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Abstract

Introduction: The majority of total hip arthroplasty (THA) patients are discharged home postoperatively, however,
many still require continued medical care. We aimed to identify important characteristics that predict nonhome
discharge in geriatric patients undergoing THA using machine learning. We hypothesize that our analyses will identify
variables associated with decreased functional status and overall health to be predictive of non-home discharge.
Materials and Methods: Elective, unilateral, THA patients above 65 years of age were isolated in the NSQIP database
from 2018-2020. Demographic, pre-operative, and intraoperative variables were analyzed. After splitting the data into
training (75%) and validation (25%) data sets, various machine learning models were used to predict non-home discharge.
The model with the best area under the curve (AUC) was further assessed to identify the most important variables.
Results: In total, 19,840 geriatric patients undergoing THA were included in the final analyses, of which 5194 (26.2%)
were discharged to a non-home setting. The RF model performed the best and identified age above 78 years (OR: 1.08
[1.07, 1.09], P < .0001), as the most important variable when predicting non-home discharge in geriatric patients with
THA, followed by severe American Society of Anesthesiologists grade (OR: 1.94 [1.80, 2.10], P < .0001), operation time
(OR: 1.01 [1.00, 1.02], P < .0001), anemia (OR: 2.20 [1.87, 2.58], P < .0001), and general anesthesia (OR: 1.64 [1.52, 1.79],
P < .0001). Each of these variables was also significant in MLR analysis. The RF model displayed good discrimination with
AUC = .831. Discussion: The RF model revealed clinically important variables for assessing discharge disposition in
geriatric patients undergoing THA, with the five most important factors being older age, severe ASA grade, longer
operation time, anemia, and general anesthesia. Conclusions: With the rising emphasis on patient-centered care,
incorporating models such as these may allow for preoperative risk factor mitigation and reductions in healthcare
expenditure.
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Introduction

The demand for total hip arthroplasty (THA) continues to
rise throughout the United States, driven largely by an
aging population and rising obesity rates.1 Considered to
be the most effective treatment for advanced arthritis of the
hip, THA procedures have increased from approximately
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160,000 procedures per year in 2000 to nearly 375,000 in
2014 accounting for approximately $7 billion in U.S.
expenditures.2 In an attempt to reduce healthcare costs, the
United States Centers for Medicare and Medicaid Services
(CMS) removed THA from the “Inpatient-Only” proce-
dure list in 2019.3 However, the shift towards bundled
payment models provides further incentives for ortho-
paedic surgeons and hospitals to reduce costs associated
with postoperative care while limiting complications, re-
admissions, and reoperations.4

Although the majority of THA patients are discharged
home postoperatively, many, especially older patients, still
require continued medical care or additional rehabilitation
at post-acute care facilities, such as skilled nursing facil-
ities and inpatient rehabilitation centers.5 Discharge to
such facilities often leads to prolonged hospital length of
stay (LOS), resulting in greater costs in addition to in-
creased patient morbidity and mortality.6 In studying
Medicare beneficiaries following total joint arthroplasty
(TJA), Bozic et al found that this post-discharge time
period was responsible for about 36% of payments, with
costs related to post-acute care facilities accounting for
70% of post-discharge payments.4 Therefore, identifying
patients likely to require non-home discharge may allow
necessary arrangements to be made preoperatively and/or
mitigate certain modifiable risk factors. However, evidence
remains limited on factors associated with non-home
discharge in Medicare-eligible, geriatric patients
(≥65 years of age) undergoing THA.

Machine learning is a branch of artificial intelligence
that produces complex models to iteratively advance its
predictive capacity based on the quantity of data input.
Through its ability to learn complex non-linear or linear
relationships, machine learning reduces bias and can
provide more accurate results when compared to tradi-
tionally used logistic regression.7 Machine learning has
only recently started to gain traction in orthopaedics,
with one recent study utilizing 2 popular techniques,
boosted decision tree and artificial neural networks
(ANN), to predict non-home discharge after elective total
shoulder arthroplasty (TSA).8 There is, however, a
paucity of research applying machine learning tech-
niques to predict non-home discharge in geriatric patients
following THA.

The purpose of this study is to develop trained machine
learning models, cross-referenced with conventional
multivariable logistic regression, to determine the most
important pre- and perioperative variables that may predict
non-home discharge in geriatric patients undergoing THA.
We hypothesize that the machine learning models will
identify variables associated with decreased functional
status and overall health to be predictive of non-home
discharge.

