lower internal resistance of
the electrode content during redox reactions.
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In addition, GCD tests were performed at various current densities with a potential
ranging from 0 to 0.48 V to compare the MCO/NiO electrode’s high capacity output with
those of the other electrodes. The GCD plots of the MCO, NiO, and MCO/NiO electrodes at
5 A g−1 are shown in Figure 5a. The non-capacitive Faradaic redox battery-type properties
of both electrodes are visible on the GCD plateaus, which are distinct from the inverted
“V” shapes of EDLC materials and hence comply with the CV performance. Owing to
the synergistic effect of two-material electrodes, the MCO/NiO electrode had a longer
charge–discharge time cycle than that of each of MCO and NiO electrodes. The GCD plots
of the MCO, NiO, and MCO/NiO at different current densities of 1, 2, 5, 7, and 10 A g−1

are shown in Figure 5b–d.
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The GCD plateaus show that all samples have a battery-like redox activity with
non-linear symmetric charge–discharge intervals, demonstrating the material’s excellent
reversibility. Figure 5e shows the real capacity values as a function of the current den-
sity based on Equation (1). At different current densities of 1, 2, 5, 7, and 10 A g−1, the
MCO/NiO electroactive material exhibited specific capacity values of 453.3, 449.6, 448.1,
444.2, and 438.8 C g−1, respectively, which were significantly higher than the corresponding
specific capacity values of bare MCO and NiO. EIS calibrations were also used to estimate
the internal resistance and conductivity of the prepared MCO, NiO, and MCO/NiO elec-
trodes. Figure 5f shows a Nyquist plot with the same sequence resistance as the intercept
with the x-axis (RS). The charge transfer resistance is shown by the semicircular curve in
the high-frequency field (Rct). The fast transportation of ions/electrons is depicted by the
straight line in the low-frequency field [26,27]. The equivalent circuit, shown in the inset
of Figure 5f, was used to fit the Nyquist plots. The MCO/NiO electrode exhibited lower
Rct = 0.08 Ω cm2 and RS = 0.19 Ω cm2 values than those of the MCO (Rct = 0.3 Ω cm2 and
RS = 0.28 Ω cm2) and of NiO (Rct = 0.5 Ω cm2 and RS = 0.34 Ω cm2) electrodes suggesting
the enhanced electrical conductivity and efficient electron transfer at the interface of the
electrode/electrolyte in the MCO/NiO electrode. Furthermore, when compared to bare
MCO and NiO electrodes in the low-frequency field, the flower-like MCO/NiO electrode
exhibited a slope near the vertical axis, indicating a superior energy storage capacitive
activity in the composite electrode. As a result, the MCO/NiO electrode with low dif-
fusion resistance, RS, and Rct values is verified as a significant contributor to superior
supercapacitor efficiency. More specifically, in practical supercapacitor systems, the cycling
reliability of an electroactive material is critical. As shown in Figure 5g, the magnified view
of the Nyquist plots for three electrode materials. It could be clear shows that the high
frequency parts of the EIS profiles and obviously see them impedances of three electrode
materials. Figure 5h shows the cycling performance of the MCO/NiO electrode over a
period of 4000 cycles at a current density of 5 A g−1 (Figure 5h). The flower-like MCO/NiO
electrode demonstrated excellent cycling stability of 91.89 percent over 4000 cycles. The
activation mechanism of both materials through deep penetration of electrolyte ions into
their interior components is responsible for the composite electrode’s outstanding cycling
stability [28–31].

As shown in Figure 6a,b, even after a long term cycling stability analysis, as depicted
in the SEM image and XRD pattern, flower-like nanostructure still exist in the MCO/NiO
composite, revealing that there was no noticeable changes in the morphology and phase of
the material. Such excellent cycling stability of the MCO/NiO material could be attributed
to the gradual penetration of electrolyte ions into the electroactive material, which provides
to the higher activation of the materials.
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4. Conclusions

Precisely, flower-like nanoparticles of MCO/NiO electroactive material were synthe-
sized on nickel foam via a cost-effective chemical bath deposition procedure. For effective
supercapacitor use, the as-synthesized precursor was used as a binder-free battery style
electrode material. Furthermore, the as-prepared MCO/NiO electrode demonstrated out-
standing electrochemical activity, with a specific potential of 453.3 C g−1 at 1 Ag−1, and
cycling reliability of 91.89 percent over 4000 cycles, all of which were significantly higher
than the bare MCO and NiO electrodes. These improved electrochemical properties were
attributed to the MCO/NiO nanocomposite’s superior quantity of active sites, which re-
sulted in a larger contact surface area with the electrolyte and faster redox reactions. The
outcomes hint at improving the battery-type cathode with the outstanding electrochemical
properties for future high-performance supercapacitors.
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