Materials and Methods

Data Source

Data was obtained from the American College of Surgeons
National Quality Improvement Program (ACS-NSQIP)
database from the years 2018 to 2020. ACS-NSQIP is a
large clinical database that collects over 150 pre-, peri-, and
post-operative variables up to 30 days following surgery in
over 680 US hospitals combined. Rigorous data collection
and auditing by the American College of Surgeons has
allowed for high-quality data with inter-reviewer reliability
greater than 98%.9 This study was conducted according to
The Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) guidelines.10

Study Population and Variable Selection

Patients aged 65 years and older with elective, unilateral
THA procedures were identified in the NSQIP database
using Current Procedural Terminology code 27130, cor-
responding to the replacement of both the femoral and
acetabular components of the hip joint by prosthesis or
artificial hip joint, with or without using an autograft or
allograft. Patients were subsequently classified as dis-
charged to home or non-home locations, based on defi-
nitions provided by the ACS-NSQIP user guide.11 Home
destinations include the following: home, facility which
was home, and multilevel senior community. Non-home
locations include the following: skilled nursing facility,
unskilled facility, separate acute care, and rehabilitation.
Patients who were discharged against medical advice (n =
8), who were discharged to hospice care (n = 13), who
expired during hospitalization (n = 31), or without
documented discharge destination (n = 44) were excluded.

Baseline patient demographics, including sex, race, age,
and body mass index (BMI), were collected. Patient co-
morbidities and preoperative variables that were collected
include diabetes mellitus requiring medication, chronic
dyspnea status, smoking, chronic obstructive pulmonary
disease (COPD), hypertension requiring medication,
chronic steroid use, >10% weight loss in the 6 months
preceding surgery, current need for dialysis, history of
disseminated cancer, current open/infected wound, con-
gestive heart failure within 30 days prior to surgery, and
history of bleeding disorder. Additionally, patient func-
tional status (classified as either independent or partially/
totally dependent), preoperative anemia based on hemat-
ocrit (Hct) level (classified using World Health Organi-
zation (WHO) guidelines into normal, mildly anemic (Hct
33%-36% for women and 33%-39% for men), and
moderate-severely anemic (Hct <33% for both men and
women), and American Society of Anesthesiologists
(ASA) grade (classified as either ASA grade 1 to 2 or ASA
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grade 3 to 5) were collected.12,13 Lastly, intraoperative
variables were collected and include primary anesthetic
type and operating time. All variables are defined in the
ACS-NSQIP user guide.11

Data Analysis and Clinical Prediction
Model Development

Baseline characteristics were calculated as percent-
ages for categorical variables, whereas mean and
standard deviation were calculated for continuous
variables. Logistic regression was performed using
independent-sample t-tests and Pearson’s chi-square
tests to evaluate continuous and categorical variables,
respectively. Statistically significant variables were
subsequently examined using multivariable logistic
regression through a backward, stepwise procedure
until all variables in the model were statistically sig-
nificant. An alpha of .05 was used for statistical
significance.

Prior to developing the machine learning models, the
data was first randomly divided into training (75%) and
validation (25%) datasets. Four popular machine
learning models were then created using Stochastic
Gradient Boosting (SGB), Random Forest (RF), Sup-
port Vector Machine (SVM), and ANN. When devel-
oping the RF model, a grid search was used to determine
the best combination of tuning parameters, including
the number of trees and the number of features at each
split. These models were chosen based on previous
machine learning studies that focused on binary
classifications.8,14,15

Model Performance

The predictive capacity of each model was assessed
and compared using the area under the receiver op-
erating characteristics curve (AUC), which is the gold-
standard metric of machine-learning assessment. The
AUC ranges from .5 to 1, with an AUC of .50 indi-
cating that the model being studied has a 50% chance
of predicting the outcome, and thus cannot distinguish
between patients who were discharged home and pa-
tients who were discharged to a non-home destination.
In general, an AUC of .7 to .8 is considered acceptable,
.8-.9 is considered excellent, and more than .9 is
considered outstanding.16 The model with the greatest
AUC was further analyzed to determine the ten most
important variables for predicting non-home discharge
in geriatric patients, rated based on their contribution
to the model.17 All analyses were completed using
Stata, version 16.1 (Stata Corp, College Station, Texas,
USA).

Results

In total, 19,840 geriatric patients undergoing THA were
included in the final analyses (Table 1). Of these patients,
5194 (26.2%) were discharged to a non-home setting. THA
patients discharged to a non-home setting were slightly
older than THA patients discharged to a home setting
(76.35 +/�6.61 years vs 73.25 +/�5.99 years), more likely
to be female (68.02% vs 60.94%), and African American
(9.40% vs 5.32%). THA patients discharged to a non-home
setting were more likely to have comorbidities, including
diabetes (20.39% vs 13.55%), smoking history (8.03% vs
6.94%), CHF (1.93% vs .66%), hypertension requiring
medication (71.52% vs 62.79%), steroid usage (5.49% vs
3.66%), bleeding disorders (6.85% vs 3.07%), dyspnea
(8.78% vs 5.19%), COPD (8.28% vs 4.70%), weight loss
(.98% vs .33%), dialysis (.77% vs .23%), disseminated
cancer (1.33% vs .46%), open wound/wound infection
(1.41% vs .25%), dependent functional status (7.86% vs
1.75%), and a severe ASA grade (73.62% vs 50.50%).
They were also more likely to have anemia (46.05% vs
28.12%). THA patients discharged to a non-home setting
also had a longer operating time (99.43 +/�44.25 minutes
vs 87.48 +/�35.61 minutes) and were less likely to receive
neuraxial anesthesia (25.41% vs 40.59%).

Multivariable logistic regression analysis (Table 1)
identified the following variables as having a significant
association with discharge disposition: age (OR: 1.08
[1.07, 1.09], P < .0001), sex (OR: 1.30 [1.20, 1.41], P <
.0001), race (OR: 1.42 [1.24, 1.62], P < .0001), diabetes
(OR: 1.35 [1.23, 1.48], P < .0001), smoking history
(OR: 1.39 [1.22, 1.59], P < .0001), bleeding disorder
(OR: 1.36 [1.16, 1.60], P = .0001), COPD (OR: 1.33
[1.16, 1.53], P < .0001), dialysis (OR: 1.91 [1.14, 3.18],
P = .0135), disseminated cancer (OR: 1.54 [1.06, 2.24],
P < .0001), open wound/wound infection (OR: 1.08
[1.07, 1.09], P < .0001), dependent functional status
(OR: 2.98 [2.49, 3.58], P < .0001), mild (OR: 1.48 [1.36,
1.60], P < .0001) and moderate/severe anemia (OR: 2.20
[1.87, 2.58], P < .0001), severe ASA grade (OR: 1.94
[1.80, 2.10], P < .0001), operating time (OR: 1.01 [1.00,
1.02], P < .0001), and anesthesia type (OR: .61 [.56,
.66], P < .0001).

The multivariable logistic regression model had AUCs
of .753 and .741 with the training and validation datasets,
respectively (Table 2). The SGB model had AUCs of .769
and .748 with the training and validation datasets, re-
spectively. The RF model had AUCs of .831 and .765 with
the training and validation datasets, respectively. The SVM
model had AUCs of .763 and .704 with the training and
validation datasets, respectively. Lastly, the ANN model
had AUCs of .792 and .748 with the training and validation
datasets, respectively. The RF model identified age>78 as
the most important variable when predicting non-home
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Table 1. Logistic regression and multivariable logistic regression analysis comparing demographics, comorbidities, and preoperative
and intraoperative variables between geriatric patients with non-home and home discharge disposition following THA.

Characteristics
Nonhome Discharge

(n = 5194)
Home Discharge
(n = 14,646)

P-
Value

Multivariable
P-Value

Odds Ratio
(95% CI)

Demographics
Age (years), mean (SD) 76.35 (6.61) 73.25 (5.99) <.0001 <.0001 1.08 (1.07, 1.09)
BMI, mean (SD) 29.37 (6.72) 29.35 (5.80) .8300
Sex, n (%) <.0001
Male 1661 (31.98) 5721 (39.06) 1
Female 3533 (68.02) 8924 (60.94) <.0001 1.30 (1.20, 1.41)
Race, n (%) <.0001
White 3974 (76.51) 9626 (65.72) 1
African American 488 (9.40) 779 (5.32) <.0001 1.42 (1.24, 1.62)
Asian 117 (2.25) 312 (2.13) .842 .97 (.77, 1.24)
Other/Not reported 615 (11.84) 3929 (26.83) <.0001 .43 (.33, .55)

Co-morbidities
Diabetes mellitus, n (%) 1059 (20.39) 1984 (13.55) <.0001 <.0001 1.35 (1.23, 1.48)
Smoking history, n (%) 417 (8.03) 1017 (6.94) .0095 <.0001 1.39 (1.22, 1.59)
CHF, n (%) 100 (1.93) 96 (.66) <.0001
Hypertension, n (%) 3715 (71.52) 9196 (62.79) <.0001
Steroid use, n (%) 285 (5.49) 536 (3.66) <.0001
Bleeding disorders, n (%) 356 (6.85) 449 (3.07) <.0001 .0001 1.36 (1.16, 1.60)
Dyspnea, n (%) 456 (8.78) 760 (5.19) <.0001
COPD, n (%) 430 (8.28) 688 (4.70) <.0001 <.0001 1.33 (1.16, 1.53)
Weight loss, n (%) 51 (.98) 48 (.33) <.0001
Dialysis, n (%) 40 (.77) 33 (.23) <.0001 .0135 1.91 (1.14, 3.18)
Disseminated cancer, n (%) 69 (1.33) 68 (.46) <.0001 .0227 1.54 (1.06, 2.24)
Open wound/wound infection, n (%) 73 (1.41) 37 (.25) <.0001 <.0001 3.00 (1.93, 4.66)
Dependent functional status, n (%) 408 (7.86) 256 (1.75) <.0001 <.0001 2.98 (2.49, 3.58)
Anemia WHO class, n (%) <.0001
Normal 2802 (53.95) 10,528 (71.88) 1
Mild 1953 (37.60) 3739 (25.53) <.0001 1.48 (1.36, 1.60)
Moderate/Severe 439 (8.45) 379 (2.59) <.0001 2.20 (1.87, 2.58)
ASA grade 3 to 5 3824 (73.62) 7396 (50.50) <.0001 <.0001 1.94 (1.80, 2.10)

Intra-operative variables
Operating time (minutes), mean (SD) 99.43 (44.25) 87.48 (35.61) <.0001 <.0001 1.01 (1.00, 1.02)
Anesthesia type, n (%) <.0001
General anesthesia 3146 (60.57) 6180 (42.19) 1
Neuraxial 1320 (25.41) 5945 (40.59) <.0001 .61 (.56, .66)
MAC/IV 668 (12.86) 2419 (16.52) <.0001 .71 (.64, .79)
Regional 55 (1.06) 97 (.66) .1517 1.30 (.91, 1.87)
None/Other 5 (.10) 5 (.03) .0818 3.29 (.86, 12.58)

ASA = American Society of Anesthesiologists; BMI = body mass index; CHF = congestive heart failure; CI = confidence interval; COPD = chronic
obstructive pulmonary disease; LOS = length of stay, MAC/IV = monitored anesthetic care/intravenous; SD = standard deviation; THA = total hip
arthroplasty; WHO = World Health Organization.
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discharge in geriatric patients with THA, followed by
severe ASA classification (ASA Class 3 and 4), operation
time, anemia status, use of general anesthesia, functional
status, larger BMI, sex, history of diabetes, and hyper-
tension (Figure 1).

Discussion

In order to determine characteristics for appropriate patient
categorization, this study applied various machine learning
strategies to predict non-home discharge in geriatric pa-
tients following THA. Among all five tested models, the
RF model yielded the highest AUC in the training and
validation datasets, demonstrating superior accuracy and
predictability when compared to multivariable logistic
regression. Random forest is a regression-based classifi-
cation algorithm that aggregates a large number of decision
trees trained on randomly sampled subsets of a complex
dataset.18,19 Prior literature has identified RF to be more
accurate to other machine learning models in handling a
large number of variables and nonlinear data. As such, RF
seems to be the machine learning algorithm of choice in

many clinical studies.20-22 The results from our RF model
suggest that older age (>78 years), severe ASA classifi-
cation (ASA Class 3 and 4), operation time, anemia, use of
general anesthesia, functional status, higher BMI, sex,
diabetes, and hypertension are most predictive of non-
home discharge. All of these variables, except for BMI,
were also found to be statistically significant risk factors in
the conventional multivariable logistic regression model.

Older age and higher ASA classification were identified
as important by the RF model and significant by the
multivariable logistic regression model. These 2 factors
likely increase non-home discharge disposition following
THA due to their correlation with higher frailty. Frailty has
been previously reported to be associated with poor out-
comes following THA, and as such, older patients and
patients with a high ASA classification may benefit from
continued inpatient care in a facility, allowing providers to
more closely monitor the postoperative course.23-25 Pro-
longed operative time, also highlighted in both models,
may simply be an indication of case complexity.26

However, operative time has also been independently
associated with postoperative complications, including

Table 2. Summary of model training and validation results.

Multivariable Logistic Regression SGB RF SVM ANN

Training AUC .753 .769 .831 .763 .792
Validation AUC .741 .748 .765 .704 .748

ANN= artificial neural network; AUC = area under the curve; RF = random forest; SGB = stochastic gradient boosting; SVM = support vector machine.

Figure 1. Normalized importance of demographic, clinicopathological, and treatment variables based on the random forest model.
Importance is the degree to which the model is dependent on the factor. ASA = American Society of Anesthesiologists; BMI = body
mass index.
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cardiac complications, infection, and renal failure.27 As
such, based on our model, when a longer operative time is
anticipated, the orthopaedic surgeon should be aware of the
likelihood of a non-home discharge for their patient.

We also found dependent functional status to be em-
phasized in both models. In elderly patients, dependent
functional status has previously been associated with in-
creased medical costs and mortality, in addition to post-
operative adverse outcomes across a range of surgical
specialties.28-31 Similarly, Curtis et al found that func-
tionally dependent patients were more likely to experience
longer operative times, hospital stays, non-home dis-
charge, reoperation, readmission, and various complica-
tions following THA.32 It is likely that a reduced ability to
independently accomplish activities of daily living such as
bathing, feeding, and getting dressed, may lead to dis-
charge to an extended care facility.

We found that type of anesthesia, particularly neu-
raxial anesthesia, was also protective against non-home
discharge in both models. When compared to general
anesthesia, neuraxial anesthesia has been previously
reported by Turcotte et al to result in decreased LOS,
short-term complications, and blood transfusions, while
facilitating home discharge following THA.33 Neu-
raxial anesthesia has superior facilitation of early
mobilization compared to general anesthesia due to
reduced postoperative nausea, vomiting, drowsiness,
and fatigue, thus, allowing for home discharge.34 While
neuraxial anesthesia appears to facilitate discharge to
home, it is important to consider that there may be
differences in the patients chosen for neuraxial anes-
thesia which may account for this variation.

With the recent promotion of bundled payment
models, healthcare facilities and physicians are incen-
tivized now more than ever to discharge patients in a
safe and timely manner. Accurate preoperative deter-
mination of patient discharge disposition can allow
surgeons the early opportunity to make required ar-
rangements and improve patient outcomes. As such,
models that can accurately identify patients at risk for
non-home discharge may be extremely beneficial. The
machine learning methods used in this study have
previously been used to predict non-home discharge in
patients with TSA, however, to the best of our
knowledge, this is the first study applying them in the
context of geriatric patients and THA. Orthopaedic
surgeons can apply these machine learning models
when preoperatively counseling their patients.

Our study has limitations. First, our analyses may be
biased by the retrospective nature of this study, however,
this approach has allowed for a large sample size, greatly
enhancing the accuracy and predictability of the models
tested.35 Second, as with any database study, we are limited
by the number of variables included in the dataset as well

as the quality of the dataset. However, ACS-NSQIP is a
large dataset with numerous variables and previous studies
have found it to be of high quality, with high inter-reviewer
reliability.9 Third, our study included both preoperative
and intraoperative variables meaning that the exact pre-
diction of non-home discharge may not be accurate pre-
operatively if intraoperative variables, such as operating
time and anesthesia type, are different than anticipated.
Furthermore, some variables included are modifiable, in-
cluding anemia status and BMI, while others are not,
suggesting that there may not be interventions to mean-
ingfully improve discharge disposition for patients based
on the results of this study. Fourth, the patients included in
the study underwent THA at a tertiary care center rather
than at ambulatory surgery centers (ASC) as the NSQIP
does not include data fromASCs. The patients included are
likely sicker at baseline and less likely to be discharged
home, indicating that this data may not be generalized to all
patients undergoing THA. Additionally, as the proportion
of outpatient and same-day cases is constantly changing,
this prediction tool may be less accurate as more patients
are discharged home after THA. Finally, external valida-
tion of this machine learning model on a prospective data
set is warranted.

The application of machine learning to medicine is
still relatively novel. As such, the exact nature of the
importance of the features identified by the RF model is
difficult to interpret. However, in this study, we have
also provided analysis from conventionally used mul-
tivariable logistic regression for comparison, allowing
for greater clarification as to the importance of certain
factors. Our findings should help shared decision-
making, expectation setting, and optimization of
modifiable risk factors for patients. Identifying factors
that predict non-home discharge may allow for a
streamlined discharge process, minimizing prolonged
inpatient LOS.

Conclusions

The machine learning models developed in this study,
especially RF, displayed excellent accuracy for the
prediction of non-home discharge following THA in
this important patient population. Once cross-
referenced with conventional multivariable logistic
regression, the most predictive variables included age,
operating time, ASA classification, anesthesia type, and
anemia. With the rising emphasis on value-based care,
outpatient surgical practice is rapidly expanding across
all healthcare subspecialties.36-38 Incorporating models
such as these can allow orthopaedic surgeons to better
understand the factors which contribute to non-home
discharge, allowing for improved preoperative planning
and patient outcomes.
